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Service Outage Based Power and Rate Allocation
Jianghong Luo, Lang Lin, Roy Yates, and Predrag Spasojević

Abstract— This paper combines the concepts of ergodic capac-
ity and capacity versus outage for fading channels, and explores
variable rate transmissions under a service outage constraint in a
block flat fading channel model. A service outage occurs when the
transmission rate is below a given basic rate. We solve the prob-
lem of maximizing the expected rate subject to the average power
constraint and the service outage probability constraint. When
the problem is feasible, the optimum power policy is shown to be
a combination of water filling and channel inversion allocation,
where the outage occurs at a set of channel states below a certain
threshold. The service outage approach resolves the conflicting
objectives of high average rate and low outage probability.

Index Terms—Adaptive transmission, block-fading channel, er-
godic capacity, outage capacity, service outage

I. INTRODUCTION

Wireless communication channels vary with time due to mo-
bility of users and changes in the environment. For a time vary-
ing channel, dynamic allocation of resources such as power,
rate, and bandwidth can yield improved performance over fixed
allocation strategies. Indeed, adaptive techniques are employed
in EDGE [1], GPRS [2], and HDR [3], and are proposed as
standards for next generation cellular systems. The system per-
formance criterion is usually application specific; therefore, dif-
ferent classes of applications will benefit from specific adaptive
transmission schemes. In order to differentiate real-time ser-
vice from non real-time service, three capacity measures have
been defined in the literature: ergodic capacity [4], delay lim-
ited capacity [5], and capacity versus outage probability [9–11].
A comprehensive survey of these concepts can be found in [6].

The ergodic capacity [4] was developed for non real-time
data services. It determines the maximum achievable rate aver-
aged over all fading states. The corresponding optimum power
allocation is the well known water filling allocation [7, 8]. The
ergodic capacity may not be relevant for real-time applications
in a slow fading environment, where substantial delay can oc-
cur when averaging over all fading states. Delay limited capac-
ity [5] and the capacity versus outage probability [9–11] were
developed for constant-rate real-time applications. The delay
limited capacity specifies the highest achievable rate with a de-
coding delay independent of fading correlation structures [5].
The outage capacity in the capacity versus outage probability
problem determines the ε-achievable rate [12] of the M -block
fading channel. The corresponding optimum power allocation
was derived in [10] for M parallel flat fading blocks (frequency
diversity or space diversity), and in [11] for M consecutive
flat fading blocks (time diversity). The zero-outage capacity
in [10, 11] is also referred to as the delay-limited capacity.

Though the outage capacity studies the capacity for constant-
rate real-time applications, the constant-rate assumption may

not be essential for many real-time applications. For applica-
tions with simultaneous voice and data transmissions, for ex-
ample, as soon as a basic rate ro for the voice service has been
guaranteed, any excess rate can be used to transmit data in
a best effort fashion. For some video or audio applications,
the source rate can be adapted according to the fading channel
conditions to provide multiple quality of service levels. Typi-
cally these applications require a nonzero basic service rate ro

to achieve a minimum acceptable service quality. Motivated
by these variable-rate real-time applications, we study variable
rate transmission schemes subject to a basic rate requirement
in a slow fading environment. By allowing variable rate trans-
missions, the variation of the fading channel can be exploited to
achieve an average rate higher than the outage capacity. By im-
posing a basic rate requirement, the system can be guaranteed
to operate properly.

Since infinite average power is needed to achieve any
nonzero rate at all times in a Rayleigh fading channel, we im-
pose a probabilistic basic service rate requirement, that we call
a service outage constraint. The service is said to be in an out-
age when the information rate is smaller than the basic service
rate ro. Service quality is acceptable as long as the probability
of the service outage is less than ε, a parameter indicating the
outage tolerance of the application. Unlike the information out-
age in the capacity versus outage probability problem [10, 11],
the bits transmitted during the service outage may still be valu-
able in that they will be transmitted reliably and will contribute
to the average rate.

