ECE 542: Information Theory and Coding

Homework 1 Solutions
Problems 2.1, 2.2, 2.6, 2.8, 2.14, 2.21, 2.22, 2.30

. Coin flips. A fair coin is flipped until the first head occurs. Let X denote the number
of flips required.

(a) Find the entropy H(X) in bits. The following expressions may be useful:

o0 r o0 % T
E:Tm = }-—T’ EE%RT ==thr;75

n=1

(b) A random variable X is drawn according to this distribution. Find an “efficient”
sequence of yes-no questions of the form, “Is X contained in the set S?” Compare
H(X) to the expected number of questions required to determine X

Solution:

(a) The number X of tosses till the first head appears has the geometric distribution
with parameter p = 1/2, where P(X =n) = pi* ), n€ {1,2,...}. Hence the
entropy of X is

H(X) = -3 pg" ' log(pg"™")
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= H(p)/p bits.
If p=1/2, then H(X) =2 bits.



(b) Intuitively, it seems clear that the best questions are those that have equally likely
chances of receiving a yes or a no answer. Consequently, one possible guess is
that the most “efficient” series of questions is: Is X = 1?7 If not, is X = 27
If not, is X = 37 ... with a resulting expected number of questions equal to

n=17(1/2") = 2. This should reinforce the intuition that H(X) is a mea-
sure of the uncertainty of X. Indeed in this case, the entropy is exactly the
same as the average number of questions needed to define X, and in general
E(# of questions) > H(X). This problem has an interpretation as a source cod-
ing problem. Let 0 =no, 1 =yes, X =Source, and Y =Encoded Source. Then
the set of questions in the above procedure can be written as a collection of (X,Y))
pairs: (1,1), (2,01), (3,001), etc. . In fact, this intuitively derived code is the
optimal (Huffman) code minimizing the expected number of questions.

2. Entropy of functions. Let X be a random variable taking on a finite number of values.
What is the (general) inequality relationship of H(X) and H(Y) if
(a) Y=2X17
(b) Y=cosX?
Solution: Let y = g(z). Then
)= Y p2)
z:y=g(z)

Consider any set of z’s that map onto a single y. For this set
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Y. p(z)logp(z) & Y. p(z)logp(y) = p(y)log p(v),
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since log is a monotone increasing function and p(z) < Lry=gz) P(z) = p(y). Ex-
tending this argument to the entire range of X (and Y ), we obtain

H(X) = =) p(z)logp(z)

= =Y Y p(z)logp(z)
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L > = p(y)logp(y)
v
= H(Y),
with equality iff g is one-to-one with probability one.

(a) Y = 2% is one-to-one and hence the entropy, which is just a function of the
probabilities (and not the values of a random variable) does not change, i.e.,
H(X)= H(Y).

(b) Y = cos(X) is not necessarily one-to-one. Hence all that we can say is that
H(X)> H(Y), with equality if cosine is one-to-one on the range of X .



6. Zero conditional entropy. Show that if H(Y|X) =0, then Y is a function of X, i..,
for all z with p(z) > 0, there is only one possible value of y with p(z,y) > 0.

Solution: Zero Conditional Entropy. Assume that there exists an z, say zo and two
different values of y, say y; and y; such that p(zg,y) > 0 and p(zo,y2) > 0. Then

,;SIG) > p(zo,y1) + p(z0,¥2) > 0, and p(y1|z0) and p(y2|zo) are not equal to 0 or 1.
hus

2HYlX) = =Y p(z) Y p(y|z)log p(y|z) (2.66)
2 p(zo)(=p(v1lzo)log p(v1|20) — p(v2lz0) log p(¥2]20))  (2.67)
> 3105 (2.68)

since —tlogt > 0 for 0 < ¢t < 1, and is strictly positive for ¢ not equal to 0 or 1.
Therefore the conditional entropy H(Y|X) is 0 if and only if Y is a function of X.

8. World Series. The World Series is a seven-game series that terminates as soon as either
team wins four games. Let X be the random variable that represents the outcome of
a World Series between teams A and B; possible values of X are AAAA, BABABAB,
and BBBAAAA. Let Y be the number of games played, which ranges from 4 to 7.
Assuming that A and B are equally matched and that the games are independent,
calculate H(X), H(Y), H(Y|X), and H(X|Y). '

Solution:
World Series. Two teams play until one of them has won 4 games.

