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Abstract— The service outage based allocation problem ex-
plores variable rate transmission schemes and combines the
concepts of ergodic capacity and outage capacity for fading
channels. A service outage occurs when the transmission rate is
below a given basic rate r,. The allocation problem is to maximize
the expected rate subject to the average power constraint and the
constraint that the outage probability is less than e. A general
class of probabilistic power allocation schemes is considered
for an M-parallel fading channel model. The optimum power
allocation scheme is derived and shown to be deterministic except
at channel states of a boundary set. The resulting service outage
achievable rate ranges from 1 — ¢ of the outage capacity up to
the ergodic capacity with increasing average power. Two near
optimum schemes are also derived by exploiting the fact that the
outage probability is usually small. The second near optimum
scheme significantly reduces the computational complexity of the
optimum solution; moreover, it has a simple structure for the
implementation of transmission of mixed real-time and non real-
time services.

Index Terms— Service outage, power allocation, fading chan-
nel, adaptive transmission, ergodic capacity, outage capacity

I. INTRODUCTION

Wireless communication channels vary with time due to
multipath, mobility of users, and changes in the environment.
For a time varying channel, dynamic allocation of resources
such as power and rate can yield improved performance over
fixed allocation strategies. Since system performance criteria
are usually application specific, different classes of applica-
tions will result in different adaptive transmission schemes.
In order to differentiate real-time service from non real-time
service, three capacity measures have been defined in the
literature: ergodic capacity [7], delay limited capacity [8], and
capacity versus outage [4], [17]. A comprehensive survey of
these concepts can be found in [2].

The ergodic capacity [7] determines the maximum achiev-
able rate without a delay constraint. The corresponding op-
timum power allocation is the well known water-filling al-
location [5], [6]. In a fast fading environment, the ergodic
capacity can be achieved by using a constant-rate variable-
power long code that experiences the ergodicity of the fading
process [4]. But in the presence of slow fading and a decoding
delay constraint, ergodic capacity is usually achieved by mul-
tiplexing variable-rate variable-power short codes [4]. Thus,
in deep fades the code rate could be very low or even equal
to zero, which could be detrimental to real-time applications.
To address this issue, the notion of capacity versus outage
was developed for constant-rate real-time applications for a
block fading channel model [4], [17]. In the capacity versus
outage problem, a constant target rate aims to be maintained

throughout the fading process. An information outage occurs
when the target rate is higher than the instantaneous mutual
information [4]. The maximum target rate that can be achieved
with an outage probability less than e is called the outage
capacity, and the zero outage capacity is called the delay-
limited capacity in [4].

We observe that for some variable rate real time applica-
tions, neither the ergodic capacity nor the outage capacity is
appropriate. For example, for applications with simultaneous
voice and data transmissions, as soon as a basic rate r, for
the voice service has been guaranteed, any excess rate can be
used to transmit data in a best effort fashion. For some video
or audio applications, the source rate can be adapted according
to the fading channel conditions to provide multiple quality of
service levels. Typically, a nonzero basic rate r, is required
to achieve a minimum acceptable service quality. For these
applications, maximizing the long term average rate while
meeting a basic rate requirement for the instantaneous rate
allocation is a desirable property. However, neither the ergodic
capacity nor the outage capacity can achieve this goal, since
the ergodic capacity offers no guarantee on the instantaneous
rate while the outage capacity achieves a low long term
average rate. Therefore, in this paper we combine the notion
of ergodic capacity and outage capacity, and formulate the
service outage based allocation problem, which maximizes the
long term average rate subject to basic rate and average power
constraints.

In a Rayleigh fading channel, infinite average power is
needed to achieve any nonzero rate at all times. Hence, we
impose the basic service rate requirement in a probabilistic
way to obviate a need for infinite average power. The service
is said to be in an outage when the instantaneous rate is smaller
than the basic service rate r,. A service outage constraint
dictates that the probability of a service outage be less than e,
a parameter indicating the outage tolerance of the application.
Unlike the information outage in the capacity versus outage
problem [4], [15], the bits transmitted during the service
outage may still be valuable in that they will be transmitted
reliably and will contribute to the average rate. Related to
service outage [13], [14], a minimum rate requirement was
recently proposed in [10] for the fading broadcast channel.

The service outage based allocation problem was previously
studied for the single fading channel in [13], [14]. In this paper,
we generalize the results to the M -parallel flat fading channel.
The M-parallel flat fading channel model can characterize a
variety of systems, including an OFDM system with frequency
selective fading and the multiple antenna signal model when
the perfect channel state information is available at transmitter



and singular value decomposition is employed. In practical
systems, the service outage based allocation problem is more
relevant for the M -parallel channel model, since multimedia
applications usually require large bandwidth or spatial dimen-
sion.

We will see in this work that solving the allocation problem
in the M -parallel fading channel is quite difficult. In the single
channel scenario [14], it is intuitive that the outage should
happen for a set of worst fraction fading states. However, in
the case of parallel channels, the channel state is specified
by a vector and there is no absolute ordering of these state
vectors. Unlike the single channel case in [13], [14], we show
in Section V-B that choosing the outage set to be the set of
channels that consume the most power to achieve the basic
rate is suboptimal. Therefore, we cannot simply extend the
approach in [13], [14] to the M -parallel fading channel.

In order to solve the allocation problem for the M-parallel
fading channel, we formulate the problem in the general class
of probabilistic power allocation schemes. Probabilistic power
allocation schemes were previously studied in [4]. In this
paper, the optimum power allocation scheme is derived us-
ing the generalized Karush-Kuhn-Tucker conditions in vector
space [11]. The computation of the parameters in the optimum
solution is complicated, which motivates us to find some
simpler near optimum schemes. Two near optimum power
allocation schemes are derived by exploiting the fact that the
outage probability is usually a small value.

The remainder of this paper is organized as follows. In
Section Il, the channel model and the service outage based
allocation problem are presented. The generalized Karush-
Kuhn-Tucker conditions for functional optimization problems
are reviewed in Section Ill. The optimum power allocation is
derived in Section IV. Two near optimum power allocation
policies are derived in Section V. Numerical results are given
in Section VI and conclusions are drawn in Section VII. All
proofs in this paper are provided in Appendix A.

I1. SYSTEM MODEL AND ALLOCATION PROBLEM

In an M-parallel flat fading channel model, each fading
block consists of M subchannels as follows

yz:\/himi+ni i:1,27...,M. (1)

For a subchannel 4, z; is the channel input, y; is the channel
output, and h; is the channel state. The noise components
ni,...,ny are independent Gaussian random variables with
normalized unit variance. It is assumed that the channel state
vector h = (hq,...,hys) stays the same within one fading
block but may vary from block to block. For a typical slow
fading environment, it is also assumed that block length
N — oo so that the information theoretic results can be
applied. One codeword spans M subchannels in one fading
block and perfect channel state information is available at both
the transmitter and the receiver. The vector fading process is
ergodic within the communication session.
Throughout this paper, we use the following notation:

o For a vector of channel states h = (hq,...,hy), the
power allocation vector is p(h) = (p1(h),...,pam(h)).

Here p;(h), the power allocated to subchannel 7, depends
on the current channel state vector h.

« Given a vector a of Iengﬂh M, we denote its arithmetic
mean by (a) = M~ >0 a;.

e The maximum mutual mformatlon of an M-parallel
Gaussian channel h with power allocation p(h) is

M
() = 57 > log(l+ hapi(h)). @)

To simplify the derivations, we use the natural logarithm
and drop the usual factor 1/2 in the Gaussian capacity
expression. The rate unit is nats/subchannel. In this paper,
the rate is averaged over parallel channels, since in prac-
tical systems the expected rate as well as the basic rate
usually scales with the number of dimensions (bandwidth
or number of antennas).

« For a scalar =, [m]+ =
(@1, o), [X]T = ([z1

« The indicator functlon 1(x
is equal to O otherwise.

o For two vectors a and b of length M, we write a > b
ifa; >b;, forall i =1,... M.

It can be seen that with perfect channel state information at
the transmitter and receiver, the maximum achievable rate of
a given power vector p(h) at fading block h is given by (2).
Thus, we only need to identify the optimum power allocation
scheme.

Although we could formulate the allocation problem for M-
parallel fading channels in the class of deterministic schemes,
as we did for M = 1 fading channel in [14], the deterministic
allocation problem turns out to be difficult to solve. Moreover,
as shown in [4], the optimum allocation for the outage capacity
is a probabilistic policy for discrete channel distribution, sug-
gesting that deterministic schemes are likely to be suboptimal.
Therefore, this paper formulates the allocation problem using
the more general class of probabilistic schemes.

