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Chapter
5:

8. Simple opitmum compression of a Markov source. Consider the 3-state Markov process
khaving transition matrix

| Un—l\Drn Sl S'Z 53
TS 1/2 1/4 1/4
S, /4 1/2 1/4
53 0 1/2 1/2

Thus the probability that ;1 follows S3 is equal to zero. Design 3 codes €y, Cy, C; (one
for each state Sy, 53, 93), each code mapping elements of the set of S;'s into sequences

of 0's and 1’s, such that this Markov process can be sent with maximal compression by
the following scheme:

a) Note the present symbol S;.
) Select code C;.

(c) Note the next symbol §; and send the codeword in C) corresponding to S;.
(d) Repeat for the next symbol.

‘What is the average message length of the next symbol conditioned on the previous
state § = 5; using this coding scheme? What is the unconditicnal average number
of bits per source symbol? Relate this to the entropy rate H of the Markov chain.

Solution: Simple optimum compression of e Markov source.

It is easy to design arn optimal code for each state. A possible sclution is
Next state 57 59 53 '
Code €4 0 10 1} E(I|Cy) = 1.5 bits/symbol
code C» 10 0 11 E(L|C;) = 1.5 bits/symbol
code Cs - 0 1 E(LiC;) = 1 bit/symbol

The average message lengths of the next symbol conditioned on the previous state

being 5; are just the expected lengths of the codes C;. Note that this code assignment
achieves the conditional entropy lower bound.




11.

Suffic condition. Consider codes that satisfy the suffix condition, which says that no
rodeword is a suffix of any other codeword. Show that a suffix condition code is uniquely
decodable, and show that the minimum average length over all codes satisfying the

suffix eondition is the same as the average length of the Huffman code for that random
variable.

Solution: Suffiz condition. The fact that the codes are uniquely decodable can be
seen easily be reversing the order of the code. For any received sequence, we work
backwards from the end, and look for the reversed codewords. Since the codewords,
satisfy the suffix condition, the reversed codewords satisfy the prefix cordition, and the
we can uniquely decode the reversed c¢ode.

The fact that we achieve the same minimum expected length then foilows directly from
the results of Section 5.5. But we can use the same reversal argument to argue that

. corresponding io every suffix code, there is a prefix code of the same length and vice

versa, and therefore we cannot achieve any lower codeword lengths with a suffix code
than we can with a prefix code.

. Shannon codes and Huffrman codes. Consider a random variable X which takes on four

values with probabilities (%,é % -15)

(a) Construct a Huffman code for this random variable.

(b} Show that there exist two different sets of optimal iengths for the codewords,
namely, show that codeword length assignments (1,2,3 3) and (2,2,2,2) are
hoth optimal.

(¢} Conclude that there are optimal codes with codeword lengths for some symbols
that exceed the Shannon code length [log ;(1:—)] .

Salution: Shannon codes and Huffrnan codes.

(a) Applying the Huffman algorithm gives us the following table
Uode Symbol Probability

0 1 1/3 1/3 2/3 1
11 2 1/3 /3 1/3
101 3 1/4 1/3

100 4 1/12

which gives codeword lengths of 1,2,3,3 for the different codewords.

{(b) Both set of lengths 1,2,3,3 and 2,2,2,2 satisfy the Kraft inequality, and they both
achieve the same expected length (2 bits) for the above distribution. Therefore
they are both optimal.

{¢)} Thesymbol with probability 1/4 has an Huffman code oflength 3, which is greater
than [log 1] Thus the Huffman code for a particular symbol may be longer than
the Shannon code for that symbol. But on the average, the Huffman code cannot
be lopger than the Shannon code.




14. Huffman code, Find the {a) binary and (b) ternary Huffman codes for the random
variable X with probabilities

1 2 3 4 5 6
P=(5 oy 3057 a7 o1 )

(¢) Calenlate I = 3 p;l; in each case.

Solution: Huffman code.

{(a) The Huffman tree for this distribution is '

Codeword
00 e;  6/21 /21 6/21 9/21 12/21 1
10 22 5/21 5/21 6/21 6/21 9/21
11 x5 4/21 4/21 5/21 6/21
010 x4 3721 3/21 4/21
0110 25 2/21 3/21
0111 zg 1/21
{b) The ternary Huffman tree is
Codeword
1 z, 6/21 6/21 10/21 1
2 zp  5/21 5/21  6/21
00 zg  4/21 421 5/21
01 ce  3/21 3/21
020 vy 2/21  3/21
021 zg 1721
022 zp  0/21
(c) The expected length of the codewords for the binary Huffman code is 51/21 = 2.43
bits.

