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Abstract—The optimum receiver to detect the bits of multiple at the receiver [1]. The MMSE receiver [4] gives the minimum

code-divison multiple access (CDMA) users has exponential com- mean squared error between the filter output and the transmitted

plexity in the number of active users in the system. Consequently, nit and also maximizes the output signal-to-interference ratio.
many suboptimum receivers have been developed to achieve goocg

performance with less complexity. In this paper, we take the ap- .Oth Qetectors arg optimum when no noise is present. Deci-
proach of approximating the solution of the optimum multiuser ~Sion-directed nonlinear detectors that generally result in lower
detection problem (OMUD) using nonlinear programming relax-  bit error rates (BERs) have been proposed in [5] and [6]. The
ations. First, we observe that some popular suboptimum receivers decorrelating decision feedback detector [6] cancels the inter-
indeed correspond to relaxations of the optimal detection problem. ference from the users that have already been decoded, and sup-
In particular, one proposed approximation method yields to itera- . ’

tive solutions which correspond to previously proposed heuristic presse; |nterferenge from _usgrs that have not yet been decoc!ed,
nonlinear detectors. Using a nonlinear programming approach7 to 0bta|n the dECISIon statistic fOI‘ the current user. The mu|t|'
we identify the convergence properties of these iterative detectors. stage detector [7] uses the previous stage bit estimates of all in-
Secondly, we propose a relaxation that yields a receiver which we terferers to reconstruct and cancel the interference to the current
call the generalizedminimum mean squared error detector. We ;ser i the current stage. The interference canceler in [8] sub-
give a simple iterative implementation of the detector. Its perfor- tracts the interference estimate of the previously decoded users

mance is evaluated and comparisons to other suboptimum detec- : -
tion schemes are given. from the matched filter output for the current user and uses this

Index Terms—Approximation algorithms, code division multiple deCISIOn. St"?ms“? to deche the bit of the Currer\t user. .
access (CDMA), interference cancellation, multiuser detection, ~OUr @im in this study is to approach the optimum multiuser

nonlinear programming. detection problem from a nonlinear programming point of view.
The original optimum multiuser detection problem (OMUD) is
a 0-1 quadratic program for which there exists no efficient al-
gorithm. The general approach in the presence of such hardship
T HAS been long known that theear—farproblem of mul- is to approximate the solution by working on easierproblem
tiuser code-divison multiple access (CDMA) systems is ntttat can be solved efficiently. The easier problem to be solved
inherent to the code-division access method but to the fact timarelaxationof the original problem. The relaxed solution is
the matched filter receiver designed for a single-user Gaussthan mapped to the solution set of the original problem, ideally
channel is not optimum for the multiple-user CDMA channedrriving at a near-optimum solution. For the multiuser detection
[1]. Further, optimum detection of multiple users’ bits has begroblem, a relaxation corresponds to a near-optimum multiuser
shown to be an NP hard problem [2]. This observation resultdétector.
in the development of many suboptimum receivers that haveUsing a nonlinear programming approach, we observe that
reasonable complexity with near-optimum performance [3]-[6§ome popular suboptimum detectors are relaxed solutions,
These suboptimum receivers have been motivated by severalicei, approximations to the optimum detection problem. This
teria. Among the most popular linear detectors are the decorapproach helps us understand the previously unidentified
lator [3] and the minimum mean squared error (MMSE) receivepnvergence properties of some known iterative nonlinear
[4]. The decorrelator suppresses the multiple access interferedetectors. Furthermore, a new relaxation method is proposed
(MAI) totally while enhancing the Gaussian noise and is the ofhat results in a simple iterative detector whose performance is
timum detector if the received powers of the users are unknowren evaluated.
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the additive white Gaussian noise (AWGN) process with pow
spectral density?. The matched filter output of theh user is
given byy; = ij r(t)s;(t)dt. The received signal vector at the
output of the matched filterg, is a sufficient statistic for the
multiuser detection problem and is given by

y=TAa+n (2)

whereI' is the nonnegative definite cross-correlation matri
with I';; = fOT si(t)s;(t) dt, A is a diagonal matrix containing
the users’ received amplitudés; = ,/g; , a is the vector con-
taining the information bits of the users, ands a zero mean
Gaussian random vector with auto covariance matfixn '] =
a°T.

