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Abstract

We investigate optimum rate assignment scheme maximizing network throughput
on the downlink of a multirate CDMA wireless network. Systems employing orthog-
onal variable spreading factor (OVSF) codes as well as systems employing multiple
codes have been studied. Our objective is to maximize the network throughput under
constraints on total transmit power, total bandwidth and individual QoS requirements
specified in terms of minimum rates. First, users are ordered based on their transmit
energy per bit requirements to achieve the target received energy per bit to interference
power spectral density ratio at the receivers. Based on the initial ordering, we prove
that for systems employing multiple codes, greedy rate scheduling yields maximum
network throughput. For systems employing variable spreading codes, we show that
greedy rate scheduling is optimal if the minimum rate requirement of a user is larger
than or equal to the minimum rate requirement of any other user with a larger trans-
mit energy per bit requirement. Simulation results verify the superiority of the greedy
algorithm under various system and channel assumptions.

1 Introduction

Wireless data networks provide access to multimedia applications such as video streaming

and internet, together with classical applications such as voice. While there is an increasingly

high demand for wireless services, radio resources are often scarce, and therefore a careful and

efficient allocation of limited resources is vital. The challenge is that different applications

have different quality of service requirements. For example, while downloading a music file

may be delayed a few minutes or more, real time services such as voice are delay intolerant,

∗This paper was presented, in part, at the IEEE Wireless Communications and Networking Conference
(WCNC), New Orleans, LA., March 2003. This work is supported in part by the NJ Commission on Science
and Technology under the NJCWT program.
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and require a minimum service rate. In this study, we consider minimum service rate as

a quality of service metric, and investigate how to maximize the network throughput in a

multirate CDMA downlink.

For the CDMA uplink, resource allocation problems are studied extensively in [1–6]. The

common objective in these studies is either to maximize the sum of rates (or utility), or

to minimize the total transmit power, subject to constraints on individual transmit power

assignments, total bandwidth, the quality of reception in terms of SINR targets, minimum

service requirement of each user (fairness), or delay. For the CDMA downlink, resource

allocation problems are studied in [7–14]. A hierarchical SIR and rate control algorithm is

proposed in [7]. First, the mobiles determine their SIR targets using mobile specific infor-

mation, and then the base station determines rate assignments using the limited feedback

from the mobiles. In this paper, our analysis will answer how the base station algorithm in

the hierarchical structure should work. Downlink scheduling for delay tolerant data services

is considered in [8–11]. It is shown in [8] that a time division scheme in which users transmit

one by one within each cell provides energy efficiency and increased capacity. Similarly,

in [9], it is proven that, for data-only networks, the optimal scheme is to transmit to only

one data user at a time, which is the technique used in the HDR system [10,15]. While these

schemes attempt to guarantee long term nonzero average throughput to each user, they are

not suitable if users have instantaneous service requirements, as in the case of voice, or real-

time multimedia. In this paper, we define the instantaneous minimum rate as a quality of

service metric, and analyze the optimal rate assignment scheme in this case. Our results

coincide with the one user at a time conclusion [8–11], when there is no minimum service

rate requirement.

A simplifying approach in resource optimization problems is to assume continuous rate

and power assignments, instead of practical discrete system parameters, at the expense of an

approximate solution. Here, we assume discrete rates corresponding to systems employing
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either multiple codes or variable spreading codes. In this case, the throughput maximization

becomes a discrete optimization problem. We show that for systems employing multiple

codes, the problem can be solved efficiently by a simple greedy algorithm with polynomial

complexity. For systems employing variable spreading codes, the problem is more compli-

cated and the greedy algorithm is optimal if the minimum rate requirements are ordered by

the channel qualities.

The organization of the paper is as follows. The system model is described in Section 2.

The problem statement is given in Section 3. In Sections 4, the rate assignment algorithms

are introduced, and the optimality analysis are provided. Section 5 is on examples and

simulation results for CDMA networks. We conclude the paper in Section 6.

2 System Model

Multiple Access Scheme: In CDMA wireless networks, multiple users share a common

communication medium by means of spreading codes. There are two ways to assign spreading

codes in such systems. First, in the third generation W-CDMA standard [16], multirate data

service is provided by assigning each user a single spreading code with variable length. In

such a scheme, spreading codes are obtained from a binary tree structure (Figure 1) and

are called Orthogonal Variable Spreading Factor (OVSF) codes [17]. On the other hand, in

multicode CDMA systems, each user can be provided with multiple spreading codes of fixed

length, depending on the users’ rate requests.

Figure 1 shows how OVSF codes are obtained from a binary tree structure. In the

figure, Ci,j represents jth node on layer i on the binary tree, and it corresponds to a unique

spreading code (signature sequence) of length 2i and rate R0/2
i where R0 is the root rate

corresponding to the node C0,1. Moreover, orthogonality of the assigned spreading codes is

guaranteed by the fact that none of the parent-child node pairs is assigned at the same time.

As an example, the nodes C1,2 and C2,4 in Figure 1 cannot be in use at the same time since
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C1,2 is a prefix of C2,4. Therefore, the assigned signature codes must have the prefix-free

property.

