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Abstract

This work examines an adaptive transmission system that supports a finite set
of code rates and a continuously variable transmit power. Based on the concept of
information outage, we maximize the system throughput over slow fading channels.
Numerical results show that in a Rayleigh fading channel, there is only a 1 dB gap
between the ergodic capacity and the throughput of a two rate adaptive transmission

system when the throughput is less than 6 bits/sec/Hz.

1 Introduction

In [1], two adaptive transmission policies are compared: (1) the truncated inversion policy
with continuously variable transmitted power but a fixed code rate and (2) fixed transmitted
power with continuously variable code rates. It is shown that the latter is superior in terms of
the maximum average throughput. Both policies represent limiting cases of practical policies
that support a finite set of code rates and power levels.

In [2], the optimization of a discrete adaptive transmission design based on information
outage has been studied. In this case, the problem formulation was limited to the case
where the number of code rates and transmitted power levels are the same. However, this
restriction may not necessarily reflect realistic design constraints; it is common to have

significantly fewer code rates than power levels. For instance, in an IS-95 system [3] which
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has been available commercially for more than 10 years, the transmission power adapts on
a grid of 1-dB steps over a dynamic range of 60 dB or more. On the other hand, even for

the most recent adaptive system designs [4,5], the number of code rates is only around ten.

In this paper, we examine an extreme case of system design with a finite number of code
rates and a continuously variable transmitted power. Though similar problems for adaptive
MQAM systems have been studied in [6,7], this paper emphasizes the optimum system design
with the physical constraints of average power and a finite set of codebooks. The primary
design problem will be the selection of code rates and the corresponding assignments of rate

and power based on the channel state.

We assume additive white Gaussian noise (AWGN) and a slow multiplicative fading
environment with a channel state which is constant during the transmission of a codeword. It
is assumed that the exact current channel state information is known at both the transmitter
and the receiver. The channel state space is partitioned into a countable number of intervals.
Upon each transmission, a message is encoded at a rate corresponding to the current channel
state interval and a power level corresponding to the current channel state. Since each
codeword experiences an additive white Gaussian noise (AWGN) channel, random Gaussian

codes organized in multiple codebooks are employed.

For the proposed adaptive system, it is possible that the instantaneous mutual infor-
mation corresponding to a channel state is less than the assigned code rate. In this case,
an information outage event occurs. The information outage is an intrinsic characteristic
of communication over fading channels with a decoding delay constraint [8,9] or, alterna-
tively, with codewords not long enough to experience ergodic fading. One extreme case of
such a scenario is the above-mentioned slow fading channel assumption that the channel is
constant over the transmission of a codeword. For delay-limited cases, the strict sense Shan-
non capacity is zero [8]. During an outage, a transmission is not considered reliable and,
thus, it is frequently convenient to assume that the transmitted data can be ignored [10].
This assumption leads to the capacity versus outage problem which focuses on the tradeoff
between the outage probability and the supportable rate; see, for example, [11,12]. The
practice of ignoring data received during an outage is supported by the fact that the outage
probability matches well the error probability of actual codes [13,14]. Consequently, we
characterize the performance of a system design based on the concept of average reliable
throughput (ART), defined as the average data rate assuming zero rate when the chan-
nel is in outage [2]. Henceforth, the central topic is maximizing ART of a discrete adaptive
communication system for a slow fading channel.

Following the formulation of the finite code rate set problem, we explore optimum (ART-

maximizing) policies where a policy is defined by a channel state space partition together

with the corresponding transmitted power and rate allocation. In this work, we will show



that, for an optimum policy, there are no outages in the sense that the transmitted power
is nonzero only if the sender employs a code rate that allows for reliable decoding at the
receiver. Furthermore, the transmitter employs a zero transmitted power policy only for a
subset of worst channel states. We show that an optimum policy employing L codebooks can
be uniquely characterized by a partition of the channel state space with L 4 1 intervals: the
zero rate/power interval in addition to L intervals corresponding to L nonzero code rates.
In particular, the optimum power allocation has a water-filling character which is uniquely
determined by the channel state space partition.

Different from the situation in [2], here we can reduce the throughput maximization prob-
lem, which is a joint optimization over the space of channel state space partitions and the
code rate/power assignments, to a one-parameter search. This outcome is quite surprising
since the throughput maximization problem is generally not a convex optimization prob-
lem and can have multiple local maxima for an arbitrary distribution of the channel state.
Within this paper, the channel state distribution is only constrained to be continuous and
differentiable.

In addition, we have obtained the optimum partition for a given set of rates to be assigned
and an average power constraint. Such a solution is of particular interest to heuristic practical
designs where codes can be selected only from a limited set of good channel codes before one
chooses an optimum channel state partition. Though not surprisingly, our derivation also
shows that a partition of L + 1 channel state intervals is indeed the optimum choice. As a
byproduct, for the MQAM spectral efficiency maximization problem introduced in [6] and
addressed in [7,15], we provide the optimum solution.