The probabilistic power allocation is a vector of random
variables with a conditional pdf fpn(plh). The physical
interpretation of a probabilistic scheme is that the probability
of using a particular power vector is the time-sharing factor for
that power vector. In a probabilistic power allocation scheme,
each realization of the power allocation is associated with a
coding scheme. A service outage occurs when the code rate
is less than the basic rate r, specified by the application.
Since multiple codes are employed in a probabilistic manner,
at each channel state we can have the situation where some
code rates are less than r, while others are greater or equal to
ro. Thus, at each channel state, a service outage occurs with
some probability. In order to simplify the derivation, we use
P(h) to indicate a probabilistic power allocation scheme with
conditional PDF fp|n(p|h), while using p(h) to indicate a
deterministic scheme. Due to the assumptions of ergodicity
and perfect channel state information, the power allocation
only depends on the current channel state vector. We use F'(h)
to represent the cdf of channel state vector h.

For a given probabilistic power allocation P (h), the average

x(z,0). For a vector x =
] ™).

max
I+, .
) is equal to 1 if x is true and



rate, average power, and outage probability are given by
B(r(b,P(b))} = [ [ r(h,p)forn(plb) dpdF(h)
) = [ [ @) fem(plh) dparin)
Pr{r(h P(h))
— [ [ 1609 < m)fon(pl) dp ar). - @)

The service outage based allocation problem is to identify the
optimum conditional PDF fp,(p|h) as follows:

R*= max E{r(h,P(h))} 4)

fein(plh)
subjectto  E{(P(h))} < pav (4a)
Pr{r(h,P(h)) <r} <e, (4b)

where the conditional PDF fp,(p|h) is a set of functions for
each h satisfying

/fP\h(P|h)dP =1,

The resulting maximum average rate R* is called the service
outage achievable rate. This work can be extended to other
rate expressions besides the Shannon capacity in (2), which
may depend on decoding error probability, and the set of
modulation and coding schemes in a practical system. Problem
(4) may seem to be more complicated than the corresponding
deterministic allocation problem, but in fact it will be easier
to solve. In later sections, we will see that this problem can be
simplified and solved using generalized Karush-Kuhn-Tucker
conditions [11].

fen(p/h) >0 forall h. (5)

1. FUNCTIONAL OPTIMIZATION

In this section, we briefly review the Karush-Kuhn-Tucker
conditions for functional optimization, since in this work the
optimization variables are functions instead of vectors in an
Euclidean space. Readers are referred to texts [9], [11] for
comprehensive results on optimization theory in a general
vector space and [1] on optimization theory in an Euclidean
space.

Specifically, we are interested in the following type of
functional optimization problem in an Lebesgue L, space with
measure m;:

win [ g1 (t,2(0)dm(0) ©)
subject to /yg(t,x(t))dm(t) <0 (6a)
/yg(t,x(t))dm(t) =0 (6b)
ya(t,z(t)) <0 (6¢)
a<z(t)<b (6d)

where functions z(t) and y; (¢, z(t)) belong to the L, space
with measure m. The L, space consists of those real-valued
measurable functions for which [ |z(¢)[Pdm(t) is finite [11],
[16]. It is shown that the Lagrange multiplier associated with
constraint (6a) and (6b) are scalers denoted as u and A, while

the Lagrange multiplier associated with constraint (6¢) is a
function v(t) € L, where 1/p+1/¢ = 1 [3], [11]. Usually,
no Lagrange multipliers are employed for simple constraints
such as (6d), instead it is absorbed in the Karush-Kuhn-Tucker
conditions as shown below. Let

Hx(t),u,\,v(t)) =
Y1t (1)) + uye(t, z(t) + Ays(t, x(t)) + v(t)ya(t, x(t)) -

The Lagrangian of problem (6) is L(z(t),u, A\ v(t)) =
J U(z(t),u, A, v(t))dm(t). The variation of L(x(t), u, A, v(t))
with respect to «(¢) is equal to O iff the derivative of
l(x,u, A,v(t)) with respect to = at « = z(t) is equal to
zero. Thus, according to the generalized Karush-Kuhn-Tucker
necessary conditions theorem [11], if the optimum solution
a*(t) is a regular point (constraint qualification), it must satisfy
the following conditions:

i, u, ), (1) o w0t
dx s=er) | <0 2 (t) = b

/ yo(t, 2 (1)) dm(t) = 0 ®)

v(t)ya(t,z*(t)) =0 9)

u>0, ov(t)>0 (10)

In addition, z*(¢) must also satisfy the constraints (6a), (6b),
and (6¢). Note that (7) incorporates the constraint (6d), and
that (9) follows from [ v(¢)ya (¢, z*(t))dm(t) = 0 due to the
fact that y4 (¢, z(t)) <0 for all t and v(t) > 0.

Furthermore, if y1 (¢, 2(t)), y2(t,2(¢)), and ya(t, z(t)) are
convex functionals with respect to xz(¢), and ys(¢,x(t)) is
a linear functional with respect to z(¢), conditions (7)-(10)
and constraints (6a)-(6d) are sufficient for the global optimum
solution of (6).

A similar approach can be applied to the more general case
where y; (¢, z(t)) is replaced by y; (¢, x1(t), ..., 2, (t)). In this
case, we just replace the derivation with respect to x(¢) in
(7) with the partial derivatives with respect to x;(¢) for all
j=1...,n

IV. THE OPTIMUM SERVICE OUTAGE BASED ALLOCATION

A. Allocations for an M -parallel Fading Channel

In this section, we introduce two deterministic power allo-
cation schemes: the multi-dimensional water-filling allocation
pwt(h, ho) and the basic-rate power allocation p,, (h). These
two allocations will be used to characterize the optimum
solution in later sections.

The multi-dimensional water-filling allocation is the opti-
mum allocation achieving the ergodic capacity in A -parallel
fading channels as

pwt(h, ho) = arg r&?g;E{?“(h, p(h))} (11)
subjectto  E{(p(h))} < pav (11a)
p(h) > 0. (11b)



We get pwi(h, ho) = (pwt,1(h1,ho), ..., pwt,mr(har, ho)), by
applying the generalized Karush-Kuhn-Tucker condition in
vector spaces [11], where

i(hiyho) = i—iJr 1=1 M (12)
Pwt,i\lti, o) = hO h7 — Ly )
and the water-filling cutoff hg is the solution to

E{<pwf(h7 h0)>} = Pav-

The basic-rate power allocation is the power allocation that
requires the minimum average power to maintain a basic rate
at each channel state, as follows:

Py, (h) = arg I,fﬁl%@(h» (13)
subject to  r(h,p(h)) = r, (13a)
p(h) > 0. (13b)

The solution to the above problem is given by lemma 1 in
[4], and is summarized below. The basic-rate allocation is

Pro(h) = (pry,1(h), ..., pry,mr (h)) with

1

Dro,i(h) = [A(h) - —]+ i=1,...,M. (14)

hi
For a given h, the basic-rate allocation also allocates power
in the form of water-filling among subchannels, but the A(h)
changes with h to ensure r(h,p,,(h)) = r,. Let (i) be
the permutation of index i such that A (1) > hr) > ... >
hy(ary- The A(h) is given by

e]\lro
Ah)==———
() (Hfth(l)) ’

where 1 is the unique integer in {1, ..., M} such that A(h) >
h;(ll) for I < p and A(h) < h;(ll) for | > u [4]. Parameter
w1 Indicates number of sub-channels with non zero power
allocation at h. When M = 1 the basic-rate allocation

Pr, (h) becomes channel inversion, and when M — oo
it converges to the water-filling allocation pys(h,hg). An
example of p,,(h) for M = 2 fading channel can be found
in [4].

Based on the observation that for a given h both p ¢ (h, ho)
and p,, (h) are in the form of ‘water-filling’ but with different
water levels, we have the following proposition.

El=

(15)

Proposition 1 We have
@ r(h,put(h,ho)) > 10 <= hy' > A(h)
pwf(hv hO) Z Pro (h) .
(b) For any h, either pwf(hv hO) > Pry (h) or pwf(ha hO) <
Py, (h) holds.

iff
—

B. Feasibility and Outage Capacity

The feasibility of problem (4) is directly related to outage
capacity in [4]. Let C(pav) be the outage capacity for a given
Pav- The Cc(pay) 1S the maximum instantaneous rate which
can be transmitted with an outage probability . Thus, for a
given p,, and ¢, Problem (4) is feasible iff r, < Cc(payv).
For convenience of subsequent derivations, the feasibility
condition is expressed in the following equivalent form

Pav 2 Pmin(rm E) ) (16)

P (=D, ()

min

randomize between P, (h)and 0
0

Off region:
P . (h)=0

min

Fig. 1. The Ppin(h) in an M = 2 parallel fading channel.

where the Ppin (7o, €) is the minimum average power needed
to support r, with an outage probability e. When p,, =
Prin(ro,€), we have C¢(pay) = 7o and problem (4) shares
the same optimum solution, denoted P ,,,;,, (h), with the outage
capacity problem. For convenience of subsequent derivations,
we rewrite Proposition 4 in [4] and express P ,(h) as
follows.