Accordingly the prefix-free property imposes a constraint on the set of spreading codes

available in OVSF CDMA systems. It is a well-known fact that the Kraft inequality deter-

mines whether a set of codes with specified lengths can be placed on the binary tree as a

prefix-free set [18]. Denoting the length of the branch from the root node (C0,1 in Figure 1)

to the uth user’s node by lu and number of users by N , the Kraft Inequality,

N∑
u=1

2−lu ≤ 1, (1)

must be satisfied to obtain a prefix-free set.

In the context of CDMA spreading codes, the Kraft inequality is a bandwidth constraint.

Since R0 denotes the root rate and represents the maximum total rate or the bandwidth of

the system, it follows that the rate of user u is

Ru =
R0

2lu
(2)

Multiplying both sides of (1) by R0, the Kraft inequality becomes

N∑
u=1

Ru ≤ R0 (3)

which states that R0 is an upper bound on the throughput of an OVSF CDMA system. It

is trivial to generalize the constraint (3) to the multicode CDMA case and R0 represents the

system bandwidth in this case.

Channel Model: We consider a single cell CDMA downlink with N mobiles. Each mobile

has a different application running, and therefore each has a specific QoS requirement in

terms of a minimum service rate. For each transmitted bit of user u, there is a target

received energy per bit to interference power spectral density ratio, (E/I)r
u ≥ γu, with which

the receiver can decode the transmitted bits with an acceptable bit error rate (BER).
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The channel between the base station and each mobile can be modeled either as a fre-

quency flat single path channel, or as a frequency selective multipath channel. These two

models have quite different implications on the problem definition. Unlike the uplink where

random spreading codes are used, orthogonal spreading codes are used on the downlink. In

frequency flat channels, the orthogonality of the transmitted waveforms is preserved at the

receiver. On the other hand, in a frequency selective multipath channel, the orthogonal-

ity is lost at the receivers. Our problem formulation will be general enough to account for

both channel models. For each channel model, we determine the transmit energy per bit

requirements to achieve the target SINR per bit γu at the receivers.

In a frequency flat channel, the orthogonality implies that the overall system can be

modeled as a number of parallel channels. Since there is no interference across parallel

channels, the system only compensates for the background noise, i.e. (E/I)r
u = (E/N0)

r
u ≥

γu, and therefore user u requires received energy per bit Er
u ≥ γuN0 where N0 is the noise

power spectral density. In this case, the transmit energy per bit should satisfy Et
u = Er

u/hu ≥

γuN0/hu, where hu denotes the link gain for user u.

When there is multipath in the channel, delayed versions of orthogonal spreading codes

arrive at each receiver, leading to multi-access interference due to the loss of orthogonality

between spreading codes. In the CDMA downlink, the loss of orthogonality can be character-

ized by the orthogonality factor (OF), which is defined as the fraction of received downlink

power converted by multipath into multi-access interference [19,20]. As noted in [19,20], the

orthogonality factor is a time-varying parameter that depends on the instantaneous multi-

path channels as well as the receiver structure and the spreading codes employed. On the

other hand, in the analysis of the downlink, time average value of the orthogonality factor

is traditionally employed [19, 20]. This is due to the fact that data symbols, which are first

spread by orthogonal codes, are then multiplexed and scrambled by cell-specific random long

codes before transmission. In this case, the analysis is more tractable if the interference is
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modeled using its average over the length of the random long code. Here we follow the same

convention, and assume that user u has an average orthogonality factor of β̄u. In this case,

we can express (E/I)r
u as

(
E

I

)r

u

=
W

Ru

puhu

(β̄u

∑
i 6=u pihu + N0W )

=
W

Ru

puhu

(β̄uhu

∑
i pi − β̄upuhu + N0W )

≥ γu (4)

where W denotes the spreading bandwidth, Ru denotes the rate assignment, and pu is the

transmit power. In deriving (4), we inherently assume rake reception where the gain sum of

all paths is represented by the path loss hu.

Here we are interested in a practical power limited system where the power constraint

is a bottleneck on system throughput. In this case, it is expected that the base station

uses any nonzero residual power to increase the throughput with some nonzero rate (or for

some users to achieve higher received SINR per bit and better reception quality). The base

station therefore transmits at its peak power. This is the case in [7] and [14] where the rate

assignments are not restricted to be discrete, and it is shown that either the power constraint

is achieved with equality, i.e
∑

i pi = P , or the whole bandwidth is allocated. Our design in

this paper will be a conservative one in which the received SINR is guaranteed to exceed γu

given
∑

i pi ≤ P . By upperbounding
∑

i pi by P and using (4), we require that

(
E

I

)r

u

≥ W

Ru

puhu

(β̄uhuP − β̄upuhu + N0W )

(a)

≥ γu (5)

Thus, the set of rate and power assignments satisfying (a) will satisfy the inequality (4)

as well. Rewriting (a), it follows that

puhu ≥
Ru

W
(β̄uhuP + N0W )γu

1 + Ruγuβ̄u

W

(6)

Using (6) and the fact that the transmit power is pu = Et
uRu, we obtain

Et
u =

pu

Ru

≥ (β̄uhuP + N0W )γu

(W + Ruβ̄uγu)hu

(7)

Notice that when β̄u = 0, (7) reduces to Et
u ≥ γuN0/hu, which is the SINR constraint

in flat channels. We note that, in the multicode CDMA case, Et
u is required for one of the
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multicodes (we will denote its rate by Rs in the rest of the paper). Assignment of multiple

codes to a user generates self interference. In this case, each spreading code needs to be

treated separately, and Et
u has to be calculated for each as if every other spreading code is

an interferer signal.