The aim of multiuser detection is to recover the informatio
bits, a. The solution of the OMUD problem [1], [3], [9] em-
ploys maximume-likelihood estimation. The optimum estimate

for the bit vector isz*, if &* minimizes the cost function which _Fig. 1. Re|a>.<ed const_raintsets for the two-user system which yieldth_e follow-
ing detectors: |—soft interference canceler (Section IW))l+—generalized

is quadratic ina. Specifically, MMSE (Section V), #I1+1ll—decorrelator (Section I11).
* : T T
@ T ae{lﬂﬂ}fv @ Ra—2a Ay 3) laxation to contain the feasible set of the original problem. The

solution can then be mapped to the feasible set of the original

\t/)vhereﬁ = ATA \t’:"t?th“ :t \/(7\/?:%61;{] ?Ithoug”h it has problem by taking the sign of each component of the relaxed
een snown recently that certain spe ructures allow con- o, j1ion vector (since bits are equiprobabiy).

struction of polynomial time algorithms to find the optimum so-

lution [10], [11], the problem for general correlation matrices

remains NP hard and one can find the optimaranly by an

exhaustive search @ candidate vectors [2]. We first consider the simplest relaxation, where the feasible
It is interesting to note that this model can also be applied $6t is relaxed to contain th€ dimensional spac&”

detection on a multiple bit window in an asynchronous CDMA . T T

system with multipath fading [12]. If the arrival times of tiie Juin a Ra—2a Ay. )

propagation paths are known, it is sufficient to observe the OLiII;]. . . .
. is relaxation effectively removes the constraints and converts
puts of theV x L matched filters for all paths of all users over

the length of the window. Recently, it has also been shown t th{a discrete optimization problem into a continuous one. Since

. ] eI cost function is convex in its variable, this problem has a

when antenna arrays are employed at the receiver, the sufficien L
L : ; . ! tnique minimum

statistics are obtained by passing the received signal throug
beamformers directed to each path of each user and finally com- a=R'Ay=A"'T 'y=a+ AT 'n (5)
bining them with a bank ofV RAKE combiners [13]. For each _ _ _ _
of these models, with careful definition of cross correlations bdaking the sign of the solution vector yields the well-known
tween the signatures of all users over the multiple bit windowdecorrelating detectof3]. Note that, due to the sign operation,
one can construct the correspondiignatrix and the optimum the detector is insensitive to signal amplitudes, i.e., the bit esti-
detection problem can be shown to be of the form of (3); se®ate resulting frona is the same as that &a = I' 'y.
for example, [13, eq. (19)]. Thus, the methodology and the re-
sulting algorithms we use in this work remain valid for the most IV. SOFT INTERFERENCECANCELLATION

general model. _ _ The constraint set of the optimum multiuser detection
In this work, we will concentrate on cases where the signgroblem (3) consists of the corner points of the unit hypercube.

tures of the users are linearly independent Enahd henceR  ap, effective approximation method is to relax the constraint set

are positive definite. In this case, the objective function in (3 cover the whole hypercube and use nonlinear programming

is strictly convex ina and has a well-defined unique minimizery|gorithms to find the solution of the new convex programming
over a convex set [14]. Thus, we can find solutions by reIaX|rrgob|em [15]. The relaxed problem is

the constraint set—which in the original problem contains only

the corners of the unit hypercube—such that the resulting “re- a* =arg min e Ra—2a' Ay. (6)
laxed” constraint set is convex. Fig. 1 shows the different re- acl-L Y

laxed constraint sets for the two-user case. Three basic relBoth the cost function and the constraint set in (6) are convex.
ations that we will consider in the sequel are: relaxation of tAéhus, (6) has a unique minimum. However, the optimum
constraint set to the whole unit hypercube (region I), relaxatigroint does not have a closed form and one should use iterative
of the constraint set to the sphere which covers the unit hypenethods to find the solution. One class of iterative methods that
cube (regions+ll), and relaxation to the whole space (regionsan be used is the class of constrained gradient methods. Fur-
[+114111). Note that we require the constraint set for each reher, the simplicity of the constraint set, i.e., the fact that it has

I1l. D ECORRELATOR
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Fig. 2. Successive soft interference canceler; see (9) and (11).