The ternary code has an expected length of 34/21 = 1.62 ternary symbols.

22. Optimal codeword lengths. Although the codeword lengths of an optimal variable length
code are complicated functions of the message probabilities {p1,p2,...,Pm ), it can be
said that less probable symbols are encoded into longer codewords. Suppose that the
message probabilities are given in decreasing order p; S‘;pg Z ot P

(a} Prove that for any binary Huffman code, if the most probable message symbol has
probability py > 2/5, then that symbol must be assigned a codeword of length 1.

(b) Prove that for any binary Huffman code, if the most probable message symbol

has probability p; < 1/3, then that symbol must be assigned a codeword of
length > 2.

Solution: Optimal codeword lengths. Let {ec1,¢2,...,¢m} be codewards of respective
lengths {£1,%,...,4m} corresponding to probabilities {py,p1,...,2m}- '




(a} We prove that if py > p; and p1 > 2/5 then #; = 1. Suppose, for the sake of
contradiction, that £; > 2. Then there are no codewords of length 1; otherwise
¢1 would not be the shortest codeword. Without loss of generality, we can assume
that ¢; begins with 00. For z,v € {0,1} let C., denote the set of codewords
beginning with zy. Then the sets Cpy, Cig, and Cp1 have total probability
1—p1 < 3/5, so some two of these sets {without loss of generality, Cio and O3 }
have total probability less 2/5. We can now cbtain a better code by interchanging
the subtree of the decoding tree beginning with 1 with the subtree beginning with
00; that is, we replace codewords of the form 1z ... by 00z ... and codewords of
the form 00y... by 1y.... This improvement coniradicts the assumpsion that
{1 > 2, and so £ = 1. {Note that p; > py was a hidden assumptior for this
problem; otherwise, for example, the probabilities {.49,.49, 02} have she optimal
code {00,1,01}.)

(b} The argument is similar to that of part (a). Suppose, for the sake of contradiction,
that &3 = 1. Without loss of generality, assume that ¢; = 0. The total probability
of Cro and Cpy is 1 —py > 2/3, so at least one of these two sets (without loss
of generality, C'jo) has probability greater than 2/3. We can now obtain a better
code by interchanging the subtree of the decoding tree beginning with 0 with the
subtree beginning with 10; that is, we replace codewords of the form 10z ... by

Oz... and we let ¢; = 10. This improvement contradicts the assumption that
£y =1, and so £; > 2.

25. Shannen code. Consider the foliowing method for generating a code for a random
variable X which takes on m values {1,2,...,m} with probabilities py,ps,...,pm.




Assume that the probabilities are ordered so that py > py > -+ > pp . Define

1—.1
Fo=3"m (5.37)
k=1

the sum of the probabilities of all symbols less than i. Then the codeword for i is the
number F; € [0, 1] rounded off to I bits, where /; = [log ;1:]

(@)

(b)

Show that the code constructed by this process is prefix-free and the average length
satisfies

O(X)<L< H(X)+1 (5.38)

Construct the code for the probability distribution (0.5,0.25,0.125,¢.125),

Soluiion: Shannon code.

(2)

Since I; = [log -], we have

10g~1— <k <.10g—1—+1 : (5.39)
D D .
which implies that
HX)<L=Yph< HX)+1 (5.40)

The difficult parct is to prove that the code is a prefix code. By the choice of {;,
we have

o7l < gy < 277D, (5.41)
"T‘hus Fj, 7 > 1 differs from F; by at least 2-%, and will therefore differ from E:
is at least one place in the first I; bits of the binary expansion of F;. Thus the

codeword for Fy, j > ¢, which has length I; > I;, differs from the codeword for

F; at least once in the first ; places. Thus no codeword is a prefix of any other
codeword.

We build the following table
Symbel Probability F: in decimal F in binary & Codeword

1 0.5 0.0 0.0 i 0

2 0.25 0.5 0.10 2 10
3 0.125 0.75 0.110 3 110
4 0.125 0.875 0.111 3. 111

The Shannon code in shis case achieves the entropy bound {1.75 bits) and is
optimal.