Definition 1 For any h, let X,,(h) be a Bernoulli w(h)
random variable: X, (h) = 1 with probability w(h) and
X, (h) = 0 with probability 1 — w(h).

The minimum average power allocation is P,(h) =
X (h)py, (h), where

L (pyy(h)) <&
w'(h) = ¢ v (pr(h)) =5, (17)
0 (pro(h)) >

and the parameters s’ and 0 < o' < 1 are solutions to
E{w'(h)} =1 —e. That is

s' =sup{z : Pr{(p;,(h)) <z} <1—¢}
o~ L=e= Pr{{ps (h)) <s'}
Pr{{pr, (W) = 57}

Pin(h) is an on-off transmission policy. If the required
sum power (py,(h)) > ', transmission is turned off, while
if (py,(h)) < s, transmission is turned on and the power is
allocated according to p,,(h). P, (h) for an M = 2 fading
channel is plotted in Figure 1. The off region may or may not
be a convex set depending on r, and e.

(18)
(19)

C. Derivation of the Optimum Allocation Scheme

In this section, we derive the optimum solution for the
service outage based allocation problem (4). We first show
that an optimum power allocation in (4) is a scheme which is
randomized between two deterministic schemes.

Lemma 1 There exists an optimum solution of problem (4) of
the following form

P*(h) = Xw(h)pa(h) + (1 - Xw(h))pb(h) ) (20)



where r(h,p,(h)) > r, for al h, E{w(h)} > 1 — ¢ and
E{{P*(h))} = pav.

Proof of Lemma 1 is based on the concavity of the rate
function r(h, p).

By Lemma 1, we have P*(h) = p.(h) with probability
w(h), and P*(h) = py(h) with probability 1 — w(h). More-
over, the conditions r(h, p,(h)) > 7, and E{w(h)} > 1 —¢
ensure that the randomized scheme meets the service outage
constraint. Thus, problem (4) can be simplified into a problem
which requires identifying p..(h), py(h), and w(h) as follows:

max E{w(h)r(h, pa(h)) + (1 — w(h))r(h, py(h))}

Pa,Pb, W

(21)
subject to - E{w(h)(pa(h)) 4 (1 — w(h))(pb(h))} = pav
(21a)
E{w(h)} >1—¢ (21b)
7(h, pa(h)) > 7o (21c)

pa(h) >0 pp(h) >0 0<w() <1 (21d)

In the following, we derive the optimum solution of problem
(21) using the generalized Karush-Kuhn-Tucker conditions
theorem described in Section IlI.

Let p(h), p{(h), and w*(h) denote the optimum solution
of (21). Let A, s* > 0, and u*(h) > 0 denote the corre-
sponding Lagrange multipliers for constraints (21a), (21b), and
(21c), respectively. Define

l(ha pa(h)a pb(h)a w(h)7 h07 5, u(h))
= w(h)[r(h, pa(h)) — ho(pa(h))]
+(1 = w(h))[r(h, py(h)) = ho(ps(h))]

+sw(h) + u(h)r(h, pa(h)) (22)

In following, for simplicity we use the notation I(---) =
[(h, pi(h), pi(h), w*(h), hf, s*,u*(h)). According to the
Karush-Kuhn-Tucker necessary conditions theorem, the opti-
mum solution must satisfy the following conditions:

() [ =0 pi(h)>0 .

8pi;,i(h){ <0 gz;xh):o fori=1,....,M (23)
() [ =0 pi,(h)>0 .

o) { <0 P%,i(h) Co fori=1....M (24
al(- ) =0 0*<w*£h)<1

D0 () { SR =
u*(h)[r(h,p;(h)) —ro] =0,  w(h) >0 (26)
s'E{w* (h)} —(1-¢]=0, >0 (27)
E{w"(h){p;(h)) + (1 — w"(h))(p;(h))} = pav (28)

Moreover, the following lemma shows that any solution that
satisfies the above conditions is an optimum solution.

Lemma 2 The Karush-Kuhn-Tucker conditions (23)-(28) are
sufficient conditions for the optimum solution of problem (21).

al(---)

*Notation 5=

is the derivative over pq,;(h) evaluated at p ,(h)

The proof of Lemma 2 requires transforming of Problem
(21) into a convex optimization problem. From Karush-Kuhn-
Tucker conditions (23), (24), and (26), we have the following
lemma.

Lemma 3 The optimum p}(h) and p; (h) are

p:;(h) _ { g::)f((:lli h(*)) ZEE(;II.)“V:S(eh, hé)) > To (29)
pi(h) = pw(h, hf) . (30)

Proposition 1(b) implies that p*(h) has an equivalent ex-
pression as

p;(h) = pr(ha hEk)) + [pro (h) - pwf(ha hO)]+ :

We define the second term as the supplemental power alloca-
tion, that is

ps(h, hO) - [pro (h) - pwf(ha hO)]+ :

The supplemental power allocation provides the additional
power needed for the water-filling allocation to meet the basic
rate requirement. The rate achieved by p* (h) can be expressed
as

(31)

(32)

r(h, p;(h)) = r(h, put(h, ko)) +7s(h, hg) — (33)

with r5(h, hg) = [ro —r(h, pwt(h, ho))]™ being the additional
rate allocation needed for water-filling allocation to meet the
basic rate requirement.

Combining Lemma 1, Lemma 3 and expression (31), the
optimum power allocation P*(h) is

P*(h) = pwt(h, hj) + X, (h)ps(h, b)) .

In the following, we determine w*(h). Employing (30),
(31), and (33) in I(---), we have

(34)

I(--+) = w(h)[s"—g(h, ho)|+7(h, Pt (b, ho)) —ho (Pwi (h, ho))

(35)
with
g(h, ho) = ho(ps(h, ho)) — rs(h, ho).

The first term in g(h, ho) is the power expense of allocating
supplemental power, the second term is the corresponding
rate return, and hq is the Lagrange multiplier that connects
the power with the rate. Thus, function g(h, h) provides a
measure for the cost of allocating the supplemental power,
and is called the supplemental cost function.

(36)

Lemma 4 Properties of g(h, hg) are as follows:

(a) If h' > h, then g(h’, ho) < g(h, ho).

(b) If ps(h,hg) > 0, then g(h, ko) > 0. If ps(h, hy) = 0,
then g(h, ho) =0.

Lemma 4(a) shows that a higher cost is associated with
a poorer channel state vector. Based on Lemma 4(b) and
Proposition 1, we have the following equivalent statements.

g(h, ho) = 0 <= ps(h, hy) = 0 <= r(h, pwi(h, hg)) > 1o.
(37)



Taking the derivative of I(---) over w*(h), we have

oai---) _ . x
From condition (25) and equality (38), we obtain
1 g(h, hf) < s*
w*(h) = ¢ v*(h) g(hhy)=s" , (39)
0 g(h, hf) > s*

where 0 < v*(h) < 1 needs to be determined. As we can see,

the cost function g(h, h) determines the value of w*(h) and

indicates where the supplemental power should be allocated.
Condition (27) implies the following two situations:

o when s* > 0, we must have E{w*(h)} =1 —e.

o When s* = 0, we must have E{w*(h)} > 1 —
€. s = 0 implies that either g(h,hg) = 0 or
w*(h) = 0. Consequently, from Lemma 4(b) we have
that X« (h)ps(h,hy) = 0. Therefore, in this case
P*(h) = pwt(h,h{). Since no supplemental power is
allocated, 0 < v*(h) < 1 can be any function that meets
E{w*(h)} > 1 — e. In order to simplify the presentation
and without loss of generality, we choose v*(h) so that
E{w*(h)} =1—¢2

The following theorem combines above results.

Theorem 1 If problem (4) is feasible, an optimum power
allocation is

P*(h) = pur(h, hg) + Xo- () [Pr (h) = put (b, 75)] ",

(40)
where
1 g(h,hf) < s*
w'(h) = ¢ v*(h) g(h,hg) = s (41)
0 g(h, hf) > s*

and h§, s*, and 0 < v*(h) < 1 are solutions to

E{(P*(h))} = pav, E{w'(h)}=1-ec

The optimum power allocation can be viewed as a two layer
allocation: the first layer is the water-filling allocation, and the
second layer is the supplemental allocation. The supplemental
allocation provides the additional power and rate for the water-
filling allocation to meet the basic rate requirement. If the
channel states are so poor that the cost g(h, k) is above
a threshold, the supplemental allocation is turned off and a
service outage is declared. g(h, ) divides the channel space
into a service set g(h, hf) < s* with rates > r,, a boundary
set g(h, hf) = s* with a probabilistic policy, and an outage
set g(h, hf) > s* with rates r < r,. The service set can be
further divided into a basic-rate set with rate » = r,, and an
enhanced-rate set with rate r» > r.