3 Problem Statement

For both multicode CDMA systems and OVSF CDMA systems, the throughput maxi-

mization can be formulated as the following discrete optimization problem over the vector

η = (η1, . . . , ηN) of user rates:

max
η

N∑
u=1

ηu ≤ R0 (8)

subject to
N∑

u=1

Et
uηu ≤ P (8a)

ηu ≥ ηmin,u u = 1, . . . , N (8b)

ηu ∈ S = {η1, η2, . . . , ηM} (8c)

where each user selects a rate ηu from the set S = {η1, η2, . . . , ηM} such that the sum rate

is maximized within the bandwidth constraint (8). Note that (8a) is the constraint on the

total transmit power, and each bit of user u is transmitted with energy Et
u so as to satisfy

the target received SINR γu, i.e. to satisfy (7) with equality. Moreover, (8b) represents the

users’ individual bandwidth constraints.

For multicode CDMA systems, ηu = Rsnu where Rs denotes the rate corresponding to a

single spreading code, and nu denotes the number of spreading code assignments. Thus, the

set of possible rate assignments are given by S = {Rs, 2Rs, 3Rs, . . . ,MRs}, where M is the

total number of multicodes.

For OVSF CDMA systems, ηu = R02
−lu where R0 denotes the root rate on the bi-

nary code tree, and lu denotes the length of the branch from the root node (C0,1 in Fig-

ure 1) to the uth user’s node. Thus, the set of possible rate assignments are given by
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S = {R0, R0/2, R0/4, . . . }. On the other hand, each user has a minimum rate requirement

ηmin,u = R0/2
Lu where Lu is the minimum depth on the binary code tree below which

spreading codes cannot provide the user’s minimum rate.

4 Algorithms and Analysis

For systems using OVSF codes, the rate assignment problem is equivalent to determining

the relative distances lu of spreading codes to the root node on the binary code tree. In

terms of the vector l = (l1, . . . , lN) of distances, the problem (8) becomes

max
l

N∑
u=1

R02
−lu (9)

subject to
N∑

u=1

Et
uR02

−lu ≤ P (9a)

N∑
u=1

2−lu ≤ 1 (9b)

lu ∈ {0, 1, . . . , Lu} (9c)

where the bandwidth constraint in (8) is written in terms of the Kraft inequality (9b), and

the minimum rate constraint (8b) is embedded in the set of possible distances (9c).

The objective function (9) is a nonlinear function of integer branch length lu. Moreover,

the energy per bit Et
u depends on the rate assignment (7), and therefore is a function of the

branch length lu, which complicates the problem further. The problem above is a mixed-

integer nonlinear program (MINLP), which is generally hard to solve, and requires exhaustive

search over the set of possible rate combinations because MINLP problems combine the

difficulties of their subclasses: the combinatorial nature of mixed integer programs, and the

difficulty in solving nonlinear programs, both of which are among the class of NP-complete

problems. Fortunately, we realize that under certain conditions on the constraint set, and

under realistic system assumptions, the problem can be solved by a simple algorithm with

polynomial complexity. First, an instance of interest is when Et
i < Et

j implies Li ≤ Lj
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for all i and j, i.e. when the minimum rate requirement of a user is larger than or equal

to the minimum rate requirement of any other user with a larger transmit energy per bit

requirement. Second, we are interested in the cases where the transmit energy per bit Et
u

does not depend on the rate assignment Ru. This is clearly the case in flat channels where

β̄u = 0 in (7). On the other hand, in frequency selective channels, we make the large system

assumption, and notice that in a system with a large number of users, each having nonzero

minimum rate requirements, it is unlikely to have users dominating the whole available

bandwidth by themselves, i.e W À Ru = R02
−lu in general. For example in a WCDMA

downlink, the spreading bandwidth is W = 3.84 × 106 chips/second while the minimum

spreading length is 4 chips, corresponding to the root rate of R0 = 0.96 × 106 bits/second.

