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Therefore, we can now compute the probability distribution of r1 and
�1 as follows:

p(r1) = r1p(r1; �1)d�1 =
2�n

V �(n� 1)
r1(n� r1)

n�1

=
2

nn�1
r1(n� r

2

1)
n�1

p(�1) = r1p(r1; �1)dr1 =
1

2�
:

Also, since p(r1; �1) = p(r1)p(�1), r1 and �1 are independent.
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User Capacity of Asynchronous CDMA Systems With
Matched Filter Receivers and Optimum Signature

Sequences
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Abstract—For a symbol-asynchronous (but chip-synchronous)
single-cell code-division multiple-access (CDMA) system, we define a
system-wide quantity called the total squared asynchronous correlation
(TSAC) which, for arbitrary signature sets, depends on the users’ delay
profile. We develop a lower bound for TSAC that is independent of the
users’ delays. We show that if the signature set achieves this TSAC lower
bound, then the user capacity of the asynchronous CDMA system using
matched filters becomes the same as that of a single-cell synchronous
CDMA system; in this case, there is no loss in user capacity due to
asynchronism. We present iterative signature adaptation algorithms,
which, when executed sequentially by the users, appear to converge to
these optimum signature sequences; however, the existence, for all user
delay profiles, of signature sequences achieving this lower bound remains
a significant open problem.

Index Terms—Asynchronous code-division multiple access (CDMA),
CDMA user capacity, interference avoidance, minimum mean-square
error (MMSE) filters, optimum signature sequence sets, Welch bound
equality (WBE) sequences, Welch bound.

I. INTRODUCTION

For code-division multiple-access (CDMA) systems, there has been
recent progress in understanding the influence of signature sequences
on the overall system capacity [3]–[5]. In particular, for a single-cell
synchronous CDMA system with equal received powers, [3] showed
that one can always choose the signature sequences to be Welch bound
equality (WBE) sequences [6]–[8] and that WBE sequences maximize
the user capacity, i.e., the maximum number of supportable users at a
common signal-to-interference ratio (SIR) target level for a fixed pro-
cessing gain. A generalized version of this problem where users have
arbitrary (unequal) received powers was solved in [4].
In this correspondence, we investigate the user capacity of an asyn-

chronous single-cell CDMA system with matched filters, under the as-
sumption that the users’ signature sequences can be optimized. Even
though the system is symbol-asynchronous, we assume that it is chip-
synchronous (e.g., as in [9]) in order to make the analysis tractable. We
also assume that short sequences are used; that is, the length of the sig-
nature sequences is equal to one symbol duration, and that the signature
sequences are repeated at every symbol interval. We define a quantity
called the total squared asynchronous correlation (TSAC) of a signature
sequence set. For arbitrary signature sequences, the TSAC depends on
the users’ delay profile. We identify a lower bound on the TSAC that
is independent of the users’ delay profile. For those delay profiles for
which there exist signature sets that achieve the TSAC lower bound,
we show that an asynchronous system in which each user employs a
matched filter receiver over a single-symbol interval has the same user
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Fig. 1. Asynchronous interference calculation.

capacity as a symbol synchronous system; in this case, there is no loss
in user capacity due to asynchronism. We emphasize, however, that the
existence, for all user delay profiles, of signature sets achieving this
lower bound on the TSAC is a significant open problem.

By extending techniques for iterative signature optimization for syn-
chronous CDMA systems, [10]–[14], we present signature adaptation
algorithms where, at each iteration, only one user updates its signature
sequence to decrease the TSAC of the entire set. Experimentally, we
observe that these distributed adaptation algorithms converge to signa-
ture sets that achieve the lower bound on the TSAC.