a Cartesian product form, enables us to define special iterative
projection algorithms [14]. In particular, the following two al-
gorithms, thenonlinear Gauss—Seidahd thenonlinear Jacobi
algorithms, respectively, converge to the minimum of (6) under
certain conditions. Leg(ay, ..., ay) = a' Ra — 2a' Ay
denote the function to be minimized. In the Gauss—Seidel
iteration,a;(t + 1) is found by

a,(t+l)

a(t+l)

a;(t+1) =arg min 1g(al(t +1), .., a1(E+ 1), x, a (t+1)

zc[—1,1
ai-l-l(t)v (R aN(t)) (7)

while in the Jacobi iteration; (¢ + 1) is found by a(t+1)

ai(t+1) =arg min glai(t), ..., a;—1(t), =,
zC[—1,1]

a7;+1(t), ey CLN(t)) (8)

. . _ Lo onto[—1, 1]. The difference between the two is that while the
rgspectlve!y,_where IS th_e stage (|tgrat|on) index. Bath a.lgo'Gauss—Seidel algorithm uses the available current stage esti-
nthms optimize one variable at a time to get to the qumum tes of the users, i.e., feedback from a group of users whose
point of (6); however, .(7) uses the current stgge estlmatgsbq? estimates are already computed, the Jacobi algorithm uses
some of the USErs while (8) aI_Iovv_s a parallel |mplementat|08h|y bit estimates from the previous stage. In multiuser detec-
Throug_h a s_tra|ght_forward derlvqtlon, it can be shoyvn that ﬂ?l%n terms, the nonlinear Gauss—Seidel algorithm corresponds
above |terat|on§ yield the following two-s.tep .algorl|thms. quo thesuccessive soft interference cancglég. 2), whereas the
each uset, the first step for the Gauss—Seidel iteration is nonlinear Jacobi algorithm corresponds to plagallel soft in-

ie1 terference cancelgfFig. 3).
(t+1)= L Yi — Z V@i Ujiai(t+1) In the following, we establish the convergence ofthese two al-
Va i=1 gorithms. For that, we use results from [14] and omit the proofs
here. First, we state the following theorem for the convergence
N of the nonlinear Gauss—Seidel algorithm.
- Z Va5 Ljia;(t) 9) Theorem 1 [14, Proposition 3.9 of Sect. 3.3puppose that
j=itl g: RY — R is continuously differentiable and convex on the
and the first step for the Jacobi iteration is setX whereX is a Cartesian product of sels; and eachX;
is a closed convex subset &":. Furthermore, suppose that,

Fig. 3. Parallel soft interference canceler; see (10) and (11).

N for eachi, g is a strictly convex function of;, when the values
Ht+1) = 7z \¥ > VaGTiai(t) | . (10) of the other components afare held constant. Lei(t) be the
! J=1,j#i sequence generated by the nonlinear Gauss—Seidel algorithm,

assumed to be well defined. Then every limit poink6f) min-

The second step for both algorithms is o
imizesg over X.

-1, 2t+1) < —1 In our caseg(a) = a' Ra — 2a' Ay, and for a positive defi-
a(t+1) =< #t+1), —1<a(t+1<1 (11) niteI’, the functiong(a) is convex ina and is strictly convex in
R each variabler; when the values of the other components of
1, #t+1) > 1.

are held constant. The convex sét= [-1, 1]V isin Cartesian

At each stage, to get the estimate of each user’s bit, both peeduct form. The convexity of(a) ensures the uniqueness of
ceivers use soft estimates of the bits to reconstruct the interfdre convergence point which is the global minimum. The fol-
ence and subtract this estimate from the user’'s matched filtlewing corollary states the convergence condition for the suc-
output, scale the result by the amplitude of the user, and projeessive soft interference canceler.
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Corollary 1: For a CDMA system with linearly independent Proof—Lemma 1:Using the definition of the block max-
signature sequences, the nonlinear Gauss—Seidel algorithm {tmem norm, it can be shown that, for a sufficiently smgl(14)
successive soft interference canceler) always converges toithequivalent to
minimizer of (6).