Even in a very lightly loaded system, say there are only 2 users, the user with the better

channel can receive at most half of the root rate (since 2 users can only be placed somewhere

below the root node on the binary code tree), which is 0.48× 106 bits/second, and the ratio

W/Ru is 8. This ratio will increase geometrically down the binary code tree and can be as

large as 512, which many users will have in a highly loaded system. In this case, it can be

shown that the dependence of Et
u on Ru is not significant. Notice that a tighter constraint

on Et
u can be written as

Et
u

(a)

≥ (β̄uhuP + N0W )γu

Whu

(b)

≥ (β̄uhuP + N0W )γu

(W + Ruβ̄uγu)hu

(10)

where (a) and (b) implies (7). On the other hand, for typical values of β̄u ≈ 0.3 [20], γu = 5

(≈ 7 dB) and under the assumption W À Ru, (b) can be approximated by an equality1, and

therefore the constraint on Et
u does not depend significantly on Ru. While this analysis is

quite accurate for very low data rates, users with relatively high rates achieve larger SINR

per bit when the constraint (a) is satisfied.

1A similar assumption [7] that in a system with a large number of users with nonzero minimum rates,
transmit power for a single user is much less than the total power constraint, i.e. P =

∑
i pi À pu, leads to

the same result.
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4.1 Rate Assignment Algorithm in OVSF CDMA Systems

The rate assignment algorithm is given in Figure 2. First, the minimum rate requirement

of each user is provided. The rest of the algorithm is greedy in nature, and the objective is

to increase (to double in the binary tree case) the rate of the user who requires minimum

energy per bit. Based on the initial ordering by transmit energy per bit Et
u requirements,

the algorithm attempts to maximize the rate of a user at each greedy step within the total

transmit power constraint (9a) and the bandwidth constraint (9b) expressed in terms of the

Kraft inequality.

Notice that spreading code of user u resides on layer lu of the binary code tree in Figure

1. Although lu uniquely determines the rate assignment (2), it does not tell us which node

on layer lu of the code tree should be assigned to user u. On the other hand, satisfying the

Kraft Inequality (1) guarantees the fact there is at least a set of N spreading codes on the

binary code tree such that spreading code of user u is placed on layer lu, the rates of all

other users are not affected by this placement (although spreading codes might shift on the

same layer) and all spreading codes in the set are mutually orthogonal as a result of the

prefix free property. The shifts or replacements of spreading codes on the same layer on the

binary code tree are implementation issues and such shifts do not affect the assigned rate of

a user. Thus, the way the spreading code replacements or shifts occurs at each step of the

algorithm, the subject of [21, 22], is not addressed in this study.

4.2 Greedy Optimality in OVSF CDMA Systems

The basic idea is that the set of rate assignments by any existing optimal algorithm can be

made more “greedy” by reordering and reassigning user rates in a way to favor the users with

better channels, and all these reassignments are feasible on the binary code tree. Moreover,

as the rate assignments by the optimal algorithm look more like the greedy assignments, the

total power is reduced while keeping the total throughput constant. Note that if Ri < Rj and
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Et
i < Et

j for any two users i and j, we can swap the rates without changing the total sum of

rates as long as the new assignments do not violate the minimum rate constraints. Denoting

the total transmit power before and after swapping Ri and Rj by P and P s respectively, it

follows that

P − P s = [Et
iRi + Et

jRj]− [Et
iRj + Et

jRi] = (Rj −Ri)[E
t
j − Et

i ] > 0 (11)

where the last inequality follows from the fact that Et
j > Et

i and Rj > Ri.

We first prove the optimality of the greedy algorithm in the two user case. We then

generalize the proof to any number of users.

Theorem 1. Given that the user with smaller transmit energy per bit requirement has also

larger or equal minimum rate requirement, the greedy algorithm solves the OVSF rate as-

signment problem for N = 2 users.

Proof. A general form of the problem in the 2 user case is as follows

max R0(2
−l1 + 2−l2) (12)

subject to Et
1R02

−l1 + Et
2R02

−l2 ≤ P
′

(12a)

2−l1 + 2−l2 ≤ ρ (12b)

li ∈ {0, 1, . . . , Li}, i = 1, 2 (12c)

for any 0 < P
′ ≤ P and 0 < ρ ≤ 1. Without loss of generality, assume the first user requires

smaller transmit energy per bit Et
1 < Et

2.

Consider an optimal vector l∗ = [l∗1, l
∗
2] yielding maximum throughput. Given L1 ≤ L2,

we can always choose the optimal vector l∗ in such a way that l∗1 ≤ l∗2; otherwise if l∗1 > l∗2,

user 1 and user 2 can exchange the assigned values so that the total throughput remains the

same and the new assignments even save some power. Note that such an exchange does not

violate individual minimum rate constraints because L1 ≤ L2. Our greedy algorithm yields
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the vector l̂ = [l̂1, l̂2], such that

l̂1 = min{l ∈ £|2−l + 2−L2 ≤ ρ, Et
1R02

−l + Et
2R02

−L2 ≤ P
′}, (13)

l̂2 = min{l ∈ £|2−l + 2−l̂1 ≤ ρ, Et
2R02

−l + Et
1R02

−l̂1 ≤ P
′}. (14)

We compare l∗ and l̂,

• Assume l∗1 < l̂1 : For user 1, the greedy algorithm finds the smallest l̂1 on the binary

tree, while power and bandwidth constraints are satisfied and the second user’s spread-

ing code resides on layer L2. Thus l∗1 < l̂1 is impossible; otherwise l̂1 would not be the

local minimum choice.