Finally, numerical results show that, for a Rayleigh fading channel, there is a gap of only
1 dB between the ergodic capacity and the throughput of a 2-rate adaptive transmission
system when the throughput is less than 6 bits/sec/Hz. Thus, in comparison with the results
in [2], we find that power adaptation can indeed be very helpful for adaptive transmission
with discrete code rates. This agrees with the conclusion for power adaptation in MQAM

systems in [7].

2 System Model and Problem Formulation

We consider a multiplicative flat fading channel model similar to that in [1]. The complex

received signal

Y =VSX +W, (1)

where S is the channel (fading) state, X is the complex transmitted signal, and W is a
circularly symmetric additive white Gaussian noise (AWGN) with variance Ny. The channel

state S is a real random variable of unit mean with a probability density function (PDF)
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f(s), a cumulative distribution function (CDF) F(s), and a domain & = {s|s > 0}. Only
in Section 4 is F'(s) assumed to be continuous, differentiable, and strictly increasing in s.
In this paper, fading is assumed to be sufficiently slow so that the channel state is constant

during the transmission of a codeword.

A generalized adaptive transmission system can be modeled as follows. At any channel
state s, the transmitter transmits codewords coded at a rate r(s) with a power level p(s) =
E{|X|? |s}, where E{-} denotes expectation. The code rate r(s) is chosen from a set,
Ro = {ro = 0} UR where R = {ry,...,rr}. Without loss of generality, we assume that
ri_1 <nr forl=1,...,L An adaptive transmission policy can uniquely be specified by the
assigned code rate r(s) and the corresponding allocated power level p(s). Such a policy is
denoted by the tuple (R, r(s),p(s)).

Let
Vi = {s|r(s)=mn},1=0,...,L, (2)

in which rate r; is employed. Each policy specifies a partition of the set of channel states
S = Ul yVi. In general, V), can be a countable union of intervals in S or simply a measurable
set of channel states. Since there are L non-zero code rates, we call (R, r(s), p(s)) an L-level

policy.

Since (1) is an AWGN channel for any given s € S, the corresponding maximum mutual

information is given by log(1 + p(s)s/Ny). Adopting the notation

R(¢) =log(1+¢/No), ¢ >0, (3)

the maximum mutual information associated with any state s is R(p(s)s). For any s € V),
given a code rate r; of a capacity achieving Gaussian codebook, and a power allocation p(s),
the information is guaranteed to be successfully received iff R(p(s)s) > r;. We define the

binary outage indicator function

1, R(p(s)s) <,
0, otherwise.

Low(r, 5, p(s)) = { (4)

The expected value of I (r,s,p(s)) over the channel states S is the information outage
introduced in [12].

Given a policy (R, 7(s),p(s)), the average reliable throughput (ART) is

RL(R,7(s),p(s)) = Z?"z/ [1 = Louws (71, 5, (5))] f(5) ds. (5)



Let
f(s) = { f(s)/Prs € V], seW, ©)

0, otherwise,

denote the conditional PDF of the channel state given that it belongs to V,. The conditional

average power given s € V; is
P= [ ps) i) ds, )
Vi

Also, the average transmitted power for the policy (R, r(s),p(s)) is

pL(R,(s),p(s)) = Y PPr[s € V. (8)

Throughout this paper, we only consider the policies with r(s) and p(s) such that both
(5) and (7) are meaningful, i.e., the integrals are either Riemann or Lebesgue integrable. The
objective will be to maximize ART Ry (R, r(s),p(s)) subject to an average power constraint

and a constraint that there are L codebooks of L distinct nonzero rates:

Rmax o Ri(Ror(s),p(s)), 9)
subject to  pL(R,r(s),p(s)) <D, (9a)
R| =L, (9b)

r(s) € Ro={ro =0} UR, (9¢)

p(s) =0, (9d)

r(s) > 0. (9e)

In (5), for any V), with either r; = 0 or P, = 0, there is zero contribution towards ART and,
consequently, it is optimum to assign p(s) = 0 over all such V,. For a V, with nonzero r; and
P, we observe that an optimum policy must be locally optimum over V,. Local optimality

requires that given V;, P, and r;, p(s) must be the solution of

wax 1 /V 0 a5, ()] o) (10)
subject to /V p(s)fils) ds < P, (10a)
p(s) > 0. (10Db)

Given any non-negative r;, (10) is equivalent to the following local outage minimization
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problem

min | ol 5,0 A(5) s (1)

subject to / p(s)fi(s)ds < P, (11a)
Vi

p(s) > 0. (11b)

The solution of (11) is presented in [11, Proposition 4] and will be summarized here. We

define a channel inversion power allocation

(12)

No (er — 1), s>0,7>0
0, r=0 '

which represents the minimum power required to communicate reliably at the rate r for the
channel state s. Let

r;r:max{r

[ vt n)fts)ds < B}, (13)

denote the largest possible assigned rate over V, without outage given the average power
allocation P, over V. If r; < TZT, the solution of (11) is trivial; we allocate power ¢ (s, r;) and
achieve zero outage over V;. On the other hand, if r; > r;r, outage within V) is inevitable and

the corresponding optimum power allocation is the truncated channel inversion

p(s) = ) (14)

0, S € Vl\f}l
Y(s,m), s€EV)

where V, C V), is a subset of better channel states in V), i.e., s; € Vl\f}l and sy € V, implies
51 < $9. Moreover, the set V), is chosen to satisfy the average power constraint

P = g U(s, ) fils) ds. (15)

Note that (s, r) is not defined for s = 0 and r > 0. This is due to the fact that, in the
vicinity of s = 0, the channel is too poor to support any positive rate. Thus, the following
must hold: r(0) = 0 and p(0) = 0.