Theorem 1 shows that the nature of the problem at hand gives

ws
us the convergence of the Gauss—Seidel algorithm without any ~ ™&* (1= 2vRii) + 29 Z | 751 jz <1 (19
further restrictions. Unfortunately, this is not the case for the i

Jacobi algorithm. Convergence of the parallel soft interferenggich is satisfied iff

canceler can be guaranteed under certain contraction assump- ws

tions as indicated by the following theorem. We first state the —Rii+ Y |Ryl j <0 foralls. (7)

theorem and then derive the conditions for it to hold. J#i
Theorem 2 [14, Proposition 3.10, Sect. 3.dlet g: RY —  gypstitutinaR.: = /o . /7T, | ind.. —
_ _ ( LEL i = /% /3; I';; into (17) and notind”;; = 1,
R be continuously differentiable, letbe a positive scalar, andye 5rrive a(“:'R = VEVGT 17 ¢
suppose that the mappirig X — R, defined byZ(z) =

x — vVg(x), is a contraction with respect to the block max- Z Iy Y LY 1 foralli. (18)
imum norm||z||%, = max; ||z;|; /w;, where eacH-||; is the Eu- o V% Wi

clidean norm orR™ and eachw; is a positive scalar. Then, there . S _ _
exists a unique vectat* which minimizesg over X. Further- Letw; = w;,/g;". Using the definition ofl", (18) is equivalent
more, the sequence(t) generated by either the Gauss—Seid&P

or the Jacobi algorithms convergestbgeometrically. Hwa <1 (19)
For our problemg(z) = " Rz — 2z " Ay andT(x) is given oo
by Finally, [14, Sect. 2.6, Corollary 6.2] states that (19) is satisfied
iff p(T') < 1, completing the proof. O

T(x) =z —v(2Rx — 2Ay) = (I — 2yR)z +2yAy. (12)  To summarize, for a given cross-correlation matrix, one can
check if (15) holds by constructin and finding its maximum

In order to guarantee the convergence of the Jacobi algoritRigenvalue. If it does, then by Theorem 2, the parallel soft inter-
(parallel soft interference canceler), we negr) to be a ference canceler is guaranteed to converge to the minimizer of
contraction mapping with respect to a block maximum norng).
For any matrixA, the block maximum nornjjA||, is defined  |n the proof of Lemma 1, we arrived at (15) from its equiva-
[14] as||A|l%, = max;(1/w;) >, [Aij|w;. Amappingl’(z) is  lent condition given in (19). An interesting observation is that,
called a contraction mapping with respect to a block maximugmoosingw; = 1 for all 4, (19) reduces to a diagonal dom-

norm|| - ||, if and only if (iff) 7'(x) satisfies inance conditiony" ., |I';;| < I';;, for all i. This is clearly
much easier to verify, however it is a more lenient condition for
1T(x) — T(z)|% < allz — 2|5 (13) convergence since a particular setmfalues are used. Itis pos-

sible for the parallel soft interference canceler to converge for a
for anyz andz’, for somex € [0, 1). For the mapping in (12), system with its cross-correlation matrix satisfying (15) even if

this condition is equivalent to is not diagonally dominant (see Section VI).
Itis also interesting to note that both the diagonal dominance
L —2vR||% < 1. (14) condition mentioned above and the maximum eigenvalue con-

dition in (15) are satisfied for a system where users’ signa-
If (14) holds, then the nonlinear Jacobi algorithm converges lyres are shifted versions of a basiesequence. In this case,
Theorem 2. However, for a given CDMA system, it may be diff;; = —1/G, i # j, andp(T) = (N — 1)/G, andp(T) < 1
ficult to verify whether (14) holds. Our aim is to derive an easieis long asV < G which by definition is the case. Diagonal
condition to check for the convergence of the nonlinear Jacatbminance condition is also equivalent(th — 1)/G < 1 for
algorithm. It is desirable for this condition to be independent @#-sequences. Thus, if these sequences are used, both Jacobi and
the received powers of the usersind a particular block max- Gauss—Seidel algorithms, i.e., parallel and successive soft inter-
imum norm|| - |. The following Lemma states the conditionference cancelers, converge to the minimizer of (6).
for the convergence of the nonlinear Jacobi algorithm (parallelin general, it takes more than one iteration for either algo-
soft interference canceler) in terms of only the cross-correlatieithm to converge and thus the resulting receiversaukti-stage
matrix. receivers. Multi-stage receivers are familiar in multiuser detec-
Lemma 1: For a CDMA system with linearly independenttion. In [5], hard decision bit estimates are used to reconstruct
signature sequences, the nonlinear Jacobi algorithm (paradletl subtract the interference for each user. The receiver is im-
soft interference canceler) converges to the minimizer of (6) jilemented in a parallel fashion as in (10) and is not convergent.
In [16], the authors proposed a class of receivers based on the
p (f) <1 (15) SAGE algorithm, one of which is the successive multistage re-
ceiver (9) and argues that the SAGE-based hard decision mul-
whereT is constructed fronT’ asfij = |I';;| if ¢ # j, and tistage receiver is convergent even when its parallel counterpart