For variable-rate systems, the expected rate determines how
much rate can be transmitted on the average and is a meaningful
measure of system performance. Therefore, in this paper, the
allocation problem is to find the power and rate allocation that
maximize the expected rate subject to the service outage con-
straint and the average power constraint. Under the assumptions
of a block flat fading AWGN channel model and perfect chan-
nel state information at the transmitter, we verify that the outage
should occur at bad channel states below a certain threshold.
The resulting optimum power allocation is shown to be a com-
bination of channel inversion and water filling when the allo-
cation problem is feasible. The service outage approach strikes
good balance between the average rate and the outage proba-
bility. This approach has been generalized to the case of code
words spanning multiple blocks in [13]. Although a continuous
fading distribution is assumed in this paper, the results can be
extended into the case of discrete fading distributions by em-
ploying a probabilistic power allocation, as examplified by the
policies in [10].

Although our problem has been motivated by real time ap-
plications, it also characterizes coverage versus capacity trade-
offs. In particular, mobility in cellular systems results in chan-
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nel variations due to changes in distance attenuation. An impor-
tant objective of a cellular system is to provide a basic service
rate over as much of the service area as possible. In this case,
the service outage constraint characterizes the spatial coverage
requirement of the system. The objective is then to maximize
the average rate over all geographic locations subject to meeting
the service outage constraint.

The remainder of this paper is organized as follows. In Sec-
tion II, the system model and the optimization problem are pre-
sented. In Section III, the optimum allocation policy is derived.
In Section IV, a supporting theorem for the optimum allocation
policy is proved. Further discussion of the optimum solution is
presented in Section V.

II. THE ALLOCATION PROBLEM

In this work, we employ the block flat fading Gaussian chan-
nel (BF-AWGN) model [9]. In the BF-AWGN channel, a block
of N symbols experiences the same channel state, which is con-
stant over the whole block, but may vary from block to block.
Within each block we have the time-invariant Gaussian channel
y =

√
hx + n. Here x is the channel input, y is the channel

output, n is white Gaussian noise with variance σ2, and h is
the channel state. Let f(h) denote the probability density func-
tion of the channel state h and F (h) denote the corresponding
cumulative distribution function (CDF). Here, we consider the
case where F (h) is a continuous function and the power allo-
cation is a deterministic function of channel state.

We make the following assumptions:
• The channel state information is known perfectly at both

transmitter and receiver.
• One codeword spans one fading block and the block size

N is large .
• The fading process is ergodic over the time scale of the

application.
As pointed out in [10], it makes sense to study the BF-AWGN
channel as N → ∞, since for typical practical systems N is
fairly large and outage is the dominant error event when using
an actual code. Let p(h) denote the transmission power at chan-
nel state h. Then the maximum achievable rate at each block is
the capacity of Gaussian channel with received power hp(h),
and is denoted as R[hp(h)], where

R[P ] =
1

2
log2

(

1 +
P

σ2

)

. (1)

Therefore, the resource allocation problem requires finding
only the optimum power allocation p∗(h). Under the assump-
tion of the ergodicity of fading process, the time average rate
of the system can be characterized by the expected rate. There-
fore, given the average power Pav, the basic service rate ro, and
the allowable service outage probability ε, we wish to maximize
the expected code rate, as follows:

R∗ = max
p(h)

Eh {R[hp(h)]} (2)

subject to: Eh {p(h)} ≤ Pav (2a)

p(h) ≥ 0 (2b)

Pr{R[hp(h)] < ro} ≤ ε . (2c)

In the absence of the service outage constraint (2c), R∗

would be the ergodic capacity for the fading channel, and the
well known water filling allocation [7, 8] would be the corre-
sponding optimum power assignment.

III. OPTIMUM POWER AND RATE ALLOCATION

In this section, we derive an optimum power allocation
p∗(h) for problem (2). The difficulty in deriving p∗(h) is pri-
marily due to the probabilistic nature of the constraint (2c).
Here, we show how an optimum power allocation can be de-
rived based on a problem analogous to (2) with a determin-
istic constraint on the assigned rate. Given a basic service
rate ro and a power policy p(h), the service set is defined
as Hs(p(h)) = {h|R[hp(h)] ≥ ro}, and the outage set is
Ho(p(h)) = {h|R[hp(h)] < ro}.

Our approach will be to show that there is an optimal solution
to problem (2) with a particular form of a service set. Prior to
showing this, we solve the following subproblem in which it is
required that the service set contains an arbitrary set Ha.