II. USER CAPACITY FOR THE ASYNCHRONOUS SYSTEM

We consider a single-cell symbol-asynchronous (but chip-syn-
chronous) CDMA system with K users and processing gain N . The
received signal in the nth symbol interval of user k is given as (see
Fig. 1)

rrrk(n)=
p
pkbk(n)sssk+

l 6=k

p
pl bl(n)T

d

L
sssl+bl(n+1)T

d

R
sssl +nnnk

(1)
where pk , bk(n), and sssk are the received power, the nth transmitted
symbol, and the signature sequence of user k, respectively, and nnnk is a
zero-meanGaussian randomvector withE[nnnknnn

>
k ] = �2IIIN , where IIIN

denotes theN -dimensional identity matrix. The signature sequences of
all users are of unit energy, i.e., sss>k sssk = 1, for all k. For users k and l,
dkl represents the relative time delay of user l with respect to the time
delay of user k, that is, dkl = dl � dk, where dk and dl are the time
delays of users k and l, respectively. Symbols T dR and T dL denote the
operations of shifting, to right and left, respectively, of a vector by d and
N�d chips (components). For both operators, the vacated positions in
the vector are filled with zeros. That is, for a vectorxxx = [x1; . . . ; xN ]>

and integer d � 0, we define

T dLxxx=[xN�d+1; . . . ; xN ; 0
N�d]> and T dRxxx=[0d; x1; . . . ; xN�d]

>

(2)
where 0d denotes d consecutive zeros.

We will use one-shot matched filters as the receivers. The
decision statistics for the kth user in the nth symbol interval is
yk(n)=sss>k rrrk(n), where we do assume that the matched filter receiver
of each user is perfectly aligned with the symbol interval of the user.
Since sss>k sssk = 1, the SIR of the kth user is then given by

SIRk =
pk

l6=k

Aklpl + �2
(3)

where we define theK �K matrix AAA with the following entries:

Akl =
(sss>k T

d

L
sssl)

2 + (sss>k T
d

R
sssl)

2; k 6= l

0; k = l.
(4)

The common SIR target � is said to be feasible iff one can find non-
negative powers fpkgKk=1 such that SIRk � � for all k, which can be
written in an equivalent matrix form as

ppp � � AAAppp+ �21 (5)

where 1 is the vector of all ones. It is well known that if the common
SIR target� is feasible, then the optimumpower vector, i.e., the compo-
nentwise smallest feasible power vector, is found by solving (5) with
equality [15]. Furthermore, the power control problem is feasible iff
[16]

� <
1

�A
(6)

where �A is the largest (also called the Perron–Frobenius) eigen-
value of the symmetric nonnegative matrix AAA. We define the matrix
RRR = AAA + III so that Rkk = (sss>k sssk)

2 = 1 and RRR represents the
squared asynchronous cross correlations of the signature sequences.
The Perron–Frobenius eigenvalue of RRR satisfies �R = �A + 1, and
the feasibility condition in (6) can also be expressed as

� <
1

�R � 1
: (7)

That is, for a single-cell CDMA system, the range of common achiev-
able SIR values is determined only by the Perron–Frobenius eigenvalue
of the squared asynchronous cross-correlation matrixRRRwhich depends
only on the signature sequences of the users and their relative time de-
lays. For a given signature sequence set fssskgKk=1 and a set of time de-
lays fdkgKk=1, the supremum of common achievable SIR targets equals
1=(�R� 1). Our aim is to choose the signature sequences of the users,
for any given set of time delays, such that the common achievable SIR
is maximized. Therefore, we seek the signature sequence set that max-
imizes 1=(�R � 1), or, equivalently, minimizes �R.
We note that it is hard to characterize the dependence of �R on indi-

vidual signature sequences. If this were not the case, one could devise
an algorithm to update the signature sequences of the users in the direc-
tion that decreases �R. Instead, our approach is to tie the Perron–Frobe-
nius eigenvalue of RRR, �R, to another parameter of RRR which can be re-
lated to the signature sequences in a more direct way. By this approach,
we will be able to characterize the optimum signature sequences in a
closed-form expression in addition to being able to devise an iterative
and distributed signature sequence update algorithm that will construct
progressively better signature sequence sets.
To this end, we start our derivation with the following bounds on the