T';; = 0, andp(-) denotes the maximum eigenvalue of a matrixs not. The soft decision versions of these multistage receivers,
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i.e., (9) and (10), are proposed in [16] and [17]. They are termé#us section. The algorithms without the clippers, i.e., the algo-
as receivers with linear clippers. By representing these receivatsms that converge to the decorrelating or the MMSE detec-
in the form of iterative nonlinear programming algorithms, wéors, correspond to linear Gauss—Seidel and Jacobi iterations.
have shown thaboth of these soft decision receivers, i.e., th&or these iterations, Theorem 2 still gives the sufficient condi-
parallel and the successive soft multi-stage interference céion for convergence. However, less stringent conditions which
celers, if they converge, converge to the same point whichdse necessary and sufficient are available for this case. For the
the minimizer of (6). We have observed that the Gauss—Seidelcorrelator, for example, using [18, Theorem 3.3 of Sect. 4.3],
algorithm has a more lenient requirement in order to convergme can show that the necessary and sufficient condition for con-
i.e., linear independence of the signature sequences is sufficie@stgence of the Jacobi algorithm without the clippers is

while the condition that guarantees the Jacobi algorithm to con- .

verge is more strict and is given in (15). Typically, Gauss—Seidel p(I) <1 (24)

type iterations have faster convergence since they use the NeWRRlrel is the matrix consisting of the off-diagonal elements of
estimates. On the other hand, Jacobi type iterations can be “e. [ = [y, if i # j,and; = 0. Forthe MMSE detector
Rl % (XAl ’ T . ’

cuted in a completely parallel fashion since they do not re(miﬂer:e.necessary and sufficient condition is found by repla&ing
feedback from the current stage estimate of any user. Note t%{h I' + o2A~2. To see why (24) is less stringent than (15)

if Theorem 2 is valid, any combination of the two algorithmﬁrst observe thal' — |f‘|, and by definition of the{ - ||, norm

also converges to the minimum of (5), i.e., SOme users can |se, matrix,||f||g’o — |[T]|.. We can then use [14, Proposition
the successive soft multi-stage receivers and others can us%tlz%

parallel soft multi-stage receivers e) of Sect. 2.6] which states thatA) < ||A||% for any

. . . matrix A.. Thus, the following relationship holds:
It is worthwhile to note that one can implement the decor-

relator given by (5) iteratively. Gauss—Seidel and Jacobi algo- p(f‘) < Hf
rithms that converge to (5) can be found to be the algorithms

derived in this section without the second stageé, 1] clippers. This means that if (19) [or equivalently (15)] holds then (24) is
It is also possible to derive Gauss—Seidel and Jacobi iterati¢hranteed to hold, which makes it less stringent.

that converge to the MMSE detector [4] which estimates the bitsFinally, we should emphasize that the implementations dis-

ur

(25)

oo’

by taking the sign of cussed here are not the unique way of solving for the mini-
mizer of (6). There are other nonlinear programming methods
a=A (T +2A )1y (20) thatyield iterative algorithms whose BER performance matches

that of the soft interference cancelers.

It can be shown that the resulting algorithms differ from (9) and
(10) only in the scaling factor. Specifically, we have V. GENERALIZED MMSE DETECTOR

The constraint on each € {1, 1} is equivalent ta:? = 1

1—1 . . . . .
. Ve which impliesa e = N at any feasible point for OMUD. Re-
b(t+1)= qi + o2 vi z_: V@ Ljia(t+1) laxing this settm"a < N, i.e., to the smallest sphere that con-
=t tains the corners of the unit hypercube, results in the following
N optimization problem:
— “Toa(t 21 ]
jZH Vi Liia; () (21) min a' Ra—2a" Ay. (26)
J=1 a aé]\r
VG N Since (26) minimizes a convex function over a convex set, it has
B(t+1)= 7+ o? ;2 Yi — Z V@ Ujia;(t) | (22) aunique minimum and iterative algorithms such as gradient de-

J=1,j7i scent can be employed to find this minimum [19]. Further, the
convex duality theoreffi9, Theorem 14.6] ensures that no du-

for the Gauss—Seidel and the Jacobi iterations, respectively. Fémy gap exists and one can solve for the dual problem instead.

ther, these iterations can be followed by fhel, 1] clippers. since (26) has a single constraint, there is only one dual variable.