• Assume l∗1 > l̂1 : In this case the smallest possible value of l∗1 is l̂1 + 1. Since l∗1 ≤ l∗2,

we have l̂1 + 1 ≤ l∗1 ≤ l∗2. It follows that

R0(2
−l∗1 + 2−l∗2) ≤ R0(2

−(l̂1+1) + 2−(l̂1+1)) = R02
−l̂1 < R0(2

−l̂1 + 2−l̂2) (15)

since 0 ≤ l̂2 ≤ L2. Equation (15) asserts that the rate achieved by l∗ is strictly less

than the rate achieved by l̂, which contradicts the optimality of l∗ implying that l∗1 > l̂1

is also impossible. As a result we conclude that l∗1 = l̂1.

Similarly, the greedy algorithm makes a local minimum choice for user 2 while the first

user’s spreading code resides on layer l̂1. Because l∗1 = l̂1, and l̂2 is a local minimum, l̂2 ≤ l∗2

must be true. On the other hand if l̂2 < l∗2, then the optimal l∗ offers smaller throughput

compared to the greedy l̂, which is a contradiction. Therefore l∗2 = l̂2 must be true.

Theorem 2. Given that the minimum rate requirement of a user is larger than or equal

to the minimum rate requirement of any other user with a larger transmit energy per bit

requirement, the greedy algorithm solves the OVSF rate assignment problem.

Proof. Here we will prove a more general statement that the greedy algorithm solves rate

maximization problem for any power constraint 0 < P
′ ≤ P and any bandwidth constraint
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0 < ρ ≤ 1, corresponding to a “partial” binary code tree. The general form of the problem

is

max
N∑

u=1

R02
−lu (16)

subject to
N∑

u=1

Et
uR02

−lu ≤ P
′ ≤ P (16a)

N∑
u=1

2−lu ≤ ρ ≤ 1 (16b)

lu ∈ {0, 1, . . . , Lu} (16c)

Without loss of generality, we can assume that Et
1 < Et

2 < · · · < Et
N . Consider an

optimal vector l∗ = [l∗1, l
∗
2, . . . , l

∗
N ] yielding maximum total throughput. Given L1 ≤ L2 ≤

· · · ≤ LN , any feasible set of optimal rate assignments can be reordered in such a way that

l∗1 ≤ l∗2 ≤ · · · ≤ l∗N , without violating individual minimum rate constraints. It is important

to notice that, given Et
i < Et

j and l∗i > l∗j , an exchange between assignments of users i and

j does not violate minimum rate constraints if Li ≤ Lj. In addition, such an exchange

always saves power (11); therefore the power constraint is not violated while the throughput

remains constant.

Our greedy algorithm yields the vector l̂ = [l̂1, l̂2, . . . , l̂N ]. The proof goes by induction.

We already proved the greedy optimality for the two user case in Theorem 1. Here, we

assume that Theorem 2 is true for any system of Ñ < N users. We also assume that there

is a feasible rate assignment vector for the problem (16). Therefore, optimal and greedy

solutions are both feasible and we will consider them below.

Definition 1. Let A be a user index such that l̂u = l∗u for u = 1, . . . , A− 1, and l̂A 6= l∗A.

Due to local optimality of the greedy algorithm, we have l̂A ≤ l∗A − 1. First, we suppose

A > 1. In this case at least the first user gets the same rate assignment by both algorithms

(greedy and optimal). The remaining N − 1 users can be assigned in a greedy fashion

because our induction hypothesis stipulates that for any Ñ < N users, greedy assignments
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are optimal. This proves Theorem 2 for the case of A > 1. Thus, it remains to consider the

case of A = 1. Since optimal l∗ achieves maximum total throughput, employing l̂A ≤ l∗A − 1

for the case A = 1, we can write that

2−l∗1 +
N∑

u=2

2−l∗u ≥ 2−l̂1 +
N∑

u=2

2−l̂u ≥ 2−(l∗1−1) +
N∑

u=2

2−Lu (17)

Equation (17) asserts there is a new set of rate assignments on the binary code tree in

which the rate of user 1 is doubled from the optimal 2−l∗1 to 2−(l∗1−1), while the rest of the users

get their minimum rates; clearly the throughput of the new assignments does not exceed the

optimal throughput of l∗. The question is whether the new assignments of users 2, . . . , N

can be further increased on the binary code tree until achieving the optimal throughput of

l∗, and without violating the power constraint.

Lemma 1. For any l∗ = [l∗1, l
∗
2, . . . , l

∗
N ] satisfying (17), we can always find a set of assign-

ments l̃∗2, . . . , l̃
∗
N such that

2−l∗1 +
N∑

u=2

2−l∗u = 2−(l∗1−1) +
N∑

u=2

2−l̃∗u (18)

l∗u ≤ l̃∗u ≤ Lu, u = 2, . . . , N (19)

Proof of Lemma 1. Here we give a constructive proof of Lemma 1 by providing an explicit

algorithm, Figure 3, which computes the new assignments l̃∗2, . . . , l̃
∗
N . The algorithm starts

with l∗, and halves the rate of a chosen user (releases half of the user’s bandwidth) at each

iteration n. We denote the amount of bandwidth released at nth iteration by 4n, and the

aggregate bandwidth released up to the nth iteration by Jn. The basic idea is to show that

eventually there will be enough bandwidth released to double the rate of user 1, i.e. Jn equals

to 2−l∗1 at some point, and that the algorithm falls through Step 3 and always terminates.