In the optimization problem (10), we assume that r; is known. However, for any V), given

the conditional average power P, we can also choose r; to maximize the conditional ART.
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Specifically, local optimality implies that the optimum rate/power allocation must solve

max max n/ (1 — Lous (71, 5, 0(5))] fi(s) ds, (16)
m p(s) v
subject to / p(s)fi(s)ds < P. (16a)
Vi
p(s) > 0. (16b)

Since rate r] defined by (13) is achievable under (16), any rate r; < r] is suboptimal for (16).

For any r; > r;r, outage probability within V; is nonzero. Thus, for any optimum rate r;,
the optimum power allocation in (16) has the form (14). Since there is no transmission for
s € V)\V,, we can incorporate this set of channel states into the set of zero-power zero-rate
channel states Vo = {s|r(s) = 0} and redefine V; = V. For the new policy, there is no outage
for states s € Vy; we reliably achieve zero rate by using zero power. Moreover, the assigned

rate r(s) and the corresponding power p(s) satisfy

p(s) = d(s,m),  s€V, (17)
r(s) = log(l+p(s)s). (18)

Note that (17) and (18) are consistent with the definition of V, which implies that s € V),
whenever r(s) = ;. Consequently, it is clearly sufficient to denote any optimum policy by
(R,r(s)). Moreover, (18) and (9d) imply (9e).

From (5), (7), and (8), the corresponding overall average power and ART are
prL(R,1r(s)) = Z ¢, s,11)f(s) ds, (19)

Ru(R,r(s)) = Z / nf(s (20)

Our objective is to maximize Rp(R,r(s)) subject to both the average power constraint
pr(R,r(s)) < p and the constraint that the rate set {r(s)} has a cardinality L + 1 and
includes the zero rate ro = 0.

Even though (20) is much simpler than (5), a simple solution is not available. In the
next two sections, we will obtain necessary and sufficient conditions for optimum policies
by applying the Lagrange multiplier method and the Karush-Kuhn-Tucker conditions [16].
Given these conditions, the optimum policies can be found by a relatively simple search
method.



3 Partition Optimization

In this section, we address the subproblem of finding the optimum r(s) given a specific rate
set Ry. This problem is of interest since a valid strategy for designing adaptive transmission
systems is to choose a subset of good error control codes before deciding r(s), i.e., the channel
state partition {V;}. Furthermore, since this subproblem and the MQAM spectral efficiency
maximization problem in [6] (solved only in a suboptimal manner in [6]) are closely related,
the optimum solution presented here is also the optimum solution of the problem in [6].
For a given rate set R including L distinct positive rates, the throughput maximization

problem (9) becomes

ril(z:)x RL(R,r(s)), (21)
subject to  pr(R,r(s)) <D, (21a)
r(s) € Ro. (21b)

In comparison with the problem (9), (21) has fewer constraints. Specifically, given R, with
(21b), (9b) and (9e) are redundant. In addition, with (21a), we implicitly take p(s) in the
form specified in (17), which further implies that (9d) is automatically satisfied.

The maximization problem (21) is a variation of the bit-loading problem in [17]. Both
problems belong to the general class of Knapsack Problems (KPs) [18]. The traditional
bit-loading problem is to optimize the rate/power allocation over a finite number of parallel
channels where any rate assigned to a channel can only be an integer. In this work, the
rate/power allocation is over S, which is an uncountable set. Furthermore, elements of R
are not necessarily integers.

In [17] (see also [19]), it is proved that a greedy rate/power allocation is the optimum
solution for the bit-loading problem in parallel channels. We will show that the same alloca-
tion is indeed optimum for (21). Moreover, such a solution implies that quantization is the
optimum partition. The optimum quantization partition boundaries are also derived.

Fig. 1 depicts a policy with an arbitrary, and not particularly intelligent, rate and par-
tition assignment. The wave-like power assignment in Fig. 1(b) is the result of the local
optimization in (16). The average rate Ry (R,r(s)) in (20) is the integral of the rate pulses
in Fig. 1(a) weighted by the channel state PDF f(s). Similarly, the average power pr,(R,r(s))
in (19) is the integral of wave crests of Fig. 1(b) weighted by f(s). To express these integrals

in a more useful form, we introduce the incremental rate and power functions

TlA = =", (22)

pr(s) = (s,m) — ¥(s,m1), (23)
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Figure 1: Illustration of an arbitrary policy satisfying (17) and (18). Note that Vy = S\U;_, Vi
is not shown. (a) rate assignment, (b) power allocation.

forl{ =1,..., L. Since elements in R are a strictly increasing sequence, the incremental rates

r& and power pi(s) are both positive.