The resulting receivers converge to the minimizer of the fofFhys, a simpler iterative algorithm can be found by solving the
lowing quadratic program which is similar to (6) where the matyal problem as outlined below.

trix R is replaced byR + o1 The Lagrangian dual function can be expressed as
[Inin i a"(R+0°Na —2a" Ay. (23) L(a, \)=a ' Ra—2a" Ay + \a'a— N) (27)
ac|[—1, 1)

S ] which is to be minimized ove# and maximized ovek > 0.
Note that this minimization problem when Qeflned on the COBlving fora in terms ofA and substituting back, we obtain
ners of the unit hypercube, i.&, € {—1, 1}V, is exactly the

same as the original OMUD problem in (3), since on the cor- max —y AR+ ADN"'Ay— AN (28)
ners of the unit hypercube the additional terfa " a in the cost A0

function is independent of the choicea@fAn equivalent of the which is a one-dimensional optimization problem. The opti-
convergence condition (15) can be easily derived for the MMSHization problem (28) entails the optimization of a rational
type receivers with clippers using the same steps we followedfumction of the variablex and can be solved with a variety
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of iterative algorithms [19]. A simple unconstrained gradier %

descent algorithm is guaranteed to converge for a sufficien
small step size: which can then be projected onto the positivi 0-08f
axis. The algorithm is

______________________________________________ i

— — T — —9 50071 -=-= Decorrelator
AMt+1) =M +uy ' AR+ AR "Ay—N) (29) E e gxgrsalized MSE
_ 20.08f —e Soft IC 1
which converges ta for a reasonable choice pf The maxi- £ — O?AUD
mizer of (28) is given by 2 o5k — Single User Bound | |
Zo.
A* = max (0, X) . (30) %

o
=
=

Then, the unique minimizer of (26) can be found to be

* _ *P\—=1 Aa _ A—1 * A —2\—1 0.03y
a=R+XNI) T Ay=A"(T+NA™ )y (32)

o2 , . . . .
£ 092 5 10 15 20 25 30

interferers SNRs

The form of this solution whose sign is the estimate of the
vector is also familiar because of its similarity to tMMSE
deteCtor[4]' Thus, we te_rm the relaxation (26) tbeneral'zed Fig.4. Comparison of error probabilities of near-optimum multiuser detectors,
MMSE (GMMSE) solution. Whem\* = o2, (31) reduces to nearfar scenario, desired user ata 6-dB SBRs 7, N = 4, Gold sequences.
the MMSE detector. Note that, sinéé is a function ofy, the
GMMSE solution results in a nonlinear multiuser detector iformance of the GMMSE detector is similar to that of the linear
contrast to the MMSE detector. On the other hand, the knovtMSE detector. In particular, we observe that the GMMSE de-
edge of the noise power value?) is not necessary for the tector has the same trend of approaching the decorrelator per-
GMMSE detector whereas the MMSE detector requires thisrmance as the MMSE detector when the interference domi-
knowledge if training or blind adaptation is not desired [4], [20lhates the noise. Although the performance of the GMMSE de-
The GMMSE detector is also an iterative detector siAte tector is not amenable to analysis due to its nonlinear nature, its
has to be found iteratively. However, since the iterations aggymptotic behavior in the severe near—far regime is identical
in one dimension, they are expected to converge more quicldythat of the MMSE detector due to the structural similarity

compared to multidimensional algorithms. of the two detectors. Both the noise levélin the MMSE de-
tector expression and the optimum Lagrange multiph&iin
VI. RESULTS the GMMSE detector expression become insignificant as the