Let’s assume that there is no n such that Jn = 2−l∗1 . Together with (17) it means that

there will be such an iteration t for which

Jt−1 =
t−1∑
n=1

4n < 2−l∗1 , Jt =
t∑

n=1

4n > 2−l∗1 . (20)
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We also observe that

2−l∗1 ≥ 41 ≥ 42 ≥ · · · ≥ 4t. (21)

Partial ordering in (21) follows from Step 1 of the algorithm which always chooses the

largest rate user to release its bandwidth. Due to the ordering in (21) and the definition of

t, the difference between Jt and 2−l∗1 is smaller that the contribution from the last iteration

Jt − 2−l∗1 =
t∑

n=1

4n − 2−l∗1 < 4t (22)

We emphasize here that by construction 4n is always some negative integer power of

two. Therefore, (21) implies that the ratios 4n/4t are integers for n = 1, . . . , t. Next, we

divide both sides of (22) by 4t, yielding

(
t∑

n=1

4n

4t

)
− 2−l∗1

4t

< 1. (23)

In the above inequality, the left side is a positive integer due to (20), while the right

side is a fractional number less than one. Therefore (23) contains a contradiction, proving

that Step 3 terminates the algorithm which results in the set of assignments l̃∗2, . . . , l̃
∗
N as in

Lemma 1.

With the help of Lemma 1, we can immediately construct a new rate assignment vector

l̃∗ = [l∗1 − 1, l̃∗2, . . . , l̃
∗
N ] yielding the same throughput as the optimal assignments l∗, yet

because of (19), it consumes less energy. Notice that l̃∗ looks more “greedy” than l∗, i.e.

user 1 with the minimum transmit energy per bit requirement gets an enhanced rate while

the other users get less than or equal to their rate assignments in l∗ due to (19).

To complete the proof of Theorem 2 in the case of A = 1, Lemma 1 can be applied to l̃∗

as well, i.e. starting from the new set of optimal assignments l̃∗, we can construct another

optimal set with the first user receiving l∗1 − 2 and all other users receive less than or equal

to their assignments in l̃∗, but more than their minimum requirements. We can continue in
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this fashion until the first user receives l̂1, the assignment by the greedy algorithm, in an

optimal set of assignments. At this point, we already proved the greedy optimality, i.e. for

A > 1 using our induction hypothesis that greedy assignments are optimal for any Ñ < N

users. The greedy optimality proof of Theorem 1 in the two user case is therefore generalized

to any number of users by induction.

It is interesting to note that the optimality of the greedy algorithm in OVSF CDMA

systems depends on the minimum rate constraints. When users with worse channels require

larger minimum rates, the greedy algorithm may not be the optimal way to assign user rates.

As a simple example, assume there are two users in the system; the first with Et
1 = 1, and

the second with Et
2 = 1.25. The power constraint is 11, and minimum rate requirements

are R1,min = 1 and R2,min = 4. Total power to provide the minimum rates is Pmin =

∑2
u=1 Et

uRu,min = 6. Since the first user requires smaller transmit energy per bit, the greedy

algorithm would double the first user’s initial rate assignment using the remaining power

budget of 11− 6 = 5. In this case, the greedy algorithm could at most assign 4 units of rate

to user one, which requires an additional 3 units of power. The remaining 11 − 6 − 3 = 2

units of power would not be enough to double second user’s initial assignment from 4 to 8,

therefore the greedy algorithm would conclude R1 = 4, R2 = 4 and a total throughput of 8

units of rate. On the other hand, optimal throughput is 9 units of rate which is achieved

when R1 = 1 and R2 = 8.

4.3 Rate Assignment Algorithm in Multicode CDMA Systems

A simple polynomial time greedy algorithm, given in Figure 4, solves the rate assignment

problem in multicode systems. The optimal algorithm favors the user with the smallest

transmit energy per bit requirement. After the algorithm assigns minimum rates and allo-

cates corresponding spreading codes to each user, only the rate of the user with the minimum

energy per bit requirement is maximized using the remaining power budget.
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The intuition is that if a spreading code is to be assigned, it is better if it is assigned

to the user who can receive it with the smallest power (the smallest contribution to the

total power). On the other hand, unlike the uplink where the multiaccess interference at

the receiver depends on the channels of all users and the individual power assignments, the

multiaccess interference on the downlink is a function of the user’s own channel and the

power assignments of interferer spreading codes. Thus, a reduction in the power of any

interferer signal is beneficial to all users no matter who the spreading code is assigned to.

Theorem 3. The greedy algorithm solves any instance of the multicode rate assignment

problem (8).