2|n this case, the outage probability is less than or equal to 1—E{w*(h)} =
€.

D. Properties of the Optimum Solution

In this section, we study the properties of the optimum
solution. By examining P*(h) in Theorem 1 further, it can
be seen that the optimum solution is a combination of basic-
rate allocation and water-filling allocation in the non-boundary
channel state set, and is randomized between these two at the
boundary set. The optimum solution for M = 1 fading channel
can be found in [14]. The optimum solution for M = 2 fading
channels is depicted in Fig 2. The optimum solution can be
classified into four types as a function of an increasing p .y
for any given (1o, €) as follows.

o P*(h) is Type | when pay = Pmin(70, €). In this case, we
have pwt(h, hf) = 0 and w*(h) = w’(h) from (17). The
optimum solution is the same allocation as the outage
capacity, that is P*(h) = Pyin(h) = X, (h)py, (h).

o P*(h) is Type 1l when py:(h, h§) = 0 in the outage set.
In this case, we have w*(h) = w’(h) and the outage set
is the same as for the outage capacity allocation. In this
case, the cost function g(h, ) in the outage set reduces
to hg(py, (h)) — 7. Therefore, the optimum outage set,
defined as g(h, hf;) > s*, can be rewritten as (p,,(h)) >
s’. Type Il solution includes no transmission in the outage
set, a probabilistic scheme in the boundary set, basic-rate
allocation in the basic-rate set, and water-filling allocation
with rate » > r, in the enhanced-rate set.

o P*(h) is Type Il in the most general case. All other
types can be considered as special cases of Type IlI. It
includes water-filling allocation with rate » < r, in the
outage set, a probabilistic scheme in the boundary set,
basic-rate allocation in the basic-rate set, and water-filling
allocation with rate » > r, in the enhanced-rate set.

o P*(h) is Type IV when Pr{r(h, pwt(h,h})) > o} >
1 — € holds. In this case, we have s* = 0 and
Xy~ (h)ps(h, k) = 0. Thus, the optimum solution is
P*(h) = pwt(h, hg).

With increasing p.., P*(h) gradually changes from Type
| solution P,,,(h), the optimum solution for the outage
capacity, to Type IV solution py(h, hg), the optimum solution
for the ergodic capacity. The service outage achievable rate
gradually changes from r,(1 — ¢) to the ergodic capacity. The
outage probability is equal to e for type I-111 solution, and is
less than e for type IV solution.

The optimum solution is probabilistic at the boundary set
only when s* > 0. For a continuous channel distribution, the
boundary set has a probability measure zero when s* > 0.
Therefore, the optimum solution is deterministic for the con-
tinuous channel distribution. As stated before, the deterministic
allocation problem for M -parallel fading channel is hard
to solve directly. However, by considering the probabilistic
allocation problem (4), we in fact obtain the optimum solution
for the corresponding deterministic allocation problem for
continuous channel distributions.

E. Computation of the Optimum Parameters

In this section, we study the algorithm that determines
the parameters of the optimum scheme P*(h). The optimum
parameters kg, s*, and v*(h) are the solutions of the average
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The optimum solution is probabilistic only at the boundary set.

power constraint and the outage probability constraint (neces-
sary condition) as follows:

E{(pwt(h, ho)) + (ps(h, ho))[1(g(h, ho) < s)
+(h)1(g(h,ho) = 8)|} = Pav, (42)

Pr{g(h, ho) < s)} + E{v(h)1(g(h,ho) = 5)} =1 —¢ (43)

0<wh)<1. (44)

A solution of (42)-(44) must exist when Problem (4) is
feasible. Moreover, Lemma 2 shows that any solution of these
equations is the optimum parameter set (sufficiency). In the
following, we discuss algorithms to solve (42)-(44) for con-
tinuous channel distributions and discrete channel distributions
respectively.

In the case of a continuous channel distribution function
F(h), {g(h, ho) = s} is a set of probability measure zero for
s > 0, and thus (42)-(44) can be reduced to

B{(put (b, ho)) + 1 (g(, ho) < 5)Ps(h, ho)} = P,
Pr{g(ha hO) < 3} =1-—e€.

(4%)
(46)

The left sides of (45) and (46) are continuous functions of A
and s, and a variety of well known root finding algorithms can
be used [18].

The case of discrete channel distribution functions is more
complicated, since we have to determine the value of v(h) for
the boundary set. For given hq and s, (42)-(44) form a linear
programming problem on v(h). Standard linear programming
approaches, such as employing artificial variables and simplex
method [12], can be used to determine whether there exists
a feasible solution v(h). If there exists a solution v(h), the
corresponding ho and s are the solutions we try to find.
Therefore, the iterative algorithm is to search ho and s until a
feasible solution v(h) is found. The two dimensional search
for hy and s can be carried in a sequential manner as shown
below. For a given hg, since 0 < v(h) < 1, (43) implies that

Pr{ig(h, ho) < s)} <1 —e <Pr{g(h,ho) < s}. (47)

Optimum solution types I-1V in M = 2 parallel fading channels.

Thus, for a given hg, s can be expressed as

s(ho) =sup{z : Pr{g(h,ho) <z} <1—¢€}. (48)

The linear programming approach for solving v(h) is a
numerical method, and usually requires a lot of computation.
Moreover, it gives no insight on the structure of the solution.
Therefore, in Appendix B we have also derived the exact
feasibility condition and a closed form solution of v(h) for
any (ho, s) by exploiting the structure of (42)-(44).

V. NEAR OPTIMUM ALLOCATION SCHEMES

In Section IV, we derived the optimum solution for prob-
lem (4). As shown in Section IV-E, the computation of the
optimum parameters, especially the optimum value of v(h) in
the boundary set is quite complicated. This motivates us to
find simpler near optimum solutions in this section. As shown
later in this section, there exist many near optimum schemes
as long as certain requirements are satisfied. In particular,
we develop two near optimum schemes, each with a specific
physical interpretation.

In this section, we consider power allocations with the same
two-layer structure

P(h, ho, w(h)) = pwi(h, ho) + Xuw(h)ps(h, ho) . (49)

as the optimum solution P*(h). As we can see, any
P(h, ho, w(h)) that satisfies E{(P(h, ho,w(h)))} = p., and
E{w(h)} > 1—¢ is a feasible scheme for problem (4). In this
section, by choosing some particular (ho,w(h)), we obtain
two near optimum schemes in the form of (49). These schemes
are simpler to implement than the optimum P *(h) policy.

We first develop bounds for the average rate achieved by
the P(h, ho,w(h)) as follows.

Lemma 5 The average rate achieved by P (h, ko, w(h)) with
E{w(h)} > 1 — ¢ is bounded as

Ru(ho) — roe < E{r(h, P(h, ho, w(h)))} < Ru(ho),
where Ry (ho) = 1o + E{[r(h, pwt(h, ho)) — ro] T}

The upper bound is achieved when we have zero outage, and
the lower bound is achieved when the rate during the outage
is equal to zero.

It can be seen that for small ¢ the average rate perfor-
mance is determined mainly by the value of R, (ho). Since
r(h, pwt(h, ho)) is a decreasing function of hg, Ry(ho) is a
decreasing function of hq. Thus, in order to achieve a high
average rate, the value of h( should be small.

For a given ho, w(h) that satisfies the average power and
outage constraints is not unique. There could be an infinite
number of choices of w(h) for a given hy when h is a vector of
continuous random variables. The bounds of Lemma 5 imply
that the average rate performance is relatively insensitive to the
value of w(h) for a given ho. When the outage probability is
sufficiently small, there are many near optimum schemes with
small ho and the exact shape of the outage set is not critical.



A. Near Optimum Power Allocation |

In this section, we develop the near optimum scheme | using
the general structure P (h, ho, w(h)) but with particular ko and
w(h), so that the outage occurs when the supplemental power
is above a threshold. The near optimum scheme | is simpler
than the optimum solution in that parameter v(h) is constant
over the boundary set.

Consider a policy P(h) = py¢(h, o) + X4 (h)p
with

s(ha hO)

(50)

§

g
%)

=
>
<
V

where K, 3, and 0 < ©(h) < 1 are solutions to E{(P(h))} =
pav and E{w(h)} = 1 —e. We will see that it is sufficient
to choose ©(h) = ©. For any solution (ho, 3, d(h)), it can be
directly verified that (hg, 3, %) with

o EL0(0)1(ps(h o)) = )}
E{1((p(h,ho) = 3)}

is also a solution to E{(P(h))} = p., and E{d(h)} =1 —e.
This simplifies the computation of parameters relative to the
computation of the optimum solution P*(h). In this section,
we show that P(h) is a near optimum scheme for problem (4).
Applying the generalized Karush-Kuhn-Tucker conditions, we
have the following lemma characterizing < (h).