Perron–Frobenius eigenvalue ofRRR in terms of its row-sums [16]

min
k

K

l=1

Rkl � �R � max
k

K

l=1

Rkl: (8)

Similar bounds that can be obtained using column-sums ofRRR are iden-
tical to (8) since RRR is symmetric. We also have the following bound
from a simple application of the Rayleigh quotient [17]:

1

K

K

k=1

K

l=1

Rkl � �R (9)

which is equivalent to (1>RRR1)=(1>1) � �R. Combining (8) and (9)
and the fact that the minimum row-sum lower-bounds the average of
the row-sums yields

min
k

K

l=1

Rkl � 1

K

K

k=1

K

l=1

Rkl � �R � max
k

K

l=1

Rkl: (10)
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We define the TSAC as

TSAC =

K

k=1

K

l=1

Rkl: (11)

Note that the TSAC is equal to the sum of the entries of the asyn-
chronous squared correlation matrixRRR. Since we want to minimize �R,
and since �R is lower-bounded by TSAC=K , it is reasonable to try to
minimize the TSAC over the space of all possible signature sequences.
Although it is not clear that �R decreases as TSAC decreases, we will
show that the signature sequence sets that achieve a particular lower
bound on TSAC are precisely those that minimize �R.

III. THE SYNCHRONOUS PROBLEM REVISITED

In order to motivate the solution of the asynchronous problem, we
will first revisit the synchronous problem solved in [3]. In the syn-
chronous case,Rkl = (sss>k sssl)

2. The following two theorems guarantee
that the signature sequences that minimize the TSC (equivalent of the
TSAC in the synchronous case) are those that minimize �R.

Theorem 1 (Welch [6], Massey [7], Massey–Mittelholzer [8]): For
any given set of unit energy sequences fssskgKk=1

TSC =

K

k=1

K

l=1

(sss>k sssl)
2 �

K2

N
: (12)

Theorem 2 (Massey–Mittelholzer [8]): (The Uniformly Good Prop-
erty) If the sequences fssskgKk=1 are such that the equality holds in (12)
then

K

l=1

(sss>k sssl)
2 =

K

N
; k = 1; . . . ; K: (13)

For a synchronous system,Rkl = (sss>k sssl)
2 and Theorem 1 combined

with (10) says that

�R �
K

N
: (14)

Since our aim is to minimize �R, the best we can do is to choose the
signature sequences so as to achieve (14) with equality. Theorem 2
says that when the signature sequences are chosen such that the TSC
is minimized, i.e., the bound on the TSC is achieved with equality,
then all of the row-sums equal K=N . Since from (10) the row-sums
sandwich �R, (14) is satisfied with equality, and the lowest possible �R
is obtained: �R = K=N . Therefore, using (7), in the synchronous case,
the bound on the common achievable SIR target is � < 1=(K=N�1),
which is equivalent to the user capacity expression, derived in [3]

K

N
< 1 +

1

�
: (15)

Theorems 1 and 2 apply to the K > N case. When K < N , the
bound in Theorem 1 is loose; the K2=N bound cannot be achieved,
and Theorem 2 loses its applicability. WhenK � N , the equivalent of
Theorem 1 is TSC � K . In this case, the equivalent of Theorem 2 is
the following: if the sequences fssskgKk=1 are such that TSC = K , then

l
(sss>k sssl)

2 = 1 for k = 1; . . . ; K . That is, all of the row-sums of RRR
are equal to 1, and therefore, �R = 1. The implication of this result,
from (7), is that any (arbitrarily large) common SIR target � is feasible
with sufficiently large transmit powers. Note that TSC = K is achieved

Fig. 2. Asynchronous system representation.

with K orthonormal signature sequences, in which case Rkl = 0 for
k 6= l.

