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Chapter
2
32. Conditional entropy. Under what conditions does H(X | gY)=H(X|Y)?

Solution: (Conditional Entropy). If H(X|g(Y)) = H(X|Y), then H(X)-H(X{g(Y)) =
H(X)- H(X]Y), ie, IX;9(Y)) = I{X;¥). This is the coudition for equality in
the data processing inequality. From the derivation of the inequality, we have equal-
ity if X — ¢g(¥Y}) - Y forms a Markov chain. Hence H(X|g(Y)) = H(XIY) iff
X — g(Y) = Y. This condition includes many special cases, such as g being one-
to-one, and X and Y being independent. However, these two special cases do not
exhaust all the possibilities.



33.

34.

Feno’s ineguality. Let Pr(X =1)=p;,i= 1,2,...,mandlet ;p > p2a 2 p2a > -+ > pu-
The minimal probability of error predictor of X is X = 1, with resulting probability
of error P, = 1 — py. Maximize H{p) subject to the constraint 1~ p; = P, to find a
bound on F, in terms of H. This it Fano’s inequality in the absence of conditioning,.

Solution: (Fano’s Inequality.) The minimal probability of error predictor when there
is mo information is X = 1, the most probable value of X . The probability of error in
this case is P, = 1 —py. Hence if we fix P, we fix p;. We maximize the entropy of X
for a given P, to obtain an upper bound on the entropy for a given P.. The entropy,

m
Hp) = -plogp -3 pilogp; (2.120)

=2

= —pilogpy — i Pl og B piogp, (2.121)
fum Fe P

B P23 pm

- H(P)+PH ( RN P,) (2.129)

< H(F)+ P.log(m —1), {2.123)

——

since the maximum of & (&, 8. .., %f) is attained by an uniform distribution, Hence
any X that can be predicted with a probability of error P, must satisfy

H(X) < H(P.) + P.log(m — 1), (2.124)

which 1s the unconditional form of Fano’s inequality. We can weaken this inequality to
obtain an explicit lower bound for P,,

- P> BH(X)-1

e 2 m. (2.125)

Monetonic convergence of the empirical distribution. Let p,, denote the empirical proh-
ability mass function corresponding to Xy, Xo,..., X, iid. ~ plz), z € X. Specifi-
cally,

. 1g
Bafe) = ~ Y I Xi=2) (2.126)
tml
is the proportion of times that X; = z in the first n samples, where [ iz an indicator
function.

(a) Show for X binary that

ED(panllp) < ED(ppllp). (2.127)

Thus the expected relative entropy “distance” from the empirical distribution to
the true distribution decreases with sample size. Hint: Wiite fs, = 1hn+ A
and use the convexity of D.



(b) Show for an arbitrary discrete ¥ that

ED(fallp) < ED(fn—sllp)- : (2.128)

Solution: Monatonic convergence of the empirical distribution.

(2) Note that,

(b)

ﬂn
Pm(e) = oY I(Xi=1)
i=l

S (5 RS 3 22 I(X; = o)
- 2n r T 2n .4 T
= 1=n+1
= 2ia() + SHh(e).
2 2 n
Using convexity of D{p||g) we have that,
1 1 1 1
D{(p = —p —p 1= =
(Panllp) D(Ghn+ SPnllp + 5P)
1_ . 1.
S 3DGlle) + S D(EIP).
Taking expectations and using the fact the X’ are identically distributed we get,

ED(fanllp) < ED(Pullp).

The trick to this part is similar to part a) and involves rewriting H, in terms of
fin—1. We see that,

o1 I(X, =z)

Pn = ‘T_I ;I(Xx — $)+ _"'_';'1—
or in general,

3 1 IX; =2

Pn = n ZI(X': =)+ ( Jn_____)‘

i3
where 7 ranges from 1 to n.
Summing over ;7 we get,

or,



where,

N 1 )
Epf‘_l = n—1 ZI(X, = E).
i=1 ity

Again using the convexity of D(pl|q) and the fact that the D{#_,)ip) are identi-
cally distributed for all § and hence have the same expected value, we obtain the
final resuit.