R∗(Ha) = max
p(h)

Eh {R[hp(h)]} (3)

subject to: Eh {p(h)} ≤ Pav (3a)

p(h) ≥ 0 (3b)

R[hp(h)] ≥ ro h ∈ Ha . (3c)

Let p∗(h,Ha) denote an optimum solution to problem (3).
Therefore, p∗(h,Ha) achieves the highest average rate among
all the schemes whose service set contains Ha.

Problem (3) does not necessarily have a solution for a given
(Pav , ro,Ha). Constraint (3c) implies that a feasible allocation
p(h) must satisfy

p(h) ≥ σ2(22ro − 1)

h
h ∈ Ha . (4)

This implies that the minimum average power needed to meet
the constraint (3c) for a given (ro,Ha) is

Pmin(ro,Ha) =

∫

Ha

σ2(22ro − 1)

h
f(h) dh . (5)

Consequently, problem (3) has a solution only if Pav ≥
Pmin(ro,Ha). When Pav = Pmin(ro,Ha) the corresponding
power allocation is the on-off channel inversion policy

p∗(h,Ha) =







σ2(22ro − 1)

h
h ∈ Ha ,

0 otherwise .
(6)

When Pav > Pmin(ro,Ha) the corresponding power allocation
is given by the following theorem. We use the notation (x)+ =
max(x, 0).

Theorem 1 When Pav > Pmin(ro,Ha) the optimum solution
for problem (3) is:

p∗(h,Ha) =















σ2(22ro − 1)

h
h ∈ Ha ∩

{

h ≤ h02
2ro

}

,

σ2

(

1

h0
− 1

h

)+

otherwise .

(7)
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where h0 is the solution of Eh {p∗(h,Ha)} = Pav.

Theorem 1 follows from standard variational arguments; the
proof appears in the Appendix. Note that when Pav =
Pmin(ro,Ha) the resulting power allocation (6) can be viewed
as a limiting case of expression (7) as h0 → ∞. The power allo-
cation p∗(h,Ha) is a combination of channel inversion and wa-
ter filling allocations. To obtain a high average rate, we would
like to allocate power in the form of the water filling alloca-
tion, while to meet the service constraint (3c), we must allocate
power no less than the channel inversion allocation within the
set Ha. The solution p∗(h,Ha) balances these two factors.

To characterize the solution to the optimization problem (2),
we define hε as the solution to F (hε) = ε. The threshold hε

partitions the channels into a set Hε = {h ≥ hε} of good chan-
nels and the complementary set Hε = {h < hε} of bad chan-
nels. In the following, we show that the solution of (3) with
Ha = Hε, specifically p∗(h) = p∗(h,Hε), is an optimum solu-
tion of problem (2). In order to prove this, we define the partial
ordering ≺ and show a number of preliminary results.

Definition 1 H1 ≺ H2 if h1 < h2 for all h1 ∈ H1 and h2 ∈
H2.

Theorem 2 Problem (2) has an optimal solution p∗(h) with the
outage set Ho(p

∗(h)) and the service set Hs(p
∗(h)) satisfying

Ho(p
∗(h)) ≺ Hs(p

∗(h)).

Theorem 2 shows that there exists an optimum power allocation
such that the outage occurs when the channel state is worse than
a particular threshold. Proof of Theorem 2 involves a some-
what complicated two-step construction and is deferred to Sec-
tion IV.

Using Theorem 2 and the fact that Pr{Hs(p
∗(h))} ≥ 1 − ε

by constraint (2c), it is easy to show the following corollary.

Corollary 1 Problem (2) has an optimum solution p∗(h) such
that Hε ⊆ Hs(p

∗(h)).

Now we can prove p∗(h) = p∗(h,Hε) by showing that
R∗ = R∗(Hε). With Ha = Hε in the outage constraint (3c),
the service set of p∗(h,Hε) must contain Hε. Thus p∗(h,Hε)
satisfies the outage constraint (2c) and is a feasible power al-
location scheme for problem (2), implying R∗(Hε) ≤ R∗. On
the other hand, Corollary 1 implies that problem (2) has an opti-
mal solution p∗(h) achieving an average rate of R∗ that satisfies
constraint (3c) with Ha = Hε. Thus, p∗(h) is a feasible power
allocation scheme for problem (3) and R∗ ≤ R∗(Hε). Conse-
quently, R∗ = R∗(Hε). In conclusion, an optimum solution
is p∗(h) = p∗(h,Hε) and the following conclusions apply to
problem (2).