IV. THE ASYNCHRONOUS PROBLEM

In this section, we derive asynchronous versions of Theorems 1 and
2. In order to make the derivations more tractable, we will use an al-
ternate representation for the users’ signature sequences. In Section II,
the actual signature sequences of the users fssskgKk=1 are used as main
variables, and the asynchronous cross correlations of the users are rep-
resented by using the right and left shift operations TR and TL; see
for example, (4). Furthermore, each user aligns its receiver to its own
symbol interval.
In the sequel, we will concentrate on a time duration which is equal

to one symbol interval, i.e.,N chip intervals. However, this symbol in-
terval is not assumed to be time-aligned to any particular user’s symbol
period. This symbol interval is depicted in Fig. 2, where each box rep-
resents a chip interval. For each user, the white and gray chips in Fig. 2
correspond to symbols with time stamps n and n + 1 of that user. In
particular, for user k, the white chips on the left represent the last dk
chips in the signature sssk used to transmit symbol n, and the gray chips
on the right are the first N � dk chips of sssk used to transmit symbol
n + 1.
In this fixed one-symbol-duration interval, we represent the se-

quence of N chips (both white and gray) of user k by the vector xxxk ,
even though the first dk elements of xxxk contribute to the transmission
of symbol n while the remaining N � dk elements were used to
transmit symbol n + 1. The actual signature sequence of user k will
then be equal to sssk = Cd xxxk , where

Cdxxx = [xd+1; . . . ; xN ; x1; . . . ; xd]
>

represents the cyclic shift of sequence xxx to the left by d positions. In
Fig. 2, for example, user k is represented by the vector

xxxk = [xk1; xk2; . . . ; xkN ]>

whereas its actual signature sequence

sssk = [xk2; . . . ; xkN ; xk1]
>:

With this new representation, we can obtain a more concise expres-
sion for the squared asynchronous cross-correlation terms Akl in (4).
As in (4), the interference a pair of users create to each other has two
components: these two components can be expressed as correlations
of two vectors restricted to two sets of chip indexes. For users k and l,
let Lkl denote the set of chip indexes for which users k and l transmit
symbols with different time stamps. In terms of Fig. 2, Lkl is the set of
columns (chip indexes) for which rows (users) k and l have different
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colors (e.g., white and gray). With this new representation, Akl given
in (4) can be expressed as

Akl =
i2L

xkixli

2

+
i=2L

xkixli

2

; k 6= l

0; k = l.

(16)

By definition of Lkl, we observe that Lkk = ;. Thus,

i62L

xkixkl = xxx>k xxxk = sss>k sssk = 1

and we observe that RRR = AAA + III has (k; l)th element

Rkl =
i2L

xkixli

2

+
i=2L

xkixli

2

: (17)

By thinking of the users’ signatures in terms of the rows of Fig. 2,
computing the TSAC using (11) with Rkl from (17) is equivalent to
summing the squared partial correlations over these rows. For our pur-
poses, we develop an alternate way of calculating the TSAC that can be
viewed as summing the squared partial correlations over the columns
of Fig. 2. In particular, we use Mij to denote the set of user indexes
for which the chip positions i and j lie in the same symbol interval.
That is, given any two chip indexes i and j,Mij is the set of users for
whom chips i and j are either both “gray” or both “white” in Fig. 2.
For instance, for the three users in Fig. 2, M12 = fl;mg, M19 = ;,
andM47 = fk; lg. In the Appendix , we prove the following claim.

Lemma 1: TSAC, as given by (11) with Rkl from (17) can equiva-
lently be expressed as

TSAC =

N

i=1

N

j=1 k2M

xkixkj

2

+
k=2M

xkixkj

2

: (18)

As an aside, for a synchronous system, Lkl = ; for all k and l, and
Mij = f1; . . . ; Kg for all i and j, and equating (11) and (18) for the
TSAC yields

TSACsynch =

K

k=1

K

l=1

N

i=1

xkixli

2

=

N

i=1

N

j=1

K

k=1

xkixkj

2

:

(19)
When the users are synchronous, xki = ski for all k and i, implying
TSACsynch = TSC; in this case, the identity (19) was used in [7], [8]
to reprove Welch’s bound which was originally proved in [6].

The following two theorems, proven in the Appendix, guarantee that
the signature sequences achieving the TSAC lower bound are those that
minimize �R.