Since the probability of bit error expressions are not anau)jiglterference level goes to infinity. This causes both deteptorg’
ically tractable for an arbitrary number of users and iteration@erformance to approach the decorrelator performance in this

we have simulated the bit error performance of the detectors fiRYMptotic regime. _ _
vestigated in this work. All iterative detectors (multistage soft NeXt, we simulated the bit error performance of a user in an
cancelers and the GMMSE) are evaluated at their convergerte= 7 USer synchronous system with processing gain=
points. The simulation scenarios are representative exampled §pat usesn-sequences, i.el;; = —1/7 j # 1, and have
highly loaded systems where implementation of multiuser dgserved similar trends (Fig. 5). As mentioned in Section IV,
tectors is well justified for improved system performance. TH& Seduences satisfy the diagonal dominance condition and thus

system size is kept modest for the sake of computational fedBe parallel interference canceler is guaranteed to converge.
bility of the simulations. Our last simulation set up is of aN = 3 user system with

The first system simulated is aNi = 4 user synchronous proce.ssing gaity = 7thatuses the set onoId sequences which
system with processing gaifi = 7 that uses Gold sequence$onstitute the rows of the following matri:

with the cross-correlation matrix 1 -1 -1 -1 -1 1 -1

7 -1 3 3 S=|-1 1 1 -1 -1 1 1|. (33

1 |—1 7 3 —1 -1 — —_
r— . ' (32) 1 1 1 1 11 1

3 03 7 -1 First, we simulated the synchronous system performance where

3 -1 -1 7 the cross-correlation matrix is
Note that, for this cross-correlation matrix, the diagonal domi- 7 -1 3
nance condition is not satisfied. However, the parallel soft inter- r = % -1 7 —51|. (34)
ference canceler is still guaranteed to converge begalise= 3 _5 7

0.8747 < 1. Fig. 4 shows the probability of bit error for the

third user when that user has a 6-dB SNR and all the interfer@ace again, the diagonal dominance condition is not satisfied,
have a common SNR (in dB) that is varied. We observe thladwever,o(T') = 0.9008 < 1 and the parallel soft interference
the soft interference cancelers [(9)—(11)] have almost invarialdanceler is guaranteed to be convergent. The resulting BER of

performance versus interference strength. We note that the ke first user is given in Fig. 6.
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Fig.5. Comparlson oferror probabilities ofnear;optlmurI] multluserdetectorﬁig. 7. Comparison of error probabilities of GMMSE and MMSE detectors
near—far scenario, desired user ata 6-dB S8R= 7, N = T, M -sequences. nqer imperfect estimates of aggregate Gaussian noise variance; plotted is the
desired user bit error rate versus the estimation error in dB. Desired user at 6 dB,
interferers at 10 dB SNR. Same system as in Fig. 6.

0.042 .
0041 the performance of the MMSE detector approaches that of
0.038+ 1 the decorrelator which is 0.0408; when the noise variance is
= 0.036 ~"~ Decorrelator | overestimated the performance gradually gets worse and closer
g —*— MMSE to that of a single user receiver (matched filter) which for this
e —o— Generalized MMSE . . A .
©0.034r —— Soft IC 1 system is 0.1412. These two observations are easily justified
000} —— Single User Bound | |  py jnspecting the structure of the MMSE detector in (20).
£ When a small noise variance is used, the detector resembles
5 003 a decorrelator, whereas when a very large noise variance is
8 0.028F { used, the second term in the inverse transformation becomes
dominant, i.e., the detector is similar to a matched filter. Since
0.026¢ 1 the GMMSE performance is unaffected by these estimation
0.024 { errors, itis of value to be used under such a scenario.
) ) ) . , Lastly, we considered the performance of the same system
00225 5 10 15 20 25 30 where users transmit/-bit packets in an asynchronous fashion.

interferers SNRs The relative delays of the users are assumed to be less than the

Fig.6. Comparison of error probabilities of near-optimum multiuser detector@it d_Uration- Note that _in. this case the .receiver Shquld d?COde
near—far scenario, desired user at a 6-dB SBR- 7, N = 3, Gold sequences. all bits of all the users jointly by observing the received signal
for the entire packet transmission duration of all the users. The