Lemma 6 w(h) is the optimum solution of the following
problem.
min

OéwanglE{w(thsaLEO»}

subjectto E{w(h)} >1—¢

w(h) =arg (51)

The following lemma is a corollary of Lemma 6.

Lemma 7 Policy P(h)
parameter hg
E{(P(h, ho,

has the minimum water-filling
among all P(h,ho,w(h)) that satisfy
w(h)))} = pav ad E{w(h)} > 1 —e.

In Lemma 5, it is shown that the average rate of
P(h, ho,w(h)) is mainly determined by R,(ho), which is a
decreasing function of hq. This implies that P(h) with the
minimum hg should be a good scheme. Applying Lemma 5,
we have

(a) (b .
R_r0€<R(h0)_r0€<R( )

— To€

< Bir(h, P} < 52)

Here R* is the maximum average rate achieved by P*(h).
Inequalities (a) and (c) are direct results of the rate bounds in
Lemma 5. Inequality (b) follows from the fact that o < hZ by
Lemma 7. Therefore, P(h) achieves a rate between R* — re
and R*, and is a near optimum solution for Problem (4) for
small e.

To determine (ho, 8, 9), we have to solve

E{{pwi(h;, h0)) + (ps(h, h0)) 1 ({ps(h; ho)) < 5)}
+ sE{v1((ps(h, ho)) = )} = Pav, (53)
Pri(ps(h, ho)) < s)} + E{v1({ps(h,

ho)) = s)} =1 -
(54
0<v<l. (55)

We search (ﬁo, §,0) in an iterative way. For a given hg, we
first examine (54) and (55), and obtain v(ho) and s(hg) as a
function of hg as

s(ho) = sup{z:Pr{{ps(h,ho)) <z} <1—¢€} (56)
1 —e—Pr{(ps(h, ho)) < s(ho)}

XN =) S

Then we adjust the value of A until E{(P(h))} = p,,. Each

time we adjust hg, we have to compute s(ho) and v(hg)
according to (56) and (57).

B. Near Optimum Power Allocation 11

In this section, we develop the near optimum scheme Il
using the general structure P (h, ho,w(h)) but with particular
ho and w(h), so that the policy has the same outage set as the
outage capacity derived in [4]. As shown later in this section,
the computational complexity of the near optimum scheme I
is significantly less than that of either the optimum solution
or the near optimum scheme I. Moreover, we will see that it
has an appealing structure for the implementation of mixed
real-time and non real-time services.

Consider a policy P’(h) = pwt(h, h}) + X (h)ps(h, hy)
with w’(h) given by (17) and h, satisfying E{(P’(h))} = pay.

(Pro (h)) = &'

Recall that
1
w'(h)=<¢ v
0 (pr(h) >

Policy P’(h) allocates the supplemental power at channel
states where (p,,(h)) is below a threshold. Since w’(h) does
not depend on hy, the outage set of P’(h) is much simpler
than P*(h) and P(h). Applying the equality

(Pro(h)) <&’
(58)

puwi(h, ho) + ps(h, ko) = pr, (h) + [Pwe(h, ho) — Py, ()],
P’(h) can be expressed equivalently as
P/ (h) - Pmin(h) + [pwf(hv hg)) - Pmin (h)]Jr . (59)

Recall that P, (h) = X, (h)py, (h) achieves the minimum
sufficient power to meet the outage constraint. The physical
meaning of P’(h) is that we first assign Pi,(h) to meet
the outage constraint with the minimum sufficient power, and
then we allocate the remaining power in an optimum way to
maximize the excess rate. The [pyw(h, b)) — Pmin(h)]™ is in
fact a ‘water-filling” allocation when P, (h) is viewed as
interference.

It is interesting to see that P’(h) is not the optimum
solution, since choosing the outage set to minimize the power
for the basic rate may not maximize the expected rate at



the same time. Nevertheless, we show that P’(h) is a near
optimum scheme for Problem (4) as follows.

It is hard to show directly that P’(h) is a near optimum
scheme. Our approach is to introduce, as an intermediate step,
a second scheme

P"(h) = Puin(h) + [Pwi(h, hg) — Py (W)] 7, (60)

where hy is the solution to E{(P”(h))} = pay. The following
lemmas on P”(h) allow us to show that P”(h) is a near
optimum scheme for problem (4).

Lemma 8 The average rate achieved by P”(h) satisfies
E{r(h,P"(h))} > Ru(h{) — ro€.

Lemma 9 We have hj < hq, where the hy is the water-filling
parameter in P(h).

Applying Lemma 8 and Lemma 9, we have
(a) " ®) .
R* > E{r(h,P"(h))} > Ru(h() — roe

(© (d)
> Ru(hy) —ro€ > R* — €. (61)

Inequality (a) holds since P”(h) is a feasible scheme for
problem (4). Inequality (b) follows from Lemma 8. Inequality
(c) holds since R,(ho) is a decreasing function of ho and
hy < ho < h$ by Lemma 7 and Lemma 9. Applying the rate
bounds in Lemma 5 to the optimum allocation P *(h), we have
R* = E{r(h,P*(h))} < R,(h{) and thus get inequality (d).
Therefore, P”(h) is a near optimum scheme for problem (4)
for small e.

As we can see, both P’ (h) and P (h) first allocate P, (h)
to meet the outage constraint, but the P’(h) allocates the re-
maining power in an optimum way to maximize the additional
rate.

Lemma 10 Scheme P’(h) achieves a higher average rate
than P” (h).

Therefore, P’(h) is a near optimum scheme for problem (4)
for small e.

The computation of P’(h) is much simpler than P*(h) and
P(h), since its parameters (s’,+') do not depend on hj. In
particular, (s’,v") can be determined by solving the outage
probability constraint (4b) alone. This solution is given by
(18) and (19). It follows that h{, can be determined by solving
E{(P'(h))} = pay using a line search technique. Therefore,
in P’/(h) the (s/,v’) are the same for all values of p,., while
in P*(h) and P(h) we have to compute (s, v) for each value
of pay.

The structure of P’(h) in (59) suggests a simple im-
plementation of transmission of mixed real-time and non
real-time services. The P.;,(h) can be used to transmit
the real-time service with the basic-rate requirement, and
[Pwt(h, h{) —Pmin(h)]™ can be used to transmit the non real-
time service. Two codebooks will be generated according to
the corresponding power assignments to these two services and
transmitted simultaneously using superposition coding, while
successive decoding is employed at receiver.

C. Discussion

We derived three allocation schemes P*(h), P(h), and
P’(h). All of these three schemes have a similar two-layer
structure: pwe(h, ho) + Xw(h)ps(h, ko) but with different
ho and w(h). The w(h) determines where to allocate the
supplemental power according to a metric. The metric is
g(h, hy) for P*(h), (ps(h,hg)) for P(h), and (p,,(h)) for
P’(h). The service outage happens at the channel states where
the metric is above a threshold. Since the metrics g(h, hj),
(ps(h, ko)), and (py, (h)) are all non-increasing functions of
h, outage occurs at poor channel states for a good scheme,
which is consistent with the intuition.

In previous sections, we have shown that P(h) and P’(h)
achieve a rate between R* — roe and R*. It can be directly
verified that for sufficiently small p,, such that py¢(h, h§) =0
holds in the outage set, we have P*(h) = P(h) = P’(h).
For sufficiently large average power, all three policies become
water-filling allocation. Thus, for sufficiently small and large
Pav, both P(h) and P’(h) are optimum. Moreover, as shown
below, we have P(h) = P’(h) = P*(h) in an M = 1 fading
channel for all parameters. When M = 1, since the metrics
g(h,hE), (ps(h,ho)), and (py,(h)) are all non-increasing
functions of A, all w*(h), w(h), and w’(h) can be expressed
in the same way as

1 h<h

v hZhb s
0 h>h

w(h) = (62)

Hence, v and h, are the same for all three schemes since they
are the solutions of E{w(h)} = 1 — e. With the same w(h),
the average power constraints implies that h§ = ho = hy.
Thus, we have P(h) = P’(h) = P*(h) in an M = 1 fading
channel.