Theorem 3: For any delay profile fdkgKk=1 and any given set of unit
energy sequences fssskgKk=1

TSAC �
K2

N
(20)

with equality iff the sum K
k=1 x

2
ki is the same for all i, and for all

i 6= j

k2M

xkixkj = 0 and
k=2M

xkixkj = 0: (21)

Theorem 4: (The Asynchronous Uniformly Good Property) If the
sequences fssskgKk=1 are such that they achieve the TSAC lower bound
of Theorem 3 with equality then

K

l=1

Rkl =
K

N
; k = 1; . . . ; K: (22)

We will continue our derivation similar to the synchronous case. For
this asynchronous CDMA system, Theorem 3 combined with (10) says
that

�R �
K

N
: (23)

Similar to the synchronous case, our aim is to minimize �R, and we
cannot do better than to choose signature sequences that achieve (23)
with equality. Theorem 4 says that when the signature sequences can be
chosen such that the TSAC lower bound is achieved with equality, then
all of the row-sums equalK=N . By (10), the row-sums sandwich �R,
and so (23) is satisfied with equality, yielding the lowest possible �R:
�R = K=N . Therefore, using (7), the bound on the common achiev-
able SIR target in this asynchronous case is

� <
1

K=N � 1
(24)

which is the same as the bound found in the synchronous case. In this
case, the user capacity expression (15) is valid for the asynchronous
case as well.
Similar to the synchronous case, Theorems 3 and 4 apply to theK >

N case. When K < N , the bound in Theorem 3 is loose; the K2=N
bound cannot be achieved, and Theorem 4 loses its applicability. When
K � N , the equivalent of (20) in Theorem 3 is

TSAC � K: (25)

The bound is achieved with equality when Rkl satisfies Rkl = 0 for
all k 6= l. In this case, the equivalent of Theorem 4 is the following:
if the sequences fssskgKk=1 are such that the equality holds in (25) then

l Rkl = 1 for k = 1; . . . ; K . That is, all of the row-sums of RRR are
equal to 1, and, therefore, �R = 1. The implication of this result, from
(7), as in the synchronous case, is that any (arbitrarily large) common
SIR target � is feasible. In the asynchronous case, for Rkl to be equal
to zero for k 6= l, from (4), the two partial correlations between the
signature sequences of users k and l should be equal to zero, which
is clearly a stronger condition than the orthogonality condition in the
synchronous case.
Next we note that the optimum received powers of the users are

equal. We state this as a corollary to Theorem 3, and give a proof in
the Appendix.

Corollary 1: If the sequences fssskgKk=1 are such that they achieve
the TSAC lower bound of Theorem 3 with equality, then all users have
SIRs equal to �, by using the received powers

pk = p =
�2

1 + 1=� �K=N
; k = 1; . . . ; K: (26)

Note that p > 0 as long as K , N , and � satisfy the user capacity
inequality (24).

V. TSAC REDUCTION: ITERATIVE ALGORITHMS

Following the closed-form expressions for the signature sequence
sets maximizing the information theoretic sum capacity [4], [5] and
user capacity [3], [10]–[12] introduced the iterative adaptation of sig-
nature sequences for synchronous CDMA systems. Since the optimum
signature sequences minimize the TSC in the synchronous case, the al-
gorithms in [10]–[14], [18] were designed to decrease (more precisely,
not to increase) the TSC at each iterative step. Here, we will design al-
gorithms which decrease the TSAC at each iteration. To this end, we
first separate the terms that depend on the signature sequence of the
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kth user in the TSAC. From the TSAC definition (11), the definition of
RRR = AAA + III , and the fact that AAA in (4) is symmetric, we can write

TSAC = (sss>k sssk)
2 + 2sss>kBBBksssk + 
k (27)

where 
k = i6=k j 6=k Rij denotes the squared asynchronous cor-
relation terms that do not depend on sssk and where in terms of �ssskl =
T
d
L sssl and ~ssskl = T

d
R sssl, the left and right signatures of the lth asyn-

chronous user with respect to the kth user

BBBk =
l6=k

�ssskl�sss
>
kl + ~ssskl~sss

>
kl : (28)