Chapter 3



(a} Since the X3, Xa,...,X. areii.d,, so are ¢{X1), ¢(X3z),---, ¢{Xn), and hence we
can apply the strong law of large numbers to obtain

1
lim —;log (X1, Xa,...,Xn)

(b) Again, by the strong law of large numbers,

Q(Xh—x?: -

1
im — — 1|
fim og

p(X-i,Xg,...

lim —% Y log o(X3) (3.7)
—E(logg(X)) wp- 1 (3.8)
— > " p(z)logg(z) (3.9)
>_7(z)log ;Ezi — Y p(z) logp(=)3.10)
D(pliq) + H(p)- (3.11)
lim —% > log ;E—}X{% {(3.12)

- —B(log f;’f%) wp. 1 (3.3)
= - Zp(z) log % {3.14)
= ) p(c)log g%% (3.18)

= D(pila). (3.16)



1. Markov's inequality and Chebyshev’s ineguality.

(a)

{b)

(Markov’s inequality.) For any non-negative random variable X and any 6 >0,
show that

Pr{X » 6} < Eg (3.1)

Exhibit a random variable that achieves this inequality with equality.

(Chebyshev’s inequality.) Let ¥ be a random variable with mean 4 and variance
o2 By letting X — (¥ — p)?, show that for any € > 0,

2

Prily —pl > e} < 5 (3.2)
3
{The weak law of large numbers.) Let 24, 7,,..., Z, be asequence ofiid. random

variables with mean g and variance o®. Let Z, = £ 377 | Z; be the sample mean.
Shew that ]
o

> s

Thus Pr {!Z_n - y,li > e} — 0 as n — co. This is known as the weak law of large
numbers.

(3.3}

ne?’

Solution: Markou’s tnequality end Chebyshev's inequality.

(2) If X has distribution F(z],

o
EX = j rd F
a

F) oo
fzdF+/ 2dF
1A &

i



v

o0
/ xdF
)

- |
> /6dF
&

§Pr{X > &}.

I

Rearranging sides and dividing by & we get,

Pr{X > 6} < %‘E (3.4)

One student gave 2 proof based on conditional expectations. It goes like

EX

E(X|X < §)Pr{X > 6} + E(X|X < 6)Pr{X < §}
E(X|X < §)Pr{X > &}
> §Po{X 26},

iV

which leads to (3.4) as well.

"Given 4, the distribution achieving

PriX > é} = %,
18
X = § with probability &
~ | 0 with probability 1 — &,

" .where u<é.

Letting X = (V — ,u)ﬁ in Markov’s inequality,

Pr{(Y —p)? > ¥} < Pr{(Y - )’ 2 ¢’}

< EY- u)?

and noticing that Pri{(Y — u)* > €} = Pr{]Y — ul > ¢}, we get,
Pr{lY — uf > €} < -

Letting Y in Chebyshev's inequality from part (b) equal Z,, and noticing that
EZ, = 4 and Var{Z,) = 5’:~ (ie. Z, is the sum of = iid r.v.'s, %, each with
variance :!;i- ], we have,

- g2
Pr{|Z, — ul > & < —.
ne



3. The AEF and source coding. A discrete memoryless source emits a seguence of statisti-
cally independent binary digits with probabilities p(1) = 0.005 and p(0) = 0.995. The
digits are taken 100 at a time and a binary codeword is provided for every sequence of
100 digits containing three or fewer omes.

(2) Assuming that all codewords are the same length, find the minimum length re-
guired to provide codewords for all sequences with three or fewer ones.

(b) Calculate the probability of observing a source sequence for which no codeword
has been assigned.

¢} Usc Chebyshev’s inequality to bound the probability of observing a sonrce sequence
P g
f6r which no codeword has been assigned. Compare this bound with the actual
probability computed in part (b).