Proof. The optimality proof is similar to the one in the OVSF case. We refer to [23] for

further details.

5 Examples and Simulations

We apply the algorithms on the downlink of a single cell CDMA wireless network. The

system assumptions are consistent with 3G system specifications [16, 17]. Spreading gain is

assumed to be in the range from a minimum of 4 up to 512, which corresponds to 8 levels

on the binary code tree including the root node. The spreading bandwidth is 3.84 MHz, the

maximum base station transmission power is 10 Watts, the receiver noise, NoW , is 10−10

Watts, and the target (E/I)r
u = γu is 5 (7dB) (different applications may have different γu

targets, the algorithms are applicable in such cases as well). The x any y coordinates of each

mobile are selected uniformly on (0-2000m) in a square cell of 4km2. The path loss Lp at

any given distance d is given by [24]

Lp = L0 + 10ε log10(d/d0) + S; d ≥ d0 (24)

where L0 is the decibel path loss at distance d0, ε is the path loss exponent, and S is the

shadow fading variation. The numerical values are d0=100 m, L0=78 dB, S is normal with
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0 mean and σ=8 dB, and ε=4. The multipath characteristics, or the frequency selectivity,

of the channels are represented by the orthogonality factor β̄; for simplicity we assume that

all users have the same average β̄. The first experiment is conducted for β̄ = 0, which

corresponds to a flat channel, β̄ = 0.1, β̄ = 0.2, β̄ = 0.5 and β̄ = 0.8. For each mobile, we

randomly choose a minimum rate corresponding to one of {128, 256, 512} length spreading

codes with equal probability. We assume fixed modulation and coding2.

The average throughput of the greedy algorithm in an OVSF CDMA system is compared

to the average optimal throughput of a system using multiple codes. The average throughput

values are obtained over 500 simulation runs for a given number of users. In each simulation

run, a random set of user locations, a set of independent random shadow fades, and a set

of minimum rate requirements are generated. In case minimum rate requirements are not

feasible, i.e. if providing minimum rates to each user at the target (E/I)r
u = γu requires

more power than P , a new set of minimum rates are generated by decreasing the minimum

rate requirements of the users who require the largest transmit energy per bit.

Figure 5 compares average throughput results in multirate CDMA systems. In the figure,

the solid lines represent the OVSF throughput determined by the greedy algorithm, and the

dotted lines represent the optimal throughput of a multicode system, which is achieved by

the greedy algorithm for any set of minimum rates. Since any set of rates offered by variable

spreading factor codes can be realized by multiple codes (for example a spreading code of

length 128 offers the same rate as 4 spreading codes of length 512), the optimal throughput

of a multicode system can be thought of as an upperbound to the average throughput of

an OVSF system. The figure shows that the greedy OVSF throughput is very close to the

optimal greedy multicode throughput, especially for large number of users. Moreover, we

2There is no explicit assumption on modulation and coding format. The only assumption is that they
are the same and fixed for all users, which implies that spreading codes with the same lengths correspond
to the same rate, and the rate assignments are proportional to the number of spreading code assignments in
multicode systems, and are determined by the lengths of the spreading codes in variable spreading systems.
In numerical calculations, we assumed uncoded QPSK, while the algorithms and analysis are valid for any
fixed coding and modulation format.
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observe that the performance gap between multicode throughput and OVSF throughput

closes as the number of users increases and the holes on the binary code tree get filled more

efficiently by more users. Notice that it is much easier to manage orthogonal spreading

codes in a multicode CDMA system; for example in a 2 user OVSF system, the user with a

better channel can achieve at most half of the bandwidth (the node below the root node),

while in a multicode CDMA system the same user can have the whole available bandwidth

as long as the power constraint permits. Also note that, for large values of β, there is a

decline in total throughput as the number of users increases. This is counter-intuitive since

we expect the optimal scheme to exploit the multiuser diversity, i.e. users with favorable

channel conditions, when the number of users increases. On the other hand, since each user

requires a nonzero minimum rate, a large increase in the number of users results in larger

interference floor for the system, and thus reduces the system capacity. This fact suggests

that we employ a call admission scheme which limits the number admitted real-time users

(i.e. users with minimum service rate requirements) to a certain number (6 − 7 users in

Figure 5), instead of a call admission scheme which admits as many users as possible based

on the feasibility of the minimum rates.

In Table 1 and Table 2, we present two sample cases in order to understand how various

system parameters affect the rate assignment policy. In Table 1, individual rate assignments

and corresponding path loss values are presented for a sample case of 10 users in a system

using OVSF codes. Notice that except path loss, all other factors affecting the transmit

energy per bit are the same for all users in the example. As a result, users with relatively

small path loss values receive high throughput since they require lower transmit energy per

bit. In the second example of Table 2, we assign rates to users who are close to the base

station (or in a short range system) where the path loss is small, and the received multiaccess

interference power may be much larger than the receiver noise, i.e. β̄uhuP À N0W . A simple

link budget calculation shows that if the path loss is smaller than 50− 60 dB, the transmit
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energy per bit is mainly affected by the loss of orthogonality between spreading codes due

to the multipath channel, and is independent of the path loss. For example, if P = 100 mW,

β̄u ≈ 0.1, N0W ≈ 10−10 Watts, and hu > 10−6, then

Et
u =

1

hu

(β̄uhuP + N0W )γu

W + Ruβ̄uγu

≈ β̄uPγu

W + Ruβ̄uγu

(25)

which is independent of hu. In this case, the rate assignment policy is mainly affected by

the orthogonality factor β̄u. We observe in Table 2 that the user with a moderate path loss

(50 dB) but with the smallest orthogonality factor achieves the largest throughput.