At any channel state s, the transmitted code rate and the corresponding required trans-

mitted power assignments can be expressed as sums of 77> and pi*(s),
L
r(s) =Y L(s)rf, (24)
I=1

p(s) = 3" L(s)p (), (25)

where the coefficients, {I;(s)|{=1,...,L}, in (24) and (25) is a set of binary 0/1-value
functions. Since r; > ry for I' =1,...,1, (24) implies that

VZZ{S

Iy(s) =1,I' <, and Ip(s) = 0,1' > l} . (26)
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A given rate set R specifies the incremental rates {rlA} and the incremental powers
{pf*(s)}. Thus, given R, T = {[;(s)|l =1,..., L} describes a policy of interest. The corre-

sponding ART and average power are
L o0
Rt = 3 [ ns)e) ds (27)
1=1 70

@ =3 / " () (s) £ (s) ds. (28)

And the maximization problem (21) becomes a problem of searching for the optimum Z.

Note that (26) requires a valid policy to satisfy the precedence constraint
Iy(s) > I(s), I'<1. (29)

The precedence constraint simply says that if I;(s) = 1, then Iy(s) = 1 for all I’ < [. In
addition, if I;(s) = 0, then I(s) =0 for all I > [.
In order to identify a policy that provides an optimum solution to the throughput maxi-

mization problem (21), we introduce the incremental efficiency (or, simply, efficiency)

_ TzAf(S) _ S n—na
) = A7) T Npen —ent” (30)

which is a ratio between an increment in the throughput from r; ; f(s) to r,f(s) at state s
and the corresponding power expenditure pf*(s)f(s). For optimization with integer rates,
the efficiency concept may not be necessary [19]. Nevertheless, it is a key for solving the

problem with non-integer code rates.

Lemma 1 The incremental efficiency n,(s) has the following properties:
(a) m(0) =0 for all L.
(b) For fized I, ni(s) increases in s.

(c) For fized s, n(s) decreases in .

ART can now be expressed as

RT) = % / " L m(s)p () () ds. (31)

Together with the constraint (28), the maximization of Ry (Z) forms a Knapsack Problem
[18], which is solved by the following policy.
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Definition 1 The most power efficient quantization (MPEQ) is a policy Z* = {I;(s)} where

0, otherwise,

Ij(s) = { Lom(s) 2 dulr) I=1,...,L, (32)

and the positive constant Ay (r) is determined by the average power constraint p(Z*) = p.

Note that the uniqueness of the efficiency lower bound Ay (r) and MPEQ is an issue
discussed later in the subsection.

For any MPEQ, s € V,_; and s’ € V, imply that for some A\y(r) > 0, I/(s) = 0 and
I (s") =1, i.e., m(s) < m(s") and, consequently, s < s'. Thus, MPEQ leads to a quantization
in the sense that s € V,_; and s’ € V), imply that s < s'. In addition, Lemma 1(c) guarantees
that MPEQ satisfies the precedence constraint (29).

Theorem 1 For any policy T = {I;(s)} satisfying the average power constraint pr(Z) < P,
RL(T) < RL(T7) (33)

We emphasize that Theorem 1 holds regardless of whether the policy I;(s) satisfies the
precedence constraint (29) or not.

The MPEQ solution is easy to obtain analytically. An MPEQ policy is fully determined
by the efficiency threshold Ay(r) where r(s) > r; iff ;(s) > Ay(r). From Lemma 1 and the
continuity of the domain S, there exists ¢ such that 7,(¢;) = Au(r) and n(s) > Au(r) iff
s 2 q.

Thus, ¢, is the boundary separating V, ; and V,. It follows from (30) and the equality

m(ql) = )\M(I‘) that

A N, T pli-1
g = uENo (et —em) (34)
rr—"i—1

Since n;(s) decreases in [ for fixed s, (34) is an increasing sequence of L boundaries ¢y, .. ., qr.
Moreover, these boundaries indicate that for a given set of rates R, an optimum policy is
given by a quantization of the channel state set S into exactly L 4 1 intervals corresponding
to the set of rates R. Thus, an optimum policy for a given R can be represented by the

vector

q=q, -] (35)

An MPEQ policy is illustrated in Fig. 2, where ¢y = 0.
To study the uniqueness of MPEQ, we assume Z* = {I(s)} and %' = {I;(s)} be two
MPEQs corresponding to Ay(r) and M,(r), respectively. The corresponding boundaries of

the partition intervals are q and ' = [q},...,q}]".
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Figure 2: Illustration of an MPEQ policy. (a) rate staircase, (b) power staircase.

Proposition 1 If A\y(r) > A,(r), we have

1) If (s) = 1 wherever I(s) = 1,

2) pr(L*) < pr(Z"),

3)q <q forall=1,...,L,

4) pi(Z*) = pp(T%') if f(s) =0 for all s € [qj,qu),l=1,..., L.

The claim 4) in Proposition 1 implies the following theorem.