In order to minimize the TSAC, we are looking for updates of the
signature sequence of the kth user from sssk to some ccck that is guaranteed
to decrease (not to increase) the TSAC. Let us denote the TSAC after
the sssk ! ccck update as TSAC. Then

TSAC = (ccc>k ccck)
2 + 2ccc>kBBBkccck + 
k: (29)

Restricting the new (updated) signature sequence of the kth user to be
of unit energy as well, i.e., ccc>k ccck = 1, we note that TSAC � TSAC iff

ccc>kBBBkccck � sss>kBBBksssk: (30)

Although there are many possible sssk ! ccck updates that would guar-
antee that (30) holds, we will propose two of them here. The two sim-
ilar updates used in the synchronous CDMA context were given in
[10]–[12] and in [13], [14]. We call the first update the asynchronous
minimum mean-square error (MMSE) update which we define as

ccck =
BBBk + a2IIIN

�1
sssk

sss>k (BBBk + a2IIIN )
�2 sssk

1=2
(31)

and we call the second update the asynchronous eigen update which
we define as the normalized eigenvector of BBBk corresponding to its
smallest eigenvalue. Note that, in the asynchronous MMSE update,
the new signature sequence of user k, ccck, is the normalized one-shot
MMSE receiver filter for that user when the signature sequences of
all other users are fixed. Similar to the synchronous MMSE update
[10]–[12], the new signature sequence can be obtained using an
adaptive [19]–[22] or a blind [23] implementation of the one-shot
MMSE filter. The proof that the asynchronous eigen update decreases
the TSAC follows from the Rayleigh quotient applied to the matrix
BBBk [17]. The proof that the asynchronous MMSE update decreases
the TSAC can be carried out in a very similar fashion to the proof that
the MMSE update decreases the TSC [10]–[12].

VI. FURTHER REMARKS

In a synchronous CDMA system withK > N , the optimum signa-
ture sequences are those that minimize the TSC (i.e., WBE sequences),
and they are completely characterized by the matrix equation SSSSSS> =
(K=N)IIIN , where SSS is a matrix containing the signature sequences of
the users in its columns. That is, for a set of signature sequences to be
optimum they need to satisfy three sets of conditions: 1) each column
of SSS must have unit length, 2) rows of SSS must be orthogonal to each
other, and 3) each row of SSS must have length K=N . These condi-
tions were identified in [7], [8] in rederiving the Welch’s bound, but
the existence of sequences satisfying these conditions for arbitrary N
and K with K > N was first addressed in [3].

For asynchronous systems, we have found that if a set of unit en-
ergy signature sequences achieves the TSAC lower bound of Theorem
3 with equality, then the user capacity is the same as in the synchronous
CDMA system. However, we have not addressed the issue of the exis-
tence of such signature sequence sets for arbitraryK ,N , and user delay

profile. As expected, optimality conditions on the signature sequences
in the asynchronous case are stricter compared to the synchronous case.
It is worth noting that the optimum signature sequences for an arbitrary
user delay profile constitute a WBE set when each signature sequence
in the set is shifted appropriately. This can be deduced from the equality
conditions of Theorem 3 which imply that

K

k=1

xkixkj =
k2M

xkixkj +
k=2M

xkixkj = (K=N)�ij (32)

where �ij = 1 if i= j, and 0 if i 6= j. This is equivalent to XXXXXX> =
(K=N)IIIN whereXXX is anN�K matrix containingxxxk’s as its columns.
Therefore, fxxxkgKk=1 is a WBE set. One must be careful, however, since
the xxxk are cyclicly shifted versions of the actual signature sequences
sssk . Therefore, a signature sequence set that is optimum for a certain
user delay profile can be cyclicly shifted to obtain a WBE set which is
optimum for a synchronous system. However, the converse is not true;
one cannot cyclicly shift an arbitrary WBE set to obtain an optimum
signature sequence set for an arbitrary asynchronous system.
It is not obvious that the sets of signature sequences satisfying the