• Problem (2) is feasible if only if (Pav, ro, ε) satisfies

Pav ≥ Pmin(ro,Hε) =

∫ ∞

hε

σ2(22ro − 1)

h
f(h) dh , (8)

• When Pav = Pmin(ro,Hε) we have

p∗(h) =







σ2(22ro − 1)

h
h ≥ hε ,

0 h < hε .
(9)

• When Pav > Pmin(ro,Hε), we can apply Theorem 1 with
Ha = Hε yielding an optimum solution to problem (2) of
the form

p∗(h) =















σ2(22ro − 1)

h
hε ≤ h ≤ min{hε, h

∗
02

2ro} ,

σ2

(

1

h∗
0

− 1

h

)+

otherwise ,

(10)
where h∗

0 is the solution of Eh {p∗(h)} = Pav. As Pav ap-
proaches Pmin(ro,Hε), h∗

0 → ∞ and the power allocation
(10) will reduce to the on-off channel inversion allocation
(9).

IV. OPTIMUM SERVICE SETS

In this section, we will prove Theorem 2, which implies that
we can find an optimal solution whose service set Hs(p

∗(h))
includes the good channel states Hε. Our approach will be to
show that given an arbitrary feasible power allocation scheme
p̂(h), we can always construct a better scheme p′′(h) which
satisfies Ho(p

′′(h)) ≺ Hs(p
′′(h)). This implies that there is

an optimum power allocation scheme p∗(h) with Ho(p
∗(h)) ≺

Hs(p
∗(h)).

Let Ĥs denote the service set and R̂ the average rate for the
policy p̂(h). Feasibility of p̂(h) implies Eh {p̂(h)} ≤ Pav and
Pr{Ĥs} ≥ 1 − ε. We use a two-step construction. First, we
construct p′(h) from p̂(h) by setting Ha = Ĥs in problem (3),
yielding the solution

p′(h) = p∗(h, Ĥs)

=















σ2(22ro − 1)

h
h ∈ Ĥs ∩

{

h < h′
02

2ro
}

,

σ2

(

1

h′
0

− 1

h

)+

otherwise .

(11)

where h′
0 is the solution of Eh{p∗(h, Ĥs)} = Pav. Here in the

case of Pav = Pmin(ro, Ĥs), p′(h) can be expressed by (11) as
h′

0 → ∞. Clearly, p′(h) is feasible and achieves a higher aver-
age rate than p̂(h). Second, we construct p′′(h) by decompos-
ing p′(h) into a water filling component and a residual power
component. Given h′

0, we define the following functions over
the whole channel state space:

p′wf(h) = σ2

(

1

h′
0

− 1

h

)+

0 ≤ h ≤ ∞ , (12)

p′res(h) =

(

σ2(22ro − 1)

h
− p′wf(h)

)+

0 ≤ h ≤ ∞ .

(13)

The function p′wf(h) is a water filling allocation over the whole
channel space. The function p′

res(h) is the nonnegative differ-
ence of channel inversion and water filling allocations.

From (11), we observe that water filling alone meets the ser-
vice condition R[hp′(h)] ≥ ro over the set of channel states

H′

wf =
{

h|h ≥ h′

02
2ro

}

. (14)
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R(hp(h))^

r0

h

service set

p (h)

h0

hh 20

2r0

residual power water filling power

h0

h
h 20

2r0

residual power water filling powerp (h)

(a)

(b)

(c)

Fig. 1. (a) Rate allocation R[hp̂(h)] for policy p̂(h), (b) the improved
policy p′(h) given by (16) with water filling p′

wf
(h) and residual power

1 (h ∈ H′

inv
)p′

res(h), (c) the new policy p′′(h) given by (17) with water
filling p′

wf
(h) and residual power 1 (h ∈ H′′

inv
)p′

res(h).