VI. NUMERICAL RESULTS

In most of our numerical results, the two near optimum
schemes achieve an average rate almost equal to the maximum
rate R* achieved by P*(h), and the lower bound R* — rye
is loose, especially for large e. To highlight the performance
difference between these three schemes, we construct a par-
ticular two state model as follows: in an A = 2 channel, the
channel state vector h = (hq, hs) is equal to (0.1238,0.1238)
with probability 1/2, and equal to (0.1827,0) with probability
1/2. The average rate versus the average power performance
for P*(h), P(h), and P’(h) in this model with fixed r, =
0.36 bits/symbol and ¢ = 1/2 is given by Fig. 3. It can
be seen that the optimum solution P*(h) achieves a slightly
higher average rate than the near optimum schemes P(h) and
P’(h). For sufficiently small and high average power, both
P(h) and P’(h) are equal to P*(h). In this example, P(h) is
slightly better than P’(h) in a range of parameters. As shown
in Fig. 4 with r, = 0.5 bits/symbol, P’ (h) is indistinguishable
from P*(h), and both are better than P(h). The relative
performance difference is still much less than e = 0.5.

As observed in Fig. 4, the average rate versus the average
power performance for P(h) is discontinuous near 6.1 dB
and also near 7.2 dB. In fact, the performance of P*(h) is
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always continuous, since P*(h) is the optimum solution of
the continuous optimization problem (4) and the complicated
solution in the boundary of P*(h) ensures the continuity of
its performance. However, for the two near optimum schemes
P’(h) and P(h), we are not guaranteed a continuous solution
when the channel state is discrete. The discontinuous points
occur at the values of p,, for which the outage region changes.

We apply the results to the M = 2 parallel Rayleigh fading
channel model. To simplify the computations, we assume that
the sub-channels are iid with the joint PDF:

6*(h1+h2)

f(ha, he) = { 0

In Fig. 5, the average rate versus the average power is plotted
for P*(h), P(h), and P’(h) with fixed e = 0.01 and r, =
3 bits/symbol in Rayleigh fading channel. As we can see, the
near optimum schemes are indistinguishable from the optimum
solution P*(h). In Fig 6, the service outage achievable rates
with different r, are plotted against the ergodic capacity and

h1>0,he >0

otherwise (63)
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Fig. 5. The average rate performance of the optimum scheme P*(h) versus
two near optimum schemes P (h) and P’ (h) in Rayleigh fading channel with
fixed e = 0.01 and 7o = 3 bits/symbol.

13

- Water filling
- . Service outage approach rG:O.S

- = Service outage approach r0:0.7
'+ Outage capacity

11-

bits/symbol)

Raé
|3
T

o
3
T

0.4 I I I I I I

Fig. 6. Comparison of the service outage achievable rate with other capacity
notions in M = 2 Rayleigh fading channel for a fixed e = 0.01.

the outage capacity in M = 2 Rayleigh fading channel. As
we can see, for the given outage probability ¢ = 0.01, the
outage capacity has a close to 2 dB loss in the average power
compared to the ergodic capacity. A larger average power loss
is expected when the outage probability is smaller. Between
the outage capacity and the ergodic capacity, a humber of
service outage achievable rates with different ry exist. The
service outage achievable rate ranges from (1 — ¢) of the
outage capacity up to the ergodic capacity. Starting from
ro(1 — €), it approaches the ergodic capacity as the average
power increases. The outage probability achieved by the water
filling allocation with respect to different r is also plotted
against the service outage solution with a given ¢ = 0.01
in Fig. 7. It can be observed that, for a range of P.,., the
service outage solution achieves a rate very close to the ergodic
capacity, and, at the same time, significantly reduces the outage
probability. Hence, the service outage approach strikes good
balance between average rate and outage probability.
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VI1I. CONCLUSION

The service outage based allocation problem is to maximize
the expected rate subject to the average power constraint and
the outage probability constraint in the class of probabilistic
power allocation schemes. The feasibility condition of this
allocation problem can be obtained from the capacity versus
outage probability problem [4]. The optimum power allocation
is derived for an M-parallel fading channels model. The
result can be applied to both discrete and continuous fading
distributions.

The optimum power allocation is shown to be a combination
of the water-filling allocation and the basic-rate allocation, and
is deterministic except at the boundary set. It can be viewed as
a two-layer allocation: the first layer is the water-filling alloca-
tion, and the second layer the supplemental power allocation.
The supplemental power is only allocated at channel states
where the supplemental cost g(h, k) is below a threshold.
With increasing average power, the optimum power allocation
gradually changes from P, (h), which is the optimum
solution for the outage capacity, to pyw¢(h, hj), which is the
optimum solution for the ergodic capacity. The service outage
based achievable rate R* gradually changes from ro(1 — ¢)
to the ergodic capacity. The service outage approach strikes a
good balance between the outage probability and the average
rate.

Two near optimum schemes are also derived: the P(h)
with the minimum hqy and the P’(h) based on P, (h).
Both P(h) and P’(h) have similar structures as the optimum
solution, but the supplemental power is allocated according to
different metric functions. We have P(h) = P’(h) = P*(h)
in an M = 1 fading channel and for a range of parameters
in M > 2 fading channels. Otherwise, P(h) and P’(h)
achieve a rate between R* — rqe and R*. The derivation of
near optimum schemes shows that the exact shape of the
outage set is not critical, a feasible scheme in the form of
pwt(h, ko) + X (h)ps(h, hy) achieves a high average rate
as long as the corresponding hq is small. The near optimum
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scheme P’(h) has an immediate application on transmission
of mixed real-time and non real-time services. Its computation
is also significantly simpler than the optimum solution P *(h)
and the near optimum scheme P(h).

APPENDIX
A Lemma 1

Our approach is to show that for an arbitrary feasible
probabilistic power allocation scheme P (h) with a conditional
pdf fpn(p/h), we can always construct another feasible
scheme P’(h) which is randomized between two deterministic
schemes p,(h) and py(h) with r(h,pa(h)) > r, and the
sharing factor w(h) satisfying E{w(h)} > 1 —e. It can be
shown that P’(h) achieves a higher average rate than P(h).
This implies that there exists an optimum scheme which is
randomized between two deterministic schemes, and one of
them has a rate higher or equal to 7, and E{w(h)} > 1 —e.

The feasibility of P(h) implies that E{(P(h))} < p,, and
Pr{r(h,P(h)) < 0} < e. Deterministic schemes p,(h) and
pu(h), and the weighting function w(h) are constructed as
follows:

w(h) = Pr{r(h,P(h)) > rolh}
pa(h) = E{P(h)r(h,p(h)) > ro, h}
po(h) = E{P(h)|r(h,p(h)) <re,h}. (64)

Clearly, 1 — w(h) is the outage probability of P(h) for a
given h. Since P(h) meets the outage probability constraint,
we must have E{1 —w(h)} < e. The p,(h) is the conditional
average of P(h) whose rate is larger than or equal to r,, while
the pi(h) is the conditional average of P(h) whose rate is
smaller than r,. Since r(h, p) is concave on p for a given h,
applying Jensen’s inequality we have

r(h, pa(h)) = r(h, E{P(h)|r(h, p(h))

> 1o, h}) = E{r(h,P(h))|r(h,p(h)) = ro,h}  (65)
r(h, py(h)) = r(h, E{P(h)|r(h, p(h)) <ro,h})
> E{r(h, P(h))|r(h, p(h)) < 7o, h}. (66)

Consider a new probabilistic scheme P’ (h) such that P’ (h) =
pa(h) with probability w(h) and P’(h) = pp(h) with
probability 1 — w(h). The average power of P’(h) is
E{(P'(h))} = E{w(h)(pa(h)) + (1 — w(h))(ps(h))}
= E{(P(h))} < pa - (67)

Since r(h, pa(h)) > 7, by (65) and Pr{P’(h) = p.(h)} =
w(h), we have

Pr{r(h,P’(h)) > ro/h} > w(h).
Thus, the outage probability of P’ (h) satisfies
Pr{r(h,P’'(h)) <10} =1 — E{Pr{r(h,P’'(h)) > ro|h}}
<1-E{wh)} <e. (68)

From (67) and (68), P’'(h) is also a feasible scheme for
problem (4). Inequalities (65) and (66) imply that P’(h)



achieves an average rate higher than or equal to P(h), that
is

E{r(h, P'(h))}

= E{w(h)r(h, pa(h)) + (1 -
> E{r(h,P(h))}.

w(h))r(h, py(h))}
(69)

Thus, from any arbitrary feasible power allocation we can
always construct a better feasible power allocation which is
randomized between two deterministic power allocations. This
implies that there must exist an optimum power allocation
which is randomized between two deterministic power alloca-
tions. Furthermore, it is required that r(h,p.(h)) > r, and
E{w(h)} > 1—e. Also it is easy to see that E{(P(h))} = pa,
should hold for the optimum solution; otherwise, a higher
average rate can be achieved by increasing the power.

B. Proof of Lemma 2

In order to prove Lemma 2, we need the following propo-
sitions.