equality conditions of Theorem 3 should exist for all K , N , and the
user delay profile. When K � N , a trivial set of optimal sequences
can be constructed. In particular, in an observation interval where the
users are ordered according to their delays in an ascending order (as
in the example of Fig. 2 where the delays of the users are one, three,
and six chips), and assuming that the delays of the users are distinct, let
xxxk = eeek where eeek is the unit vector with a single 1 in position k and
zeros elsewhere. It is easy to verify that such an assignment guarantees
that the two partial correlations between any two users are zero, and,
therefore,Akl = 0 for all k and l, and we have TSAC = K . The actual
signature sequence of user k will be sssk = Cd eeek . In fact, depending
on the delay profile, some users may have the same signature; however,
different delays result in the desired property that Akl = 0 among
the signatures. Consider a simple example where K = N , and the
delay of user k is dk = k � 1 for k = 1; . . . ; K . In this case, an
optimum signature assignment is xxxk = eeek , for k = 1; . . . ; K , which
implies that the actual signature sequences of the users are sssk = eee1,
for k = 1; . . . ; K , i.e., the signature sequences of all users are the
same. Although these sequences are not typical CDMA signatures, they
prove the existence of minimum-TSAC sequences for an asynchronous
system with an arbitrary user delay profile whenK � N . ForK > N ,
the issue of existence is an important open problem which has not been
addressed in this correspondence.
In particular, although the algorithms of Section V monotonically

decrease the TSAC, we have not proved that these algorithms will con-
verge to a set that achieves TSAC = K2=N . We can report, however,
that through a large number of numerical experiments with randomly
generated initial signature sequence sets, we have observed that the
TSAC reduction algorithms we have proposed here have always con-
verged to signature sequences meeting the TSAC lower bound. That
is, we have not only observed the existence of such sequence sets, but
also the convergence of our proposed algorithms to these sets through
many numerical experiments.
Finally, we provide a simple experimental result here. In this ex-

periment, we implement both the asynchronous MMSE update and
the asynchronous eigen update algorithms and plot the TSAC and the
supremum of the common achievable SIR target 1=(�R�1) as a func-
tion of the iteration index in Fig. 3. In this example system, K = 20,
N = 10, and the initial signature sequence set and the delays of
the users are generated randomly. In Fig. 3, one iteration is equiva-
lent to K intermediate iterations where at each intermediate iteration
only one user updates its signature sequence. As we see from Fig. 3,
the TSAC decreases to the bound K2=N = 40 and �R decreases to
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Fig. 3. TSAC and 1=(�R � 1) versus iteration index.

K=N = 2, and the supremum of the common achievable SIRs in-
creases to 1=(K=N � 1) = 1. Fig. 3 verifies, for this instance, that
the signature sequences achieving the lower bound on the TSAC exist,
and the two algorithms we proposed here converge to those signature
sequences.

APPENDIX

PROOFS

Proof of Lemma 1

Let us define the indicator variables

Y kl
i =

1; i 2 Lkl
0; i =2 Lkl

(33)

and

Zk
ij =

1; k 2Mij

0; k =2Mij .
(34)

With the help of this definition for Y kl
i , it follows from (17) that

Rkl =

N

i=1

N

j=1

xkixlixkjxlj Y kl
i Y kl

j + 1� Y kl
i 1� Y kl

j :

(35)
By defining the function f of two binary variables as

f(x; y) = xy + (1� x)(1� y) = 1� (x� y)2 (36)

we can write

TSAC=
K

k=1

K

l=1

Rkl=

K

k=1

K

l=1

N

i=1

N

j=1

xkixlixkjxljf(Y
kl
i ; Y kl

j ):

(37)
We now will show that

f(Y kl
i ; Y kl

j ) = f(Zk
ij ; Z

l
ij): (38)

To prove (38), we define the indicator

Xk
i =

1; dk < i

0; otherwise.
(39)