In particular, p′res(h) = 0 for h ∈ H′
wf while residual power

p′res(h) > 0 is needed to meet the service condition over the
channel inversion set

H′

inv = Ĥs\H′

wf . (15)

Thus, in terms of the indicator function 1 (x) such that 1 (x) =
1 when x is true, and 0 otherwise, p′(h) can be rewritten in the
form

p′(h) = p′wf(h) + 1 (h ∈ H′

inv)p
′

res(h) . (16)

Here, we call 1 (h ∈ H′
inv)p

′
res(h) the residual power allocation

for p′(h). As shown in Figure 1, p′(h) can be viewed as a two-
layer allocation: the first layer is the water filling allocation over
the whole channel space and the second layer is the residual
power allocation over H′

inv.
Based on p′(h), we construct p′′(h) by preserving the first

layer water filling allocation and redistributing the residual
power. Intuitively, the best allocation scheme for the residual
power is to allocate it to the good channel states. Since p′

res(h)
is strictly positive within 0 ≤ h < h′

02
2ro , we will allocate the

residual power over the interval [h′
b, h

′
02

2ro ] where h′
b is chosen

to consume the total residual power. As shown in Figure 1, we
have

p′′(h) = p′wf(h) + 1 (h ∈ H′′

inv)p
′

res(h) . (17)

where

H′′

inv =
{

h′

b ≤ h < h′

02
2ro

}

, (18)

and h′
b is the solution to

∫

H′′

inv

p′res(h)f(h) dh =

∫

H′

inv

p′res(h)f(h) dh . (19)

Note that (16), (17), and (19) imply that p′′(h) has the same
total power as p′(h).

Let R′ and R′′ denote the average rates for p′(h) and p′′(h),
respectively. The following lemma gives us the properties of
p′′(h).

Lemma 1 The power scheme p′′(h) has the following proper-
ties:
(a) Eh {p′′(h)} = Eh {p′(h)} = Pav

(b) Ho(p
′′(h)) ≺ Hs(p

′′(h))
(c) R′′ ≥ R′

(d) Pr{Hs(p
′′(h))} ≥ Pr{Hs(p

′(h))}.

Proof of Lemma 1 is given in Appendix . Hence, we summarize
the proof:

1) Start with arbitrary p̂(h) with average rate R̂ and service
set Ĥs.

2) Set Ha = Ĥs and solve (3) yielding p′(h) with rate R′ ≥
R̂ and service set Hs(p

′(h)) containing Ĥs.
3) Decompose p′(h) into water filling p′wf(h) and residual

power components 1 (h ∈ H′
inv)p

′
res(h).

4) Fix the water filling component p′wf(h) and reallocate
the residual power to generate p′′(h). The power pol-
icy p′′(h) satisfies Pr{Hs(p

′′(h))} ≥ Pr{Hs(p
′(h))} and

R′′ ≥ R′. Hence, p′′(h) is a better power allocation
scheme than p′(h) for problem (2).

We can conclude that from any feasible p̂(h) we can ob-
tain a better power allocation p′′(h) in which Ho(p

′′(h)) ≺
Hs(p

′′(h)) holds. This implies that problem (2) has an opti-
mum solution p∗(h) satisfying Ho(p

∗(h)) ≺ Hs(p
∗(h)).

V. PROPERTIES OF THE OPTIMUM POLICY

In Section III, we derived the optimum allocation scheme
for problem (2). In this section, we will discuss this optimum
solution, and show how problem (2) in this paper is related to
the capacity versus outage probability problem.

The optimum power allocation scheme (10) includes a com-
bination of channel inversion and water filling. For a given
probability distribution f(h), the optimum solution belongs to
one of the following possible types depending on the value of
(Pav, ro, ε):1

I When Pav = Pmin(ro,Hε), p∗(h) includes no transmis-
sion for h < hε and channel inversion for h ≥ hε.

II When Pav > Pmin(ro,Hε) but hε ≤ h∗
0, p∗(h) includes

no transmission for h < hε, channel inversion for hε ≤
h < h∗

02
2ro , and water filling for h ≥ h∗

02
2ro .