Solution: 7He AEP und source coding.

(a) The number of 100-bit binary sequences with three or fewer ones ig

1 160 100
(120) N ( 20) . ( : ) +.( . ) = 14 100 + 4950 + 161700 = 166751 .

The required codeword length is [log, 166751] = 18. (Note that #{0.005) =
0.0454  so 18 is quite a bit larger than the 4.5 bits of entropy.)

(b) The probability that a 100-kit sequence has three or fewer ones is

3
b (100)(0,905)i(0,995)19°—" = (LBOSTT + 0.30441 + 0.7572 + 0.01243 = 0.99833

o v ?

Thus the probability that the sequence that is generated cannot be encoded is
1 — 0.99833 = 0.NN147.

(c) In the case of a random variable S, that is the sum of n iid. random variables
Xy,Xg,...,X,, Chebyshev's inequality states that
Pr(}5 > < no*
(1S — np| =€) < T
where g and ¢? are the mean and variance of X;. (Therefore np and no?
are the mean and variance of §5.) In this problem, » = 100, gz = 0.005, and

o2 = {0.005)(0.995). Note that Sygo > 4 if and only if |Sypg — 100(0.005)| > 3.5,
so we shouid choose € = 3.5. Then

100(0.005)(0.995)

Pr(S100 2 4) < 35)

~ (.04061 .

This bound is much larger than the actual proha.bﬂity 0.00167.



5. AEP.Let Xy, X,,... beindependent identically distributed random variables drawn ac-
cording to the probability mass function p{z),2 € {1,2,..., m}. Thus p(z1,22,...,2.) =
1 p{z;). We know that w,l—‘logp(Xl,Xg,...,X.,) — H(X) in probability. Let

q(z1,22,...,%5) = [I2-) ¢(%;), where g is another probability mass function on {1,2,...,m}.

(a) Evaluate limfj- logg{ X1, Xy,..., Xy}, where X1, Xg,... areiid. ~ p(z).

(b) Now evalnate the limit of the log likelihood ratio - log ‘;2‘ X“ when X7, X, ..
are i.id. ~ p(¢). Thus the odds favouring ¢ are exponentially small when p is
true.

Sociution: (AEP).

Chapter 4



for i =1,3,7,9, H(X2|X1 = i) = log5 for i = 2,4,6,8 and H(X3|X; = i) = log8
bits for i = 5. Therefore, we can calculate the entropy rate of the king as

9
Ho= > mE{X|X; =) (4.85)
=]
= 0.3log3+0.5l0g5+ 0.2log8 (4.66)
= 2.24 bits. (4.67)

1. Doubly stochastic matrices. An n x n matrix P = [P;] is said to be doubly stochastic
it B; > 0 and ZjPij=1- forall i and }; P; =1 foral 7. An n X n matrix P
is said to be a permutation matrix if it is doubly stochastic and there is precisely one
P;; =1 in each row and each column.

It can be shown that every doubly stochastic matrix can be written 25 the convex
combination of permutation matrices.

(a) Tet a* = (a1,83,...,8n), @& 2 0, 25 a; = L, be a probability vector. Let b =aP,
where P is doubly stochastic. Show that b is a probability vector and that
H{by,boy. .. bn) 2 H{ay,a2,...,a,). Thus stochastic mixing increases entropy.

(b) Show that a stationary distribution p for a doubly stochastic matrix P is the
uniform distnibution.

{(c) Conversely, prove that if the uniform distribution is a stationary distribution for
a Markov transition matrix P, then P is doubly stochastic.

Scolution: Doubly Stochastic Matrices.

(2)
H{b) - H{a) = —ijlogbj-{-Za,-loga,- (4.1)
= 3 S wPlog(Y akPiy) 4+ 5 wiloga (4.2)
7 1 ke i
G
- zij};agp,-jlog TP (4.3)
> (X,: a—eP-':') log gjz: (4.4)

47



m
= llog — 4,
og — (4.5)
= 0, {4.6)
where the inequality follows from the log sum inequality.

