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Chapter 4:



8. Pairwise independence. Let X, X»,..., X,—1 be 1.i.d. random variables taking values
in {0,1}, with Pr{X; = 1} = 2 . Let X, = 1 if 30'X; is odd and X, = 0
otherwise. Let = > 3.

(a) Show that X; and X; are independent, for { # j,1,7 € {1,2,...,n}.
(b) Find H(X;, X;), for i £ 5.
(c) Find H{X;,X3,...,X5). Is this equal to nH(X;)?

Solution: (Patrwise Independence) X1, Xo,...,X,_1 areiid. Bernoulli(1/2) random
variables. We will first prove that for any -k < = — 1, the probability that Ef=1 X is
odd is 1/2. We will prove this by induction. Clearly this is true for & = 1. Assume
that it is trne for bk — 1. Let S = 3%, X;. Then :

P(Skodd) = P(Sp_1 0dd)P(X; =0)4 P(Sk—1 ever)P{X;=1) (4.51)
S Ty 452
= 33133 (4.52)
1
= 3 (4.53)

Hence for all £ < n — 1, the probability that 5 is odd is equal to the probability that
it is even. Hence,

P{X,=1)= P(X, = b) — % (4.54)

(a) Tt is clear that when ¢ and j are both less than n, X; and X; are independent,
The only possible problem is when j = ». Taking ¢ = 1 without loss of generality,

n—1
PXi=4L,Xa=1) = PXi= 1,2 X even) (4.58)
i=2 .
n—1
= P(X,=1)P(>_ X; even) (4.56)
=2
11
S (4.57)
= PX)=1)P(X.=1) (4.58)
and similarly for other possible values of the pair X, X,. He_-;ii.‘e X; and X, are
independent.
{b) Since X; and X; are independent and uniformly distributed on {0,1},
H{X: X;)= H(X)) + H(X,) =1+ 1= 2 bits. ) (4.59)
(c) By the chaic rule and the independence of X3, X2,..., Xy, , we have
H(X]_,Xz,...,Xn) = H’[’Xl,Xg,.‘.,Xn_,‘)-i-H(X,;tXn_l,...,XII{SO)
-1
= Z H(X‘) -+ 0 (4'61)
it
= n-1, (4.62)

since X, is 2 function of the previous X;’s. The total entropy is not n, which is
what would be obtained if the X,’s were all independent. This example illustrates
that pairwise independence does not imply complete independence.



13.

since, for i > 1, the next position depends only on the previous two (i.e., the
dog’s walk is 2nd order Markov, if the dog’s position is the state). Since X5 =0
deterministically, H{Xo) = 0 and since the first step is equally likely to be positive
or negative, H(X;|Xo) = 1. Furthermore for ¢ > 1,

H(X;lX'_l,Xi_g) = H(,l, .9)
Therefore,
(X0, X1, ..., Xa) = 1+ (n=1)E(.1,.9).
(b) From a),
H(Xo, X1,...-Xn) 1+(n-—1)H(.1,.9)
41 B n+1
- H(1,9).

{c) The dog musi take at least one siep fo establich the direction of travel from whic

it ultimately reverses. Letting S be the number of steps taken between reversal:
we have

oo

E(SYy = Y s(.9)Y7'(.1)

=1

= 10.

Starting at time 0, the expected number of steps to the first reversal is 11.

Entropy rate of constrained sequences. In magnetic recording, the mechanism of record-
ing and reading the bits imposes constraints on the sequences of bits that can be
recorded. For example, to ensure proper sychronization, it is often necessary to limit
the length of rums of 0’s between two 1's. Also to reduce intersymbol interference, it

may be necessary to require at least one 0 between any two 1’s. We will consider a
simple example of such a constraint,

Suppose that we are required to have at least one 0 and at most two (}'s between any
pair of 1’s in a sequences. Thus, sequences like 101001 and 0101001 are valid sequences,

but 0110010 and 0000101 are not. We wish to calculate the number of valid sequences
of length n. '

(a) Show that the set of constrained sequences is the same as the set of allowed paths
on the fallowing state diagram:

{(b) Let X:(n)} be the number of valid paths of length n ending at state i. Argue that



Solution:

Entropy rate of constrained sequences.