For this synchronous system, we also investigated the pgy_ﬁluent statistics to decode the bits are obtained by passing the

formance of the nonadaptive MMSE detector and the GMMS ceived signal through the matched filter of each user in each

detector when the Gaussian noise variance is estimatedOAjtS bit transmission intervals. This way, in effect, each user
likely scenario for this situation is a multicell system where th ecomes equivalent 8/ effective independent users for the

intra-cell multiuser detection is performed and the out-of-ce MUD problem. To explain this point further, consider that the

interference can be accurately described by additive Gaus ransmission delays of the users are sorted in increasing order,
eith user has a transmission delaylpthips and!; = 0. The

noise. As mentioned in Section V, the GMMSE detector do%ﬁ? N Lthen b 7v chi MG
not require the value of the noise variance. The MMSE detec servation interval t en beco '.M: + dy ChIpS, or( i
)T. seconds wheré, is the chip duration; that is, an interval

on the other hand requires this value, see (20), and thusdhé h h ) ket of the | o
potentially vulnerable to imperfect estimates. Fig. 7 shows tIL%rge (;lj(;ugf to c?pturet e anurehpaf: eto tke atlesct; arnving
bit error rate of the desired user versus the estimation erfic!- Bitk of user:is received in t € interval(( N )G + .

of the noise variance in dB, when the desired user has 6 fBZe: (¥G +di)L:]. The corresponding matched filter for this
and the interferers have 10 dB SNR values. Note that tRl IS the signature of théth user in this interval padded with
MMSE performance with 0 dB estimation err.or correspo’ncffros from left and right for the rest of the observation interval.
to the performance of the MMSE detector with the perfe&hedgsylt]"ng crcl)lss-corrglatlon matrikjs N.M x N M and the
noise variance estimate. As expected, the nonadaptive MMQI‘%’I Is formally stated as

detector is sensitive to noise variance estimation errors. In . ) T T

particular, when the noise variance is severely underestimated, @A e @ Ra —2a Ay (35)
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Fig. 8. Comparison of error probabilities of near-optimum multiuser detectors
for an asynchronous system witti-bit packet transmission, near—far scenario,
desired user at 6 dB SN = 7, N = 4, M = 3, same set of Gold sequences (4]
as in Fig. 6. The error probability of the desired user’s middle bit is plotted.

(5]
whereR again is given by = AT'A and,/q; appears ad
fork=(—1)M+1, ..., ¢M. Thekth bit of user is denoted -

by a(i—1yrr4x- Fig. 8 shows the error rate for the middle bit
of the first user whemd = 3 bits. In this particular example,
the delays of the users are 0, 2, 5 chips respectively and thé]
resulting 9x 9 cross correlation matrik satisfies the diagonal
dominance condition. Figs. 6 and 8 confirm our observations[8
from the previous experiments regarding the close performance
of MMSE and GMMSE and the near—far resistant performance
of the soft interference cancelers. &

VIl. CONCLUSION [10]

In this paper, we have shown that many popular suboptimum
detectors are devices that attempt to approximate the solutidii]
of the joint minimum BER detector (OMUD). Although it
is analytically hard to characterize exactly how closely they12]
approximate the OMUD cost function, we have observe&
that they achieve near-optimum cost values. Consequently,
the near-optimum BER performances of these detectors af&s]
not surprising. The nonlinear programming approach helped
us to identify the convergence conditions of multistage soff14]
interference cancelers. We have also proposed and devised a
simple iterative nonlinear detector with similar performancel1®]
to the MMSE detector. The generalized MMSE detector, in
contrast to the nonadaptive version of the MMSE detector,
does not require the knowledge of the ambient noise powd#6]
level. Thus, it can be used in scenarios where adaptive or blind
adaptive detection is not suitable, for instance when the chanrjgln
is changing rapidly, and the ambient noise power is unknown.
likely scenario is a multicell setting where only in-cell system
information is available, and thus in-cell multiuser detection8]
is feasible. In this case, the out-of-cell interference manifestgg,
itself by amplifying the Gaussian noise and the GMMSE
detector results in MMSE-like performance without the need20]
to estimate this level. 21]

Finally, we note that the nonlinear programming approacﬁ
can be used to derive other types of detectors under different

1023

channel fading conditions as well. For instance, it is easy to
show that the hypercube type relaxation is the optimum de-
tector when the uplink gains of the users are assumed com-
pletely random in0, 1] and unknown [21]. For real channels,
the uplink gains are likely to have much smaller values than 1,
and have different distributions depending on the channel fading
conditions. Using this fact, detectors for channels with uncer-
tainties can be designed with smaller box boundaries. Thus,
this approach can be useful in designing joint bit detectors and
channel estimators under different conditions.
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