Theorem 2 MPEQ is unique if f(s) > 0 for s € S\ {0}.

3.1 MQAM Spectral Efficiency Maximization

Problem (21) is closely related to a special case of the spectral efficiency maximization
problem for an adaptive MQAM system [6], which suggests employing a set of L 4+ 1 pre-
determined MQAM constellations of sizes in M = {My=1,M,...,My}. The My =1
constellation corresponds to turning off the transmitter. The transmission scheme requires
that given a channel state s in V), a transmitter transmits a QAM symbol constellation of
size M(s) = M;, M, € M, with power p(s).

12



Without loss of generality, we assume M; < M; for [ = 1,...,L. To guarantee a
specified bit error rate (BER) P, for all channel states, the transmitted power is

M(s) —1

p(s) = T Ks (36)

where K = —1.5/log(5P,) [6].
Let r, = log(M;), | = 0,...,L. Consequently, r(s) = log (1 + p(s)sK). The spectral

efficiency maximization problem for L +1 QAM signaling and a continuously varying power
is as follows

max RL(R,r(s)), (37)
subject to [ p(s)(s)ds < 7. (372)
r(s) € Ro, (37h)

plo) = oL V) (370

where Ry = {ro} UR and R = {ry,...,r1}. Following the procedure derived in this section,

we obtain the optimum partition as a quantization with boundaries

A (e —emi-t)

. Il=1,...,L, 38
K(’I“l—’l“lfl) ( )

q =
where A is determined by the average power constraint. An evaluation of this policy in

Rayleigh fading is given in Section 5.3.

4 Optimum Policies

In the previous sections, we have demonstrated that an ART-maximizing policy, defined in
Section 2, with a rate set Ry must be an MPEQ corresponding to Ry. More specifically,
Theorem 1 shows that any candidate ART-maximizing policy with a rate set Ry must have
channel states partitioned into |Rg| intervals. Furthermore, we found that the optimum
solution employs rate r(s) = r; € Ry in the interval Q; = [q;, ¢;11), where ¢ is defined in

(34) with go = 0 and gz, = oo. In addition,

p(s) =v(s,m),  s€Q,1=01,...,[R|. (39)

13



Consequently, any policy of interest can be specified by (r,q) where the vectors

r — [Tl,...,T‘R‘]T, (40)
a = [a.--qr]’, (41)

with the corresponding p(s) given by (39). An optimum policy is denoted by (r*,q*).

Clearly, for a policy specified by (r,q), if ¢-s are not distinct, the policy degrades to
a policy with a number of distinct rates smaller than |Ry|. Consequently, without loss of

generality, we concentrate on q with |R| distinct elements.

For an L = |R| level policy (r,q), the corresponding ART is

L

Ri(r,q) = nF, (42)

=1

where
F, = Pr [S € Ql] . (43)

The conditional average power in the interval Q; is
P(r,q) = [ ¥(s,m)fi(s)ds, (44)
(o

where the conditional PDF of channel state s is

fi(s) = {f(s)/Fz, s € Q . (45)

0, otherwise

For an interval Q;, the conditional average channel quality w; is defined by

Ny
— = — d [=1,...,L. 46
W o, s fl(s) S, ) ) ( )

Here, w; is normalized by Nj in order to simplify the latter derivations and 0 < w; < ... <
wr. Equations (12), (44), and (46) implies

Arg = (47)
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The original ART maximization problem (9) now becomes

max Ry (r,q) (48)
r,q

subject to  py(r,q) <P, (48a)

where

Ry(r,q) = ZFm:Zm/ f(s)ds, (49)
pulrq) = ZFsz ra)=3 1) [ 26 (50)

We note that problem (48) can have multiple local maxima. For example, when L =1,

"0 () s (51)

1

pr(r,q) = pi(ri,q1) = (e — 1)/

Now, since p;(r1,¢1) = P is necessary to achieve the maximum ART, r; must be a function
of ¢, defined by

=lo _r__).
rl—lg(1+f;ONof() ) (52)

Consequently,

Rp(r,q) = Ri(ri,q1) = Ri(q1) = log (1 + fq?o N"f ) / f(s (53)

An illustration of Ry(g;) with multiple local maxima is shown in Fig. 3. Note that in Fig. 3,
the f(s) violates the continuity assumption in Section 2. However, it is not very hard to
imagine that a continuous f(s) similar to that in Fig. 3 will lead to a similar scenario with

multiple local maxima.

4.1 Water-Filling Power Allocation

According to (47), given a channel state partition q that specifies the conditional average
channel quality w;, the rate r; is uniquely expressed in terms of the conditional average
power, P, in the interval Q;:
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Figure 3: A R;(q;) with a simple piecewise linear f(s) has three local maxima. Arrows show
the corresponding local maxima before and after magnification.

r = log(1+ Puw). (54)

Given a fixed q, the ART maximization problem (48) can be written as

Jmax Zlog (1 + —) F, (55)

subject to ZBF} <P, (55a)

p>0,1=1,..., L. (55b)



It is straightforward to show using the Karush-Kuhn-Tucker (KKT) conditions that the

optimum solution of (55) for given q is

P = (o - wi) (56)

where 1/Aw(q) is the water-filling level which satisfies

L

p=Y FPl(q). (57)

=1

We have shown that an optimum policy (r*,q*) must have |R| = L. Hence, (54) implies
that P = P/(q*) > 0 for [ = 1,..., L. That is, for optimum policies, the operator (-)* in
(56) should not have any impact. This in turn enforces the implicit requirement on g* in

the form of A\w(q*) < w; for I =1, ..., L, for policies of interest.