(2)

{b)

()

The sequences are constrained to have at least one 0 and at most two 0's between
two 1's. Let the state of the system be the pumber of 0's thal hus been seen since
the last 1. Then a sequence that ends in a 1 is in state 1, a sequence that ends in
10 in is state 2, and a sequence that ends in 100 is in state 3. From state 1, i{ is
only possible to go to state 2, since there has to be at least one 0 before the next
1. From state 2, we can go to either state 1 or state 3, From state 3, we have to

go to state 1, since there cannot be more than two 0’5 in a row. Thus we can the
state diagram in the problem.

Any valid sequence of length n that ends in a 1 must be formed by taking a valid
sequence of length n — 1 that ends in a 0 and adding a 1 at the end. The number
of valid sequences of length . — 1 that end in 2 0is equal to Xp(n—1)+ X3(n—1)
and therefore,

Xi(n) = Xa(n - 1) + X3{n - 1). (4.79)
By similar arguments, we get the other two equations, and we have
Xl('ﬂ‘.) 0 1 1 Xl(n - 1)
Xo(n) [=11 0 0 Xan—-1) |. (4.80)
X3(n) ¢ 1 0 Xa(n—1)

The initial conditions are obvious, since both sequences of length 1 are valid and
therefore X{1) = {110]7.

The induction step is obvious. Now using the eigenvalue decomposition of 4 =
U-TAU | it follows that A% = U~TAUU AU = U YA0, ete. and therefore

X{n) = AIX()=UAITX(Q) (4.81)
] ATt 0 1
= U 8 At o0 (U] (4.82)
0 0 ! 0
1 0 0 1 00 0
= AWwlio o0 o0 (UL [+l oo o0 (U1,
00 9 0 0 0 0 0
0 0 0 1
AU 0 0 0 UL (4.83)
0 0 1 0
= ATTYY 4+ A3TNY, 4+ ATTNYG, ~ (4.84)

where Y1, ¥2,X3 donot depend on n. Without loss of generality, we can assume
that A > Az >‘J\3. Thus
Xi(n) = AT 4 AT 4 ATTYy (4.85)
Xy(n) = A7+ A Y+ AT Yy (4.86)
Ka(n) = /\?"lYla + A;'_lYQg + /\’:I_IY;;:; (4.87)



(2)

For large n, this sum is dominated by the largest term. Thus if Y1 > 0, we have

%kng Xi(n) — log Ay ' (4.88)

To be rigorous, we must also show that Yi; > 0 for i = 1,2,3. It is not difficult
to prove that if one of the Y;; i8 positive, then the other two $erms must also be
positive, and therefore either

11—:, log X;(n) — log M. (4.89)

forall ¢ = 1,2,3 or they all tend to some other value.

The general argument is difficult since it is possible that the initial conditions of
the recursion do not have a compenent along the eigenvector that corresponds to
the maximum eigenvalue and thus Y3; = O and the above argument will fail. In
our example, we can simply compute the various quantities, and thus

01 1
A=|1 0 0 |=U"tAU, (4.90)
g 1 0
where
1.3247 0 0
A= 0  —0.6624 4+ 0.5623¢ 0 , (4.91)
0 0 ~0.6624 — 0.56231
égd
—-0.5664 =0.7503 —0.4276
U= | 0.6508 — 0.0867i —U.3823 +0.4234¢ —0.6536 — 0.4087: . (4.92)

0.6508 4+ 0.0867i  -~0.3823i0.4234:  —~0.6536 + 0.4087:

and thereiore :
0.9566

Y, = | 07221 §, (4.93)
0.5451
which has all positive components. Therefore,
. .
—log Xi(n) — log A; = log 1.3247 = 0.4057 bits. (4.94)
n

To verify the that

1-ai? .
1 1 rr] ‘ (4.95)

“=[3-a’ I-a’ 3-a

is the stationary distribution, we have to verify that Pg = u. But this is straight-
forward,



tate for a probability tramsition matrix with the same state diagram. We don’t
know a reference for a formal proof of this result.

Chapter 5

{b} The last bit in the Huffman code distinguishes between the least likely source
symbols. (By the conditions of the problem, all the probabilities are different,
and thus the two least likely sequences are uniquely defined.) In this case, the
two least likely seguences are 000...00 and 000...01, whick have probabilities
(1—p:)(1—p2)...(1 —pn) and (1 —p1}{1 = p2) .. .{1—Pn_1)pa respectively. Thus
the last question will ask “Is X, = 17, i.e,, “Is the last item defective?”.