6 Conclusion

In this paper, we investigated the throughput maximization problem on the downlink of

CDMA wireless networks. For systems employing multiple codes, we derive the optimal

greedy rate assignment scheme. For systems employing variable spreading codes, we derive

and prove the conditions for the optimality of the greedy algorithm. Our simulation results

show that the greedy algorithm, even when it is suboptimal in some instances of an OVSF

system, is a good heuristic yielding close to optimal average throughput results in OVSF

systems. As a future work, an interesting question is how to combine an admission control

scheme with our rate assignment algorithm in a system with a dynamic traffic flow. In

addition, one of our followup studies [25] investigates the effects of multiuser receivers, power

control and spreading code selection on the downlink performance.
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Figure 1: OVSF Code Tree. Ci,j represents node j on layer i and has a length of SF=2i

Input : R0, P , £u = {0, 1, . . . , Lu}, Et
b = [Et

1, E
t
2, . . . , E

t
N ] (in increasing order)

Output : l=[l1, . . . , lN ]
Initialization : for u = 1, . . . , N , lu = Lu

Pt =
∑N

u=1 Et
uR02

−Lu

for u = 1 : N
lu = min{l ∈ £u| 2−l +

∑
v 6=u 2−lv ≤ 1, 2−l − 2−Lu ≤ P−Pt

Et
uR0
}

Pt = Pt + Et
uR0(2

−lu − 2−Lu)
end

Figure 2: Rate Assignment Algorithm for OVSF CDMA Systems

User Index 1 2 3 4 5 6 7 8 9 10
Path Loss (dB) 41 48 63 67 77 78 80 94 97 99
Ru,min (Kbps) 15 60 15 15 15 15 15 60 15 60
Ru (Kbps), β = 0 960 480 240 60 15 15 15 60 15 60
Ru (Kbps), β = 0.1 960 480 240 60 15 15 15 60 15 60
Ru (Kbps), β = 0.5 960 240 120 15 15 15 15 60 15 60
Ru (Kbps), β = 0.8 480 240 30 15 15 15 15 60 15 60

Table 1: Throughput vs Path Loss for a system using OVSF codes, for 10 users. Uncoded
QPSK is assumed. The target SINR per bit is γ = 5 (≈ 7dB), corresponding to a probability
of a symbol error of Pb ≈ 5× 10−3.
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Input : l∗ = [l∗1, l
∗
2, . . . , l

∗
N ], L = [L1, L2, . . . , LN ], Et

b = [Et
1, E

t
2, . . . , E

t
N ]

Output : l̃∗ = [l̃∗1, l̃
∗
2, . . . , l̃

∗
N ]

Initialization :
n := 0; J0 := 0; for u = 1, . . . , N , l̃∗u := l∗u; S := {2, . . . , N}
Step 1 :
U := {u ∈ S | l∗u = minu

′∈S l∗
u
′};

um := arg maxu∈U Et
u;

if l̃∗um
= Lum then S := S − {um} and repeat Step 1;

Step 2
n := n + 1;
l̃∗um

:= l̃∗um
+ 1;

4n := 2−l̃∗um ;
Jn := Jn−1 +4n;
Step 3: if Jn 6= 2−l∗1 goto Step 1;
Step4 : l̃∗1 := l∗1 − 1;
end

Figure 3: Algorithm for Lemma 1

Input : P , Rs, R0, ℵu = {n′u, n′u +1, . . . , R0/Rs}, Et
b = [Et

1, E
t
2, . . . , E

t
N ] (in increasing order)

Output : n=[n1, . . . , nN ]
Initialization : for u = 1, . . . , N , nu = n

′
u

Pt =
∑N

u=1 Et
uRsn

′
u

n1 = max{n ∈ ℵ1| n +
∑

v 6=u nv ≤ R0/RS, (n− n
′
1) ≤ P−Pt

Et
1Rs
}

end

Figure 4: Rate Assignment Algorithm for Multicode CDMA Systems
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Figure 5: Comparison of the Average Throughput Results

25



User Index 1 2 3 4 5 6 7 8 9 10
Path Loss (dB) 10 20 30 40 50 60 70 80 90 100
OF (β) 0.7 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Ru,min (Kbps) 15 15 15 15 15 15 15 15 15 15
Ru (Kbps) 15 15 15 15 960 480 240 120 30 30

Table 2: Throughput vs Path Loss and β for a constructed sample case.
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