Proposition 2 If f(y) is a concave function over y, then
function I(z,y) = xf(%) is a concave function over non
negative (x,y).

Proof: Applying the fact that f(y) is a concave function and
l(z,y) = zf(£), we have

Z()\J?l + (1 — )\).132, )\yl + (1 — /\)yg)
= (Az1 4+ (1= Nao) f <Ay1 (1= i;ﬁ)

Az + (1 —
= (Az1 4+ (1 = N)x2)
f ( Ar1 Y1
Az1 4+ (1 — ANz 21

(a)
> ()\.1?1 =+ (1 — )\).132)

—Anf (Z—i) (1= Naaf <Z—z)
= M(@1,51) + (1= N)l(@2, 1) -

(I-=Nz2 92
Az1 4+ (1 — AN)zg xo

(70)
Note that non-negativity of (z,y) is used in (a). O

In the following proposition, we use V f(x) to indicate the
gradient of f(x).

Proposition 3 Let x and y be two vectors with equal lengths.
Let g(y) = f(X(y)) where x = X(y) is a one to one
transformation between x and y. If x isa solutionto V f(x) =
0, then y = X~ 1(x) is also a solution to Vg(y) = 0.

Now we return to the proof of Lemma 2, and show that
problem (21) can be transformed into a convex optimization
problem. Define q,(h) = w(h)p.(h) and g,(h) = (1 —
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w(h))py(h). Problem (21) can be transformed as follows:

max E{w(h)r (h qa(h)>
qa(h),qp (h),w(h)
) r (1, 20 >} (71)
subject to  E{(q.(h)) + (qs(h)) } Pav (71a)
E{w(h)} >1— (71b)
qu(h
w(h) < w(h > w(h)ro >0 (71c)
)>0 qpth) >0 0<w)<1 (71d)
Denoting fi(z) = log(1+h;z), it follows from Proposition 2
that
w(b)r(h, w™ (g (h MZ () @2
is the sum of concave functions. Thus,
w(h)r(h,w=!(h)q,(h)) is a concave function over
(w(h), qq(h)). Similarly (1—w(h))r(h, (1-w(h))~'q(h))

is a concave function over (w(h), q,(h)). Thus, the objective
function is concave over (w(h),q,(h),qs(h)). It can be seen
that the equality constraint (71a) is a linear function over
(qa(h), gp(h)), the constraint (71b) is a linear function over
w(h). Since the left side of constraint (71c) is a concave
function over (w(h),q.(h)), constraint (71c) is a convex
set. Thus, the constraints specify a convex feasible set.
Therefore, according to the Karush-Kuhn-Tucker sufficient
conditions theorem [9], the Karush-Kuhn-Tucker conditions
are sufficient conditions for the transformed problem (71).
Let (pa(h), py(h),w(h)) be a solution of the Karush-Kuhn-
Tucker conditions of the original problem (21). According
to Proposition 3, it is easy to see that the corresponding
transformed variable (q,(h),dqy(h),w(h)) satisfies the
Karush-Kuhn-Tucker conditions of the transformed problem
(71). Therefore, (pa(h),pn(h),w(h)) is the optimum
solution of the original problem (21), and, thus, the Karush-
Kuhn-Tucker conditions of problem (21) are also sufficient.

C. Proof of Lemma 3
Condition (23) yields

* _ 14+ u*(h)/w*(h) \* .
pa,i(h)_ ( hg _E) R Z—l,...,]\fY.:g)

Condition (26) implies that:

1) When u*(h) = 0 we have r(h, p(h)) > r,. Moreover,
when u*(h) = 0, (73) implies p(h) = pwt(h, hj).
Thus, in this case, we have r(h, pwe(h, b)) > ro.

2) When uw*(h) > 0 we have r(h,pi(h)) = ro.
Expression (73) and r(h,p’(h)) = 7, imply that
pi(h) = py(h) with (1 + w(h)/w*(h)/hf =
A(h). Since u*(h)/w*(h) > 0, we have A(h) >
1/h§. According to Proposition 1(a), we have A(h) >
1/hy iff r(h,pwe(h,hy)) < 1. Therefore, when
r(h, pwt(h, b)) < 1o, we have p’(h) = p,,(h) with a
rate equal to .



Therefore,
Pwf (hv hg)

* h —
p(h) {pmm
Lastly, condition (24) yields p;,(h)

T(h, pwf(ha hO)) > To
otherwise

= pwe(h, k) directly.

(74)

D. Proof of Lemma 4
We need the following proposition to prove Lemma 4.

Proposition 4 For «z > 0, t(z) =
increasing nonnegative function of .

z — log(1 + ) is an

Proof: When z > 0, the first derivative ¢'(z) =1 —1/(1 +
x) > 0. Thus, t(z) is increasing in = when z > 0. Since
t(0) =0, t(x) >0 forall z >0. O

(&) To prove Lemma 4(a), we only need to show that function
g(h, ho) is a non increasing function of h; for all i =
1,2,..., M.

When ps(h, hg) = 0, we have r(h, pwe(h, ho)) > 7o
and r4(h, hg) = 0. Thus, we have g(h,hg) = 0 when
ps(h7 hO) = 0.

When ps(h, ko) > 0, we have ps(h,ho) = py, (h)
pwt(h, ho) and rs(h, ho) = 1o — r(h, pwe(h, ko). T

in this case, we have

g(ha hO) = h0<pr0 (h)> —To — Q(ha hO);
where ¢(h, ho) = hopwt(h, ho) — 7(h, pwi(h, ho)). We
have
aq(h, ho) _ lehi, (};L_? - ) < O hz > h() (75)

Partial derivative of (p,,(h)) can be computed according
to the approach used in [4]. Without loss of generality,
it is assumed that h; > ... > hjs. Reference [4] shows

that
e ) _ [ e (B -Am) =1
0 i=u+1,....M

Oh;

(76)
where p is an integer employed in A(h). Parameter y has
a property such that A(h) > h; ! for i < p and A(h) <
h;t for i > pu [4]. Thus, we have (0/0h;)(py, (h)) < 0.
From (75) and (76), it follows that

— when h; < hg, we have

(0/0hi)g(h, ho) =

— when h; > hg, we have
(9/0hi)g(h, ho)

= ho(0/0h;)(pr,(h)) — (9/0hi)q(h, h).

In the case of ps(h, hg) > 0, by Proposition 1 we
have hy' < A(h), and thus h;' < hy' < A(h).
By the definition of A(h), we have A(h) > h;*
iff ¢ < p. Thus, in this case we must have i < p.
Therefore, we have

ho(0/0hi)(py, (h)) < 0.

(77)

(0/0hi)g(h, ho) = (1= hoA(h)) <0.

L
Mh,
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Thus, g(h, hg) is a non increasing function of h; for all
i=1,2,..., M.

(b) Clearly, we have g(h, ho) = 0 when ps(h, hg) = 0.
When pg(h, hg) > 0, we want to show that g(h, h¢) is
strictly positive.

In this case, we have

rs(h; hO)
=19 — r(h, pwt(h, ho))
= T(h, Pro (ha ho)) - T(h, Pwf (hv ho))
M
_ hipsi(h, ho)
=1/M Z log (1 1 hipwt i(hi, ho)) (%)

i=1

Let

gi(h, ho) = hops,i(h, ho)—log <1 +

hips,i(hv hO) )
1+ hipwe,i(hi, ho) )’
then we have g(h, ho) = 1/M "M gi(h, ho).

1) When puwsi(hi,ho) = 0, we have h; < hgy and

sz(h, ho) = pro,i(h)- Then
gi(h, ho) = hopry,i(h) —log(1 + hipy,,i(h))
h
= 3 hipg,i(h) = log(1 + hipe, (1)

> t(hipry,i(h)) . (79)

2) When pwf’i(hi,ho) > 0, 1+ hipwf,i(hiaho) =
h;/ho holds, and thus

gi(h, ho) = hops i(h, ho) — log(1 + hops,i(h, ho))

= t(hops,i(h, ho)) . (80)

Here, function ¢(x) is an increasing nonnegative function

of x when 2 > 0 by Proposition 4. Therefore, we have

gi(h,ho) > 0 for all ¢, and thus g(h,ho) > 0 when
ps(h7 ho) > 0.

E. Proof of Lemma 5
The average rate achieved by P(h, ho,
E{r(h,P(h, ho,w(h)))}
= E{r(h, pwt(h, ho)) + w(h)rs(h, ho)}
= E{r(h, pwi(h, ho)) + rs(h, ho)}
—E{(1 —w(h))rs(h, ho)} .
The first term in (81) is
E{r(h, pwt(h, ho)) + rs(h, ho)}
= E{r(h, pwi(h, ho)) + [ro — r(h, Pwe (b, ho))] "}
@ B{ro + [r(h, pur(h, ho)) — o]}

w(h)) is

(81)

= Ryu(ho). (82)
Equality (a) follows from a + (b—a)* = b+ (a —b)™ for any
a, b, and c.