Consequently, (57) implies

1 P [ f(s)ds
Aw(a) 11— F(q)

(58)

and (54) implies that the optimum rates corresponding to q are given by

ri=log <>\V\L/u(l(l)> ’ (59)

Since w; characterizes the channel states of interval Q;, the water-filling result is analogous

to those in both the original continuous adaptive transmission problem [1] and the parallel

Gaussian channel problem [20].

Note that the water-filling power allocation (56) is optimum within the set of policies
(r,q) that explicitly require p(s) in the form of (39). For a poorly chosen partition q, (r,q)
policies with p(s) given by (39) may not be even locally optimum within the interval Q.

Therefore, the water-filling power allocation (56) must be used with some caution.

Moreover, because Ry (r,q) can have multiple local maxima, ascent techniques based
alternating optimization of the partition q and rates r can at best only reach a local maxima.
In the following, we show how the necessary conditions for optimality and g7, the first element
of q* uniquely specify an optimum policy. Thus, the search for optimum policies is reduced

to a line search over ¢;.
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4.2 Necessary Conditions for Optimum Policies

The corresponding Lagrangian function for (48) is

L(r,q,A) = Ry (r,q) + AP — pr(r, q)]. (60)

The Lagrangian function has a positive multiplier \. The unit of the Lagrangian function is
the same as ART.

Given fixed r and variable q, (48) becomes the partition optimization problem studied

in Section 3. Formally, the partial derivative of the Lagrangian function with respect to ¢ is

OL(r,q, \)

9 = fla) {—(n — 1) + A (e = et) %} _ (61)

ai

Note that it is here where F'(s) is required to be continuous and differentiable. However,

this is not required for the MPEQ in Section 3. The necessary conditions for optimality

OL(r,q, \)

= 0, l=1,...,L, (62)
gy r=r*,q=q* A=\*
imply
* Tl* B 7"?_1 _ *
A l,? (61"1* . erl*—l) - )\M(I' )7 (63)
q

where the last equality is from (34). Therefore, the optimum Lagrange multiplier \* is equal

to the incremental efficiency at ¢; defined in (30).

On the other hand, a similar optimization problem can be formulated from (48) for given
q and variable r. This problem is the power allocation problem studied in Subsection 4.1.

The necessary conditions for the optimum policies are

L A 1
OL(r,q,)) - Fl{l—)\e”—} =0, I=1,...,L,(64)
arl r=r*,q=q*,A=\* Wi r=r*,q=q*,A=\*
implying
M= eTTwr = dwl(qh), (65)

where the last equality is due to (59). Therefore, the optimum Lagrange multiplier \* is the

reciprocal of the water level of the water-filling power allocation obtained in Subsection 4.1.
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Both (63) and (65) imply that for an optimum policy (r*, q*),
Au(r?) = Aw(q). (66)

For convenience, we define wj = Aw(q*). Although it is inconsistent with (46), the definition
is conceptually appealing since Py = 0 can be obtained from (56). This is in that regardless
how bad the channel quality is in the channel state interval [0,¢;), the average channel
quality can be always considered as good as Aw(q*) in terms of optimizing power allocation.

Thus, we obtain a set of necessary conditions for optimum policies as,

(e’"l e’"l*l)
q = w(q) " (67)
(@ W — wj 4 . 1=1,2,...,L, (68)

by substituting (59).

4.3 Search for Optimum Policies

Since w; and A\w(q*) depend on q*, we have only L unknown q* and L equations (68). The
only inconvenience is that (68) are nonlinear and ¢; are limits of integrals defining w; and
Aw(q*). Therefore, it is hard to solve ¢; by using any direct substitution. However, in the
following, based on the monotonic relationship between ¢ and w;, a simple algorithm can
be found to search for the optimum solution.

Naturally, the average channel quality w;, becomes better when Q; is enlarged by adding

more good channel states. Such an intuition brings two monotonic relations below.
Lemma 2 ¢ is strictly increasing in w;.

Lemma 3 w, | s strictly increasing in q;.

In particular, Lemma 3 follows from the following restatement of (46),

1 "N,
— = / —Ofl(s)ds, I=1,...,L. (69)
Wi-1 qi—1 §

These two lemmas are the building blocks of a constructive procedure for finding the optimum
policy given ¢i described in Fig. 4. Particularly, in steps 1b and 2b, Lemma 2 implies the
existence of a unique solution w; and in the step 2a, Lemma 3 implies the existence of the

unique solutions ¢;.
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1) I=1:
a) Given ¢j, use (58) to uniquely solve for Aw(q*) and, thus, obtain wj = Aw(q*);
b) Given ¢i and w§, use (68) to uniquely solve for w] [Lemma 2].