That is, Xk
i is 1 iff the (n + 1)st symbol of user k has started on or

before chip i; or equivalently, Xk
i is 1 iff the ith chip position of user

k is “gray” in Fig. 2. Then Y kl
i and Zk

ij can be written in terms ofXk
i ,

X l
i , X

k
j , and X

l
j as

Y kl
i =(Xk

i �X l
i)
2 (40)

Zk
ij =1� (Xk

i �Xk
j )

2: (41)

To show that (38) holds, (40) and (41) imply that it is sufficient to show
that

(Xk
i �X l

i)
2
�(Xk

j �X l
j)
2

2

= (Xk
i �Xk

j )
2
�(X l

i �X l
j)
2

2

(42)
whose correctness can be verified using straightforward manipula-
tions, and the observation that b2 = b for any binary variable b. Thus,
(36)–(38) imply

TSAC=
K

k=1

K

l=1

N

i=1

N

j=1

xkixlixkjxlj Z
k
ijZ

l
ij+ 1�Zk

ij 1�Zl
ij

(43)
which is the statement of Lemma 1 expressed in terms of the Zk

ij indi-
cator variables.

Proof of Theorem 3

From Lemma 1, we can write the TSAC using (18) as

TSAC =

N

i=1

K

k=1

x2ki

2

+

N

i=1

N

j=1;j 6=i k2M

xkixkj

2

+
k=2M

xkixkj

2

(44)

�

N

i=1

K

k=1

x2ki

2

(45)

�
1

N

N

i=1

K

k=1

x2ki

2

(46)

=
1

N

K

k=1

N

i=1

x2ki

2

(47)

=
K2

N
(48)
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K

l=1

Rkl =

K

l=1

N

i=1

N

j=1

xkixlixkjxlj Zk
ijZ

l
ij + 1� Zk

ij 1� Zl
ij (54)

=

N

i=1

N

j=1

xkixkj Zk
ij

K

l=1

xlixljZ
l
ij + (1� Zk

ij)

K

l=1

xlixlj (1� Zl
ij) : (55)

where, in going from (45) to (46), we used the inequality

N

i=1

a2i �
1

N

N

i=1

ai

2

(49)

which is satisfied with equality iff all ai =
K

k=1
x2ki are equal. Thus,

the overall inequality (48) is satisfied with equality iff the inequalities
(45) and (46) are both satisfied with equality. These are precisely the
equality conditions given in Theorem 3.

Proof of Theorem 4

By the hypothesis of the theorem, the signature sequences achieve
the lower bound on the TSAC with equality. Thus, by Theorem 3, for
all i 6= j

K

k=1

xkixkjZ
k
ij =

k2M

xkixkj = 0 (50)

and
K

k=1

xkixkj(1� Zk
ij) =

k 62M

xkixkj = 0 (51)

and K

k=1
x2ki is the same for all i. Note that

N

i=1

K

k=1

x2ki =

K

k=1

N

i=1

x2ki = K (52)

where we used xxx>k xxxk = 1 for all k. Thus, when all K

k=1
x2ki are all

the same, we have

K

k=1

x2ki = K=N: (53)

From (35), (36), and (38), we get (54) and (55) at the top of the page.
Thus, (50) and (51) imply that all i 6= j terms vanish, and we have only
the i = j terms. Noting Zl

ii = 1 for all l

K

l=1

Rkl =

K

l=1

N

i=1

x2kix
2

li =

N

i=1

x2ki

K

l=1

x2li =
K

N
(56)

where we inserted (53) and noted that xxx>k xxxk = 1.

Proof of Corollary 1

From (3), the SIR of the kth user is

SIRk =
p

p
l6=k

Akl + �2
=

p

p
l

Rkl � 1 + �2
: (57)

If the signature sequences satisfy (20) with equality in Theorem 3, then
using (22) in Theorem 4, we can write (57) as

SIRk =
p

p (K=N � 1) + �2
: (58)

It is now straightforward to show that when (26) is inserted into (58),
SIRk = � for all k.
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