(b) I the matrix is doubly stochastic, the substituting s, = L, we can easily check
that it satisfies p = uP.

{¢) If the uniform is a stationary distribution, then
1 1
R T Py = e Py, 4.7
m 23 23_ :P'J 7 m E}: 3 (4.7)

or 3, Psi =1 or that the matrix is doubly stochastic.

. Time's arrow. Let {X;}72__, be a stationary stochastic process. Prove that
H(Xolx—l’ X—.z, v ,X_ﬂ) = H{XUIXI, X}, [N a,Xﬂ,)l_

In other words, the present has a conditional emtropy given the past equal to the
conditional entropy given the futura.

This is true even though it is quite easy to concoct stationary random processes for
which the fiow into the future looks quite different from the flow into the past. That is
to say, one can determine the direction of time by locking at a sample function of the
process. Nonetheless, given the present state, the conditional uncerfainty of the next
symbel in the future is equal to the conditional uncertainty of the previous symbol in
the past.

Solution: Time’s arrow. By the chain rule for antropy,

CH(XolXoty..oXow) = H(Xo,Xog,..Xop)~ H(Xo1yo., Xon)  (48)
= H(XD»XI;Xh---,Xn)—E(Xth,...,Xn) (4.9)
= E(Xoin,X‘z,-.-,Xn), (410)

where (4.9) follows from stationarity.



4. Monotonicity of entropy per elemend. For astationary stochastic process X, X, ..

gshow that
(a)
H(Xl,Xg, 1 ’Xﬂ) - H(X]_,Xg, ey Xn—l)
n = n-—-1 ’
{b)

H(.‘YI,X21 to-,Xﬂ,)

n

> H(Xa|Xn-1,.--. X1).
Solution: Monotonicity of entropy per element.

{a) By the chain rule for entropy,

B{X1,X3.. ,Xa) T B(XAXY
n - n )
_ H(XJXmN+ BN HXIXCTY
n
H(Xﬂ]X“-I) + H(Xla X‘J.u - '!Xﬂ—-l)
: mn

From stationarity it follows that forall 1 < i< n,
B(X X" < B(XX),
which further implies, by averaging both sides, that,

:‘zll H(Xi]X‘_l)
n-—1

H(X1,X2,-.., Xn1)

n-1 )

H(X X

[A

Combining {4.41) and (4.43) yields,

H(X1,Xq,.. ., X5) p 1 H(Xy, X2, Xn1)
n T oon n—1

H(X:, X2, .., X0-1)
n—1

(b) By stationarity we have forall 1 <i < n,

H(X.|X™Y) < B(Xxx*Y),
which implies that,

43 n—-1
H(X,,IX""‘) — =1 H(XﬂIX )

n

ny BIX)

1A

n
H(Xlsxil'- -sxn)

n

&, Eniropy rates of Markov chains.

‘?Xﬂ'ﬁ

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(X5, Xa,.. ‘,x,._a:;]m)

(4.45)

(4.46)
(4.47)

(4.48)



6. Mazimum entropy process. A discrete memoryless source has alphabet {1,2} where
the symbol 1 has duration 1 and the symbol 2 has duration 2. The probabilities of 1
and 2 are py and p;, respectively. Find the value of p; that maximizes the source
entropy per unit time H(X)}/Elx. What is the maximum value H?

Solution: Mazimum entrepy process. The entropy per symbol of the source is
H(p) = —prlogpy — {1 — p1)log{l — ;1)
and the average symbol duration {or time per symbol) is

Tpl=1-p+2 m=m+20l-p)=2-m=1+p.