2) [ >1:
a) Given ¢, and w;_;, use (69) to uniquely solve for ¢; [Lemma 3J;
b) Given ¢/ and w; |, use (68) to uniquely solve for w; [Lemma 2.

3) Repeat step 2) from [ =2 to | = L, we will have q*.

Figure 4: An algorithm searching for optimum policies started from g¢j.

Theorem 3 For each value of qf, there exists a unique policy (r*,q*) that satisfies the

necessary conditions (68).

Overall, (46) and (68) offer 2L equalities. With ¢}, we repeatedly use (46) and (68) to
uniquely determine other ¢; and all w;. Indeed, at the step [ = L, given ¢}, wj can be
determined by either (68) or by (46) with ;1 = oo. These two approaches are distinct and
must agree for the optimum policies. In this sense, the 2L equalities (46) and (68) implicitly
restrict ¢i. However, since (68) are only necessary conditions obtained from (66), it implies
that all local optimum satisfy all 2L equalities, i.e., (46) and (68). Therefore, the optimum
gi will not be unique when multiple local maxima achieve the same objective value. In this
case, there will be multiple optimum policies (r*,q*).

Since there is only one undetermined parameter ¢}, a line search over ¢, solves the problem
of maximizing ART subject to a power constraint and a finite code rate set.

Finally, let the maximum ART for any L-level policy be
Cr = R.(r",q"), (70)
where (r*,q*) is any L-level optimum policy.
Theorem 4 For all L > 1,

CL > C_’L—l- (71)

5 Numerical Results

In this section, following the approach in [11], we let Ny = 1 and evaluate the system

performance numerically.
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Figure 5: A comparison of C, Cp, RIL, and C;, for Rayleigh fading.

5.1 Optimum Code Rates and Partition

Theorem 3 suggests that it is possible to perform a line-search on the single parameter ¢
to find (r*,q*) and obtain C7. In Fig. 5, we present a comparison between C and several
known throughputs for a Rayleigh fading channel. C' is the ergodic capacity given in [1].
C'L,, proposed in [2], is the maximum ART corresponding to a discrete adaptive transmission
policy with L code rates and L power levels. Cs requires about 3 dB less average transmitted
power than C; to achieve the same throughput.

Since (', is obtained through exhaustive search, the required computation complexity
increases exponentially with respect to L and it is not desirable to evaluate C'y for large L.
In [2], by employing a greedy iterative algorithm initialized with an asymptotically optimum
solution of Cf, a good lower bound RIL of Uy, is found. In Fig. 5, Rfo is about 1 dB away
from C'.

We observed that Cy > Rfo, which suggests employing adaptive systems with a small
number of code rates and a large number of power levels. Finally, it can be shown that C,
is only a fraction of a dB away from C' for throughput values less than 8 bits/sec/Hz.
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Figure 6: A comparison of partitions with r =0 and r, = 2[, [ =1,2,..., L —1 for Rayleigh
fading. (a) L = 3, (b) L =4, (¢) L = 5, and (d) L = 6. The dotted line indicates the
ergodic capacity C, the solid line corresponds to the optimum partition, and the dash line
corresponds to the suboptimal partition in [6].

5.2 Optimum Partition for Preset Code Rates

Here, we have a comparison between the performance of the optimum partition and that of
a partition motivated by the design in [6]. Given a code rate set r with 7y = 0, a suboptimal

partition is

0, 1=0
QZ:{ : (72)

ge, 1=1,2,...,.L—1

where ¢ is a parameter tuned to satisfy the power constraint (21a) since p(s) = (s, r;), s €

Q.

Fig. 6 shows the results of two partition methods for

0, [=0
r = ]_, =1 . (73)
2001 —1), 1=2,3,...,[—1

Using the optimum partition can reduce the transmitted power requirement by as much
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Figure 7: Comparison of spectral efficiency obtained by the optimum partition and the
suboptimal partition in [6] for P, = 1075.

as 0.5 dB in comparison with using the other suboptimal partition for L = 5. However,
for a small L, there is only a negligible difference between the results corresponding to the

optimum partition and the suboptimal partition.

5.3 Spectral Efficiency

In Fig. 7, we show the results of spectral efficiency of adaptive MQAM systems with a
P, = 1075, The results show that for 3 regions (L = 3), there is a negligible difference
between the spectral efficiency corresponding to the optimum partition and the suboptimal

partition [6]. The difference becomes distinguishable when there are more regions (larger L).

6 Conclusion

In this paper, the average reliable throughput maximization problem for adaptive trans-
mission systems with a finite number of code rates and continuously varying power level is
formulated. By exploring the properties of the optimum policies, we can obtain C, through
a simple line-search algorithm.

Moreover, while studying the properties of the optimum policies, we discovered the opti-
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mum partition given an increasing rate assignment. This is particularly useful for designing
adaptive systems with the channel codes selected from a limited set of good codes. The
approach used in solving our maximization problem can be applied to solve a spectrum

efficiency maximization problem formulated in [6].