III When Pav is sufficiently high such that hε2
−2ro < h∗

0 <
hε, p∗(h) includes no transmission for h < h∗

0, water fill-
ing for h∗

0 ≤ h < hε, channel inversion for hε ≤ h <
h∗

02
2ro , and water filling for h ≥ h∗

02
2ro .

1In the case of ro = 0 or ε = 1, the solution types II and III will degenerate
into solution type IV, which is the pure water filling allocation.
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Fig. 2. For optimum solution types I-IV, power policies are given on the left
and corresponding rate allocation are on the right.

IV When Pav is high enough for h∗
0 ≤ hε2

−2ro , p∗(h) is just
the water filling allocation.

These four types of power allocation schemes as well as
the corresponding rate allocations are depicted in Figure 2.
For solution types I, II, and III, the optimum service set is
Hs(p

∗(h)) = Hε and the resulting outage probability is ε, while
for type IV solution Hε ⊆ Hs(p

∗(h)) and the resulting outage
probability is less than ε. Type I solution is the on-off channel
inversion allocation. In this case, we have just enough average
power to satisfy the service outage constraint. When we have
extra power beyond Pmin(ro,Hε), we can allocate the power
in a more efficient way to obtain a higher average rate and, at
the same time, to meet the service outage constraint. When
Pav is sufficiently high for the water filling allocation to satisfy
the service outage constraint, then it must also be the optimum
solution for problem (2). Thus, for a given pair (ro, ε), the opti-
mum power allocation scheme gradually changes from the on-
off channel inversion allocation to the water filling allocation as
Pav increases.

Now we examine the connection of the service outage prob-
lem with the outage capacity in [10] and the ergodic capacity
in [4]. The outage capacity Cε(Pav) in [10] specifies the maxi-
mum supportable rate for a given average power Pav with out-
age probability ε, which implies that the basic service rate in
this work must satisfy ro ≤ Cε(Pav). It is easy to see that the
above condition is equivalent to the feasibility condition (8),
that is, Pav ≥ Pmin(ro,Hε). Furthermore, we can see that the
resulting average rate R∗ changes from ro(1− ε) to the ergodic
capacity with increasing Pav for a given (ro, ε). In Fig 3, the ex-
pected rate achieved by the service outage approach is plotted
against the ergodic capacity and the outage capacity in Rayleigh
fading channel with normalized mean for channel gain and nor-
malized noise variance. As we can see, for a given outage prob-
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Fig. 3. Comparison of service outage approach with other capacity notions in
the Rayleigh fading channel, for a fixed ε = 0.01.
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Fig. 4. Outage probability achieved by the water filling allocation for different
basic rate r0.

ability ε = 0.01, the outage capacity has nearly a 5 dB loss
in average power compared to the ergodic capacity for a given
rate. Between the outage capacity and the ergodic capacity, a
number of service outage approaches with different basic rates
exist. The outage probability for different r0 achieved by the
water filling allocation is also plotted against the service outage
approach with a given ε = 0.01 in Fig 4. It can be observed
that, for a range of Pav, the service outage approach achieves
a rate very close to the ergodic capacity, and at the same time
significantly reduces the outage probability. Hence, the service
outage approach strikes good balance between average rate and
outage probability.

APPENDIX

Proof: Theorem 1 When Pav ≥ Pmin(ro,Ha), problem (3) is
feasible and can be, equivalently, translated into the following
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problem:

max
p(h)

Eh {R[hp(h)]} (20)

subject to Eh {p(h)} = Pav (20a)

p(h) ≥ 0 (20b)

p(h) ≥ σ2(22ro − 1)

h
h ∈ Ha . (20b)

This is a standard variational optimization problem [14]. The
objective function is concave on p(h) and the constraints are
linear functions of p(h). Then p∗(h,Ha) is the optimum solu-
tion iff it satisfies the the Kuhn-Tucker conditions [15]. Using
a Lagrange multiplier h0

2log(2)σ2 > 0, we define

g(p(h), h, h0) =

[

R[hp(h)] − h0

2 log(2)σ2
p(h)

]

f(h) . (21)

Let H denote the set with non-boundary points as

H =

{

h ∈ Ha

∣

∣

∣

∣

p∗(h,Ha) >
σ2(22ro − 1)

h

}

∪{h /∈ Ha|p∗(h,Ha) > 0} . (22)