Therefore the source entropy per unit time is

_H(p) _ —pilogpr — (1 — p1)log(i — p1)
fim) = Flo) — 5, -

Since f(0) = f(1) = 0, the maximum value of f(p;) must cccur for some point py
such that 0 < gy < 1 and 3f/8p; = 0.

o R(p) _ T(0H/3m) - H(T)om)
61;-1 T(?l) - T2

After some calenlus, we find that the numerator of the above expression (assuming
natural logarithms) is

T(6H/0p) — H(8T/8p) = In(1 — p;) — 2In py,

which ia zero when 1 =p; = p} = py, that is, py — %(\/3— 1) = 0.61803, the reciprocal
of the golden ratio, 3(v5 + 1) = 1.61803. The corresponding entropy per urit time is

Hp1) _ =prlogp —ptlogpd (1 +p})logm
T(p1) 2-m 1+p]

= —log py = 0.69424 bits, .

Note that this result is the same as the maximum entropy rate for the Markov chain
in problem #4(d} of homework #4. This is because a source in which every 1 must be

followed by & 0 is equivalent 10 & source in which the symbol 1 has duration 2 and the
symbol 6 has duration 1.

7. Initial conditions. Show, for a stationary Markov chain, that
H(XDIX“) > H(XQ!X,,-]_) .

Thus initial conditions Xy become more difficult to recover as the future X, unfolds.

Solutien: Initial conditions. For a Markov chain, by the data processing theorem, we
have

I{Xo; Xno1) 2 T{Xo; Xa). , (4.49)
Therefore '
H{Xe) ~ H(XolXn-1) 2 H{Xo) - H{Xs|X,) (4.50)
or H(Xo[X,.) increases with n.



10. The cr;tropy rate of a dog looking for a bone. A dog walks on the integers, possibly
reversing direction at each step with probability p == .1, Let X¢ = 0. The first step is
equally likely to be positive or negative. A typical walk might look Like this:

(X0, X1,...)=(0,-1,-2,~3,~4,-3,-2,-1,0,1,...)

(a) Find H(Xy, Xgy..., Xn).
(b) Find the entropy rate of this browsing dog.
(c) What ie the expected number of steps the dog takes before reversing direction?

Sclution: The entropy rate of a dog locking for a bone.

(2) By the chain rule,

F{Xy5 Xq,..., Xa)

il

i H(X;)X*1
=

H{Xo)+ H(X1|Xo) + iH(-XdXi—l‘ Xi-zh

=2



©

(d)

X(n) = [Xy(n) Xa(n) Xa(n)]r satisfies the following recursion:

X1(n) 0 1 1 Xy(n—-1)
Xon) |=]1 0 0 Xaln—-1) |, (4.72)
Xa(n) 0 1 0 Xa(n -1}
with initial conditions X(1) = [110]T.
Let
0 11
A=t 1 0 0 [. (4.73)
D 1 0
Then we have by induction
X(n) = AX(n—1)= A2X(rn-2)=-.- = A" I1X(1). (4.74)

TUsing the eigenvalue decomposition of A for the case of distinct eigenvalues, we can
wiite A = U"LAU , where A is a matrix of eigenvalues. Then A" = U~*A™'U.
Show that we can write

X(n) = AT71Y + A1, + A371Y,, (4.75)

where Y1, Y2,Y; do not depend on n. For large n, this sum is doominated by
the largest term. Therefore argue that for 1 = 1,2,3, we have

ilug Xin) — log A, (4.76)

where A is the largest (positive) eigenvalue. Thus the number of sequences of

length n grows as A™ for large n. Calculate X for the matrix A above.

We will now take a different approach. Consider a Markov chain whose state
diagram is the one given in part (a), but with arbirtary transition probabilities.
Therefore the probability transition matrix of this Markov chain is

0 led 1
P=]1 0 B . (4.77)
0 1—-a 0O

Show that the stationary distribution of this Markov chain is

(e)
(f)

1 1 1-a?
= , , ) _ 4.78
. [Sma i-a 3—a] ( )

Maximize the entropy rate of the Markov chain over choices of a. What is the

maximum entropy rate of the chain?

Compare the maximum entropy rate in part (e} with log A in part (). Why are
the two answezs the same?