The second term in (81) is bounded between 0 and r e,
since

0 < ry(h, ho) = [ro — (h, pwe(h, ho))]*
0<E{l-wh)}<e.

<10 (83)
(84)



Thus,

Ry (ho) — roe < E{r(h,P(h, hy,

w(h)))} < Ru(ho) . (85)

F. Proof of Lemma 7
We need the following proposition to prove Lemma 7.

Proposition 5 The average power E{(P(h, ko, w(h)))} is

decreasing in hg for a given w(h).

Proof: Proposition 5 The average power achieved by

P(h, ho,w(h)) can be expressed as follows:
E{(P(h, ho,w(h)))}
= E{{pwt(h, ho)) + w(h)(ps(h, ho))}
= E{(1 — w(h))(pw (h, ho))
+ w(h)((Pwi(h, ho)) + (ps(h, ho)))}
= E{(1 — w(h))(pwe (h, ho))
+w(h) ({pro (h)) + ([Pwt (b, ho) — pry ()] 7))} . (86)

Since (pwt(h, hg)) is decreasing in ho, the above expression
implies that E{(P(h, ho,w(h)))} is a decreasing function of
ho for a given w(h). O

Now we return to the proof of Lemma 7. For any
P(h, hy,w(h)) with E{(P(h, ho,w(h)))} = P, and
E{w(h)} > 1 — ¢, consider a scheme P(h, ho,w(h)). Then
E{d(h)(ps(h, h0))} < E{w(h)(p.(h, ho))} holds for any
w(h) that satisfies E{w(h)} > 1 — € according to Lemma 6.
Then we have

(87)

Since E{(P(h, ho,w(h)))} is a decreasing function of hq for
a given w(h) by Proposition 5, we have hy < ho. Hence,
P(h) has the minimum water-filling parameter among all
P(h, ho,w(h)) that satisfies E{(P(h, ko, w(h)))} = P,, and
E{wh)} >1—e

G. Proof of Lemma 8
We show E{r(h,P”(h))} > R,(hy) — roc in this section.
For any z; > 0 and z2 > 0, we have log(l + z1 + 2) <
log(1+21)+log(1+z2), and thus log(1+z1) > log(1+ 21 +
x2) — log(1 + x2). Therefore, for any two power allocations
pa(h) and py,(h) we have

E{r(h,pa(h))}
> E{r(h,pa(h) + pr(h))} — E{r(h,py(h))}.  (88)

Let pu(hv hO) = Pro (h) + [ow (h, hO) pro( )]Jr Expand-
ing P”(h) and applying P i (h) = X, (h)py, (h), we have

P"(h) = Puyin(h) + [Pw(h, hg) — pro(h)]"

= Prin(h) = pro(h) + Pro (h) + [Pwi(h, hg) — Pry (h)]+
= pu(h, 7g) — (Pry(h) — Pin(h))

=pu(h,h{) — X1_w (h)py, (h). (89)
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Applying Proposition 1 (b) and (c), it is easy to show that

T’(h, pu(ha hg)) =To + [T(h, pwf(hv hg)) - TO]JF (90)
Thus, E{r(h, pu(h, 1))} = Ru(hf).
Since E{w’(h)} = 1 — ¢, we have

E{r(h, X1 (h)py, (h))} = E{1 —w'(h)}ro = roe. (91)

Thus, applying (88) we have

E{r(h, P"(h))}
> E{r(h, pu(h, h§))} — E{r(h, X1 (h)py, (h))}
= Ru(hl)) = roe (92)

H. Proof of Lemma 9

To show hf < ho, We only need to show that hy < hg for

any P(h, ho,w(h)) that satisfies E{(P(h, ho, w(h)))} = pav
and E{w(h)} > 1 -«
We have
E{(P"(h))}
= E{< mln( ) [pwf(ha hg) — Prg (h)]+>} = Pav
= E{(P(h, ho,w(h)))}

= E{(pwt(h, ho) + w(h)ps(h, h))}

S B{(pur (. ho) + [w()pey (B) — pur (. o))}

© B{(w(h)py, () + [Pur(h, ho) — w(h)py, (h)]*)}
(3 E{(w(h)pay (B) + [puc(h, ho) — pro (W] )}
> E{< mln( ) [pwf(h hO) pl"o( )]+>} (93)

Inequality (a) and (c) follows from 0 < w(h) < 1. Equality
(b) follows from a + (b —a)* = b+ (a — b)*. Inequality (d)
holds since P i, (h) achieves the minimum power that needed
to support 7, with probability 1 — ¢, that is E{(P i, (h))} <
E{(w(h)py,(h))} for any w(h) that satisfies E{w(h)} > 1—
€.

Thus, it follows that

E{([pwt(h, hg) =P, (0)] )} > E{{[Pwi(h, ho)—Py, (h)]+(>})~

94
Since (pwt(h, hg)) is a decreasing function of fq, we have
hy < ho, and thus h{ < ho.

I. Proof of Lemma 10

In this section, we show that P’(h) achieves a higher
average rate than P”(h).

For any nonnegative p,(h) and py(h), let II denote a set
of probabilistic schemes with average power p., such that
P(h) = p,, (h) + p.(h) with probability w’(h) and P(h) =
po(h) with probability 1—w’(h). Here w’(h) is given by (17).
It is easy to show that P’(h) € II with p,(h) = [pws(h, k() —
pPr,(h)]t and py(h) = pwe(h,hf), and P”(h) € II with
pa(h) = pb(h) = [pwf(ha hg) — Pro (h)]Jr



Consider the following optimization problem

oo ax E{w'(h)r(h, py, (h) + pa(h))

+ (1 = w'(h))r(h, py(h))} (95)
subject to E{w’(h){(p, (h) + pa(h))

+ (1 —w'(h)(pb(h))} < pav (95a)

pa(h) >0, py(h)>0.

Applying the generalized Karush-Kuhn-Tucker conditions
[11], the optimum solution of (95) is

p:; (h) = [pwf (h7 h6) — Pro (h)]+a pt) (h) = Pwf (h7 h6) )

Thus, P’(h) is the optimum power allocation that maximizes
the average rate in set II. Therefore, P’(h) achieves a higher
average rate than P”(h).

As shown in section IV-E, to determine (h§, s*,v*(h)) for
P*(h), it requires solving a linear programming problem on
v(h) for given hy and s.

For a given hq and the corresponding s(hg) in (48), let

P = pav — E{(Pwt(h, ho)) — (ps(h, o))

1(g(h, ho) < s(ho))},
§=1—e—Pr{g(h, ho) < s(ho)} .

(96)
(97)

Define event B as g(h,ho) = s(ho). Equations (42)-(44)
become

E{v(h)(ps(h, ho))|B} = p, (98)
E{v(h)|B} =4 (99)
0<wv(h) <1. (100)

To determine whether (98)-(100) is feasible, we first solve
the following two optimization problems.

Pmin = og%r)lglE{“(h) (ps(h, ho))|B}  (101)
subject to E{v(h)|B} =4, (101a)
and
max — E h S h7 B 102
Pma = | max E{v(h){ps(h, ho))|B}  (102)
subject to E{v(h)|B} =4, (102a)

Let v1 (h) and v (h) denote the corresponding optimum solu-
tion for pnin and pmax respectively.
We have the following lemma for the sub-problem.

Lemma 11 For a given hg, problem (98)-(100) is feasible
iff pmin < P < pmax- When it is feasible, one solution is
v(h) = Mvi(h) + (1 — A)ve(h), where X is the solution to
b= )\pmin + (]- - )\)pmax-

The v1(h) can be obtained by solving problem (101) using
the Karush-Kuhn-Tucker conditions. We have

1 ps(h, ho) <t
vi(h)=¢ v1 ps(h,ho) =11 ,

) (103)
0 Ps (h, ho) >t
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where parameters t; and 0 < v; < 1 are solutions of (101a)
as

t1 =sup{z : Pr{B,ps(h,ho) <z} <} (104)
d— Pl’{B, ps(hv hO) < tl}
= 1
v Pr{B7 pS(ha hO) = tl} ( 05)
Similarly, solving problem (102), we have
1 ps(h,hg) > 12
vo(h) =9 v2 ps(h hg) =12 (106)

0 pS(ha hO) < t2
where t2 and v, are
ts = inf {a : Pr{B, ps(h, ho) > z} < 8(ho)} (107)
o — Pr{B7 pS(ha hO) > t2}
= 1
" Pl’{B, ps(hv hO) = tQ} ( 08)
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