(c) By the same arguments as in Part (a), an upper bound on the minimum average
numper of questions is an upper bound on the average length of a Huffman code,

namely E{X),X3,...,Xa)+1=3FT H(p) +1.

2. How many fingers has a Martian? Let

S Pt Sm
§=|"" )
P15---) Pm
The 5,'s are encoded into sirings from a D -symbol outpﬁt alphabet in 2 uniguely de-

codable manner. f m = 6 and the codeword lengths ate ({,13,...,0) = {1,1,2,3,2,3),
find a good lower bound on D. You may wish to explain the title of the prodlem.

Solution: How many fingers hes a Martian?

Uniquely decodable codes satisfy Kraft’s inequality. Therefore

f(Dy=D" 4 D14 D? 4L D34 Dty P < (5.4)

We have f(2) = 7/4 > 1, hence D > 2. We have f(3) = 26/27 < 1. So a possible
value of D 1s 3. Our counting system is base 10, probably because we have 10 fingers.

Perhaps the Martians were using a base 3 representation because they have 3 fingers.
(Maybe they are like Maine lobsters 7)




4. Huffman coding. Consider the random variable

X = T Ty T3 T4 Ty Tg T7
049 6.26 0312 €04 004 0.03 0.92
(a) Find a binary Huffman code for X.

b} Find the expected codelength for this encoding.
{z) Tind a ternary Huffman code for X.

Solution: Ezamples of Huffman codes.

{a) The Huffman tree for this distribution s

Codeword

1 2, 049 G.49 049 04¢ 049 051 1
00 z2 0.26 (.26 026 0.26 026 0.49
011 zz3 0.12 0.12 012 013 0.25

01000 4 0.04 0.05 0.08 0.12

01001 zs 0.04 004 0065

01010 g .03 0.04

(31011 z7 0.02

{b} The expected length of the codewords for the binary Huflman code is 2.02 bits.
{H{X) = 2.01 bits)

{c) The ternary Huffman tree is

Codeword

0 zy 0.49 049 049 1.0
1 z, 0,26 0.26 0.26

20 z3 0.12 0.12 0.25

22 z4 004 0.09

210 2z 0.04 0.04

211 zg 0.03

212 zr 0.02

This code has an expected length 1.34 ternary symbols. ( H3(X) = 1.27 ternary
symbols).




6. Bad codes. Which of these codes cannot be Huffman codes for any probability assign-
ment?

(a) {0,10,11}.
(b) £00,01,10,110}.
(¢} {01,10}.

Solution: Bad codes

(a) {0,10,11} is & Huffman code for the distribution (1/2,1/4,1/4).

(b) The code {00,01,10,110} can be shortened to {00,01,10, 11} without losing its
instantaneous property, and therefore is not optimal, so it cannot be a Huffmaa
code. Alternatively, it is not a Huffman code because there is & unique longest
codeword. L :

(¢) The code {01,10} can be shortened to {0,1} without losing its instantaneous
property, and therefore is not optimal and not a Huffman code.

7. Huffman 20 Questions. Cousider a set of n objects. Let Xy =1 or 0 accordingly 2s
the i-th object is good or defective. Let Xy, X3,...,Xn be independent with Pr {Xi=
1}=p ;and py > py > ... > py > 1/2 . We are asked to determine the set of all
defective objects. Any yes-no gquestion you can think of is admissible.

{a) Give a good lower bound on the minimum average number of questions required.

(b) Tfthe longest sequence of questions is Tequired by nature’s answers to our questions,
what {in words) is the last question we should ask? And what two sets are we
distinguishing with this question? Assume a compact (minimum average length)
sequence of questions.

(c) Give an upper bound {within 1 question) on the minimum average number of
questions required.

Solution: Huffman 20 Quesiions.’

(a} We will be using the questions to determine the sequence X, Xp,..., Xn, where

X, is 1 or 0 according to whether the i-th object is good or defective. Thus the

most likely sequence is all 1’s, with a probability of [[, pi, and the least likely

sequence is the all 0’s sequence with probability [J% (1 — pi). Since the optimal

set of questions corresponds to a Huffman code for the source, a good lower bound

on the average number of questions is the entropy of the sequence Xy, Xa,. .., Xa.
But since the X;'s ate independent Bernoulli random variables, we have

EQ > H(Xy,Xy,..., Xn) = S H(X) = 3 H(p:). (5.8)