It is easy to verify that when h ∈ H the p∗(h,Ha) satisfies

dg(p∗(h,Ha), h, h0)

dp∗(h,Ha)
= 0, (23)

otherwise the p∗(h,Ha) satisfies

dg(p∗(h,Ha), h, h0)

dp∗(h,Ha)
≤ 0. (24)

Therefore, the p∗(h,Ha) is the optimum solution. 2

Proof: Lemma 1 Power schemes p′(h) and p′′(h) differ in the
allocation of the residual power. In order to show that p′′(h)
allocates the residual power in a better way than p′(h), we de-
fine the following power efficiency function for p′

res(h) over its
strictly positive space.

Definition 2 The power efficiency function η(h) for p′
res(h) is

η(h) =
ro − R[hp′wf(h)]

p′res(h)
0 ≤ h < h′

02
2ro . (25)

The power efficiency function indicates the rate increment cor-
responding to a unit power assigned from p′

res(h). We have the
following property for η(h).

Proposition 1 The power efficiency function η(h) is a strictly
increasing function of h over the interval 0 ≤ h < h′

02
2ro .

Proof: Proposition 1 We consider the cases h ≤ h′
0 and h ≥

h′
0 separately. For h ≤ h′

0, we have p′wf(h) = 0 and

η(h) =
hro

σ2(22ro − 1)
, (26)

which is an increasing function of h.

For h ≥ h′
0, (12), (13), and (25) imply

η(h) =
ro − (1/2) log2(h/h′

0)

σ2
(

22ro

h
− 1

h′

0

) . (27)

We define u(h) = ro−1/2 log2(h/h′
0), so that η(h) = η̂(u(h))

where

η̂(u) =
h′

0

σ2

u

22u − 1
(28)

It is straightforward to verify that η̂(u) is a strictly decreasing
function of u for u ≥ 0. Since u(h) is a strictly decreasing
function of h and u(h) ≥ 0 when h ≤ h′

02
2ro , it follows that

η(h) is an increasing function of h for h′
0 ≤ h ≤ h′

02
2ro . 2

We also employ the following proposition for the proof of
Lemma 1.

Proposition 2 For disjoint sets Ψ′ and Ψ′′, let f(x) be an ar-
bitrary function such that f(x′′) ≥ f(x′) for all x′′ ∈ Ψ′′

and x′ ∈ Ψ′. For any nonnegative function g(x) satisfy-
ing

∫

Ψ′′
g(x)dx =

∫

Ψ′
g(x)dx, we have

∫

Ψ′′
f(x)g(x)dx ≥

∫

Ψ′
f(x)g(x)dx.

With these preliminaries, we now verify the claims of
Lemma 1.

(a) Equations (16), (17), and (19) imply Eh {p′′(h)} =
Eh {p′(h)} = Pav.

(b) From equations (17) and (18), the service and out-
age sets of p′′(h) are Hs(p

′′(h)) = {h|h ≥ h′

b} and
Ho(p

′′(h)) = {h|h < h′
b} respectively. Therefore,

Ho(p
′′(h)) ≺ Hs(p

′′(h)).
(c) Let Ψ = H′

inv ∩ H′′
inv so that Ψ′ = H′

inv\Ψ and
Ψ′′ = H′′

inv\Ψ are two disjoint sets and nonempty when
p′′(h) 6= p′(h). The average rate of p′(h) can be ex-
pressed as

R′ =

∫ ∞

0

R[hp′wf(h)]f(h) dh

+

∫

H′

inv

(ro − R[hp′wf(h)])f(h) dh . (29)

The rate contribution of the water filling component is

Rwf =

∫ ∞

0

R[hp′wf(h)]f(h) dh . (30)

Since H′
inv = Ψ ∪ Ψ′, Definition 2 for the efficiency

function η(h) allows us to write

R′ = Rwf +

∫

H′

inv

η(h)p′res(h)f(h) dh (31)

= Rwf +

∫

Ψ

η(h)p′res(h)f(h) dh

+

∫

Ψ′

η(h)p′res(h)f(h) dh . (32)