7 Proofs

Proof: Lemma 1
Claim (a) is straightforward since, regardless how much the transmitted power is, we

cannot have non-zero rate for reliable communication when s = 0.

Combining (12), (23), (22), and (30), we have

S T — T
- Nyert —er-1’

m(s) (74)

Hence, claim (b) follows.

For claim (c), we notice that e is strictly convex in r;. For any strictly convex function

g(x), we have for xo > x;

dg(x) g(x2) —g(x1) _ 9g(x)
< < 75
or |,_,. Ty — Ty or |,_,. (75)
Consequently, for any x; < x5 < x3,
_ P _
g(w2) —g(@) _ 9g(x) _ 9lws) — g(x2) (76)
Tg — T1 or |,_,. T3 — T2
Therefore, with g(x) = e”, it follows from (74)
S erl —_ erlfl erlJrl — erl S
Nom(s) — ri—rmi rier =71 Nomiga(s) (77)
Since 7;(s) is positive, we have (c).
|

Proof: Theorem 1

Given an arbitrary power allocation I;(s) and the MPEQ allocation [} (s), we observe
that
I (s) = I/ (s)1u(s) + 17 (s) [1 = Li(s)], (78)
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For py, (Z) given by (28),

pr(Z7) = pr ({17 (s)}) = pr ({47 () 1u(s)}) + pr ({1 (s) [1 = Li(s)]}) -

It follows from (31) and (78) that the MPEQ policy achieves ART

where

Consequently,

—
5
~

R (T7) ()] M (r)pr () £ (5) ds

(AV4
=N

+
N
8

3

©

e

|
=~

—~
=
=

k4 Au(r) (pr (T7) = pr ({17 (s) 1i(5)}))

K+ () (or () = pr {Li(s)I} (5)}))

DY |0 = F e )5

S

—
s
=

,\
Ve

oy / T I(s) [1— I ()] ms)p (5) £ (s) ds

—~
~

S [ a6 ds

RL(T),

where
(a) for channel states s with I;(s) =1, m(s) > Au(r);
(b) is due to (28) and (79);
(c) is from p = pr.(Z*) > pr.(Z);
(d) we apply (79) on T instead of Z*;
(e) for the channel states with [1 — I/(s)] = 1, ni(s) < Au(r);
(f) we substitute x from (82) and apply the relation of (78) on Z again.
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Proof: Proposition 1

The claim 1) is a direct consequence of Definition 1. Specifically, Definition 1 implies
that I (s) = 1 wherever I;(s) = 1 if Ay(r) > Ay, (r). Therefore,

I(s) = I ()17 (5). (90)

Consequently,
(@) = % / )PP () (5) ds (91)
=S / I ()T ()2 ()1 (5) ds (92)
3> / TR () ds+ S / I (9)(1— I ()PP ()£ (5) ds (93)
-3 I ()P (s)  (5) ds (94)
= (@, (95)

where (93) is due to that the second term on the right hand side is the non-negative. Hence,
the claim 2) holds.

Note that (34) implies

)\M(I')NO (6” — 6”’1)

= 96
& =T (%6)
A\ N, Tl _ pll-1
> M(r) 0 (6 € ) (97)
rr—"ri—
= q (98)

This leads to the claim 3).

For Au(r) > A (r), if p(Z*) = pr(Z*') = P, according to (93), we have

S [T 00 66 s =0 (99)
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Since p2(s) > 0, we have

L

> [T ren-neas-o (100

=1

For s € [¢],q)), I (s) = 1 and I;(s) = 0. Therefore, (100) implies
fs)=0,  selg,a)l=1,...,L (101)

Consequently, the claim 4) holds.

Proof: Lemma 2
Note that ﬁ decreases in x for x > 0.

Let z = [log (w;) — log (w;—1)], (68) can be written as

e —1

qr = Wi—1- (102)

Since x strictly increases in w;, the proof arrives.

Proof: Lemma 3

From (46), let g(a) = w1 = -5 7
-1

dg(q) _ f@) LI
W Jo, £6))5ds] [/Q (5-a) o ] o e

since F'(s) strictly increases in s.

Therefore, w;_; strictly increases in ¢;.

Proof: Theorem 4

An optimum (r*,q*) policy with L — 1 distinct non-zero ¢/ can be expanded to a (r,q)
policy with L distinct non-zero ¢; by splitting any of its L intervals (including zero-power
interval [0, ¢7)) into two intervals.

If the first interval [0, ¢}) is split, without changing p(s), the new (r,q) policy will have
the same ART as the original one.

On the other hand, we can split any intervals of the original (r*,q*) policy with non-
zero power and re-allocate power according to (56). The newly split intervals will increase
their contribution to ART while the contribution from the other intervals stays the same.

Therefore, the new (r, q) policy has a higher ART than that one corresponding to the original
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(r7,

q*) policy. We have

Cr > Ry(r,q) > Ry_1(r*,q") = Cr_;. (104)
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