Similarly, H′′
inv = Ψ ∪ Ψ′′, so the average rate for p′′(h)

can be expressed as

R′′ = Rwf +

∫

Ψ

η(h)p′res(h)f(h) dh

+

∫

Ψ′′

η(h)p′res(h)f(h) dh . (33)
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Thus,

R′′ − R′ =

∫

Ψ′′

η(h)p′res(h)f(h) dh

−
∫

Ψ′

η(h)p′res(h)f(h) dh . (34)

Note that the construction ofH′′
inv implies Ψ′ ≺ Ψ′′. That

is, h′′ ≥ h′ for any h′′ ∈ Ψ′′ and h′ ∈ Ψ′. By Proposition
1, η(h) is a strictly increasing function of h for 0 ≤ h <
h′

02
2ro . Thus, η(h′′) ≥ η(h′). Furthermore, equation

(19) implies
∫

Ψ′′

p′res(h)f(h) dh =

∫

Ψ′

p′res(h)f(h) dh . (35)

Therefore, the conditions of Proposition 2 are satisfied
and we have R′′ ≥ R′.

(d) From equations (11), (15), (17) and (18), the service sets
Hs(p

′(h)) and Hs(p
′′(h)) are disjoint unions given by

Hs(p
′(h)) = H′

wf ∪ H′

inv = H′

wf ∪ Ψ ∪ Ψ′ , (36)

Hs(p
′′(h)) = H′

wf ∪ H′′

inv = H′

wf ∪ Ψ ∪ Ψ′′ . (37)

This implies

Pr{Hs(p
′′(h))} − Pr{Hs(p

′(h))} (38)

= Pr{Ψ′′} − Pr{Ψ′} (39)

=

∫

Ψ′′

1

p′res(h)
p′res(h)f(h) dh

−
∫

Ψ′

1

p′res(h)
p′res(h)f(h) dh . (40)

From equations (12) and (13), we observe that 1/p′
res(h)

is a increasing function of h. Since Ψ′ ≺ Ψ′′, Proposition
2 implies Pr{Hs(p

′′(h))} ≥ Pr{Hs(p
′(h))}.

2

REFERENCES

[1] S. Nanda, K. Balachandran, and S. Kumar, “Adaptation techniques in
wireless packet data services”, IEEE Communications Magazine, vol. 38,
no. 1, pp. 54–64, Jan. 2000.

[2] ETSI, “General Packet Radio Service(GPRS); Mobile Station (MS)-
Base Station System(BSS) Interface; Radio Link Control/Medium Access
Control (RLC/MAC) Protocol (GSM 04.60)”, Tech. Spec., vol. 8, no. 1,
Nov. 1999.

[3] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and
A. Viterbi, “CDMA/HDR: A Bandwidth-Efficient High-Speed Wireless
Data Service for Nomadic Users”, IEEE Communications Magazine, vol.
38, no. 7, pp. 70–77, July 2000.

[4] A. J. Goldsmith and P. Varaiya, “Capacity of fading channels with channel
side information”, IEEE Transactions on Information Theory, vol. 43, no.
6, pp. 1986–1992, Nov. 1997.

[5] S. V. Hanly and D. N. C. Tse, “Multiaccess fading channels: part II:
Delay-limited capacities”, IEEE Transactions on Information Theory,
vol. 44, no. 7, pp. 2816–2831, Nov. 1997.

[6] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-
theoretic and communications aspects”, IEEE Transactions on Informa-
tion Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[7] R. Gallager, Information Theory and Reliable Communication, John
Wiley and Sons, 1968.

[8] T. Cover and J. Thomas, Elements of Information Theory, John Wiley
Sons, Inc., 1991.

[9] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic con-
siderations for cellular mobile radio”, IEEE Transactions on Vehicular
Technology, vol. 43, no. 2, pp. 359–378, May 1994.

[10] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over fad-
ing channels”, IEEE Transactions on Information Theory, vol. 45, no. 5,
pp. 1468–1489, July 1999.

[11] R. Negi, M. Charikar, and J. Cioffi, “Minimum outage transmission over
fading channel with delay constraint”, in Proc. of the IEEE International
Communication Conference(ICC’99), pp. 282–286, June 2000.
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