There are 2 (AAAA, BBBB) World Series with 4 games. Each happens with probability
(1/2)*.

There are 8 = 2(3) World Series with 5 games. Each happens with probability (1/2)°.
There are 20 = 2(3) World Series with 6 games. Each happens with probability (1/2)%.

There are 40 = Q(g) World Series with 7 games. Each happens with probability (1/2)7.

The probability of a 4 game series (Y = 4) is 2(1/2)* =1/8.
The probability of a 5 game series (Y = 5) is 8(1/2)° = 1/4.
The probability of a 6 game series (Y = 6) is 20(1/2)® =5/16.
The probability of a 7 game series (Y = 7) is 40(1/2)7 = 5/16.

H(X) = Zp fog

= (1/16)10g 16 + 8(1/32)log 32 + 20(1/64)log 64 + 40(1/128)log 128
= 5.8125



HY) = T pwlog=s

= 1/8log8+ 1/4log4 + 5/161log(16/5) + 5/16log(16/5)
= 1.924

Y is a deterministic function of X, so if you know X there is no randomness in Y. Or,
H(Y|X)=

Since H(X) + H(Y|X) = H(X,Y) = H(Y) + H(X|Y), it is easy to determine
H(X|Y)=H(X)+ HY|X)- H(Y) = 3.889

14. Drawing with and without replacement. An urn contains r red, w white, and b black
balls. Which has higher entropy, drawing £ > 2 balls from the urn with replacement
or without replacement? Set it up and show why. (There is both a hard way and a
relatively simple way to do this.)

Solution: Drawing with and without replacement. Intuitively, it is clear that if the
balls are drawn with replacement, the number of possible choices for the i-th ball is
larger, and therefore the conditional entropy is larger. But computing the conditional
distributions is slightly involved. It is easier to compute the unconditional entropy.

e With replacement. In this case the conditional distribution of each draw is the
same for every draw. Thus

red with prob. ——

r+w+b
X; = { white with prob. r+w+b (2.83)
black  with prob. o +b
and therefore
BX:  Xegsin: X)) = BEXS) (2.84)
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¢ Without replacement. The unconditional probability of the i-th ball being red is
still 7/(r+w+1b), etc. Thus the unconditional entropy H(X,) is still the same as
with replacement. The conditional entropy H(X;|Xi-1,...,X1) is less than the
unconditional entropy, and therefore the entropy of drawing without replacement
is lower.
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Data processing. Let X; — X3 — X3 — -+ — X, form a Markov chain in this order;
ie., let

p(z1,22,---,Za) =_f’(—r1)P(Iilzl)"'P(InlIn—l)-
Reduce I(X;;X2,...,Xn) to its simplest form.

Solution: Data Processing. By the chain rule for mutual information,
I(X1; X2, ..., Xa) = I(X1; X2) + I(X1; X3| X2) + -+ I(X1; Xal X2, . .., Xn=2). (2.95)

By the Markov property, the past and the future are conditionally independent given
the present and hence all terms except the first are zero. Therefore

I(Xl;XQ,...,Xn)= I(XﬁXz). (2.96)

Bottleneck. Suppose a (non-stationary) Markov chain starts in one of n states, necks
down to k < n states, and then fans back to m > k states. Thus X; — X3 — X3,
X1 €{1,2,...,n}, X2 €{1,2,...,k}, X3 €{1,2,...,m}.

(a) Show that the dependence of X; and X3 is limited by the bottleneck by proving
that I(X;; X3) < logk.

(b) Evaluate I(X;;X3) for k =1, and conclude that no dependence can survive such
a bottleneck.

Solution:

Bottleneck.

(2) From the data processing inequality, and the fact that entropy is maximum for a
uniform distribution, we get

I(X1; X3) I(X1; X>?)
H(X;)- H(X2 | X1)
H(X3)

log k.
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Thus, the dependence between X; and X3 is limited by the size of the bottleneck.
That is I(X; X3) <logk.

(b) For £k = 1, I(X1;X3) < logl = 0 and since I(X;, X3) > 0, I(X;,X3) = 0.
Thus, for k=1, X; and X3 are independent.
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Recall that,
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Let ¢; = a(f8)'. Then we have that,
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Notice that the final right hand side expression is independent of {p;}, and that the
inequality,

—-nglogpg < —loga— Alog
1=0

holds for all a,f such that,
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The constraint on the expected value also requires that,
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Combining the two constraints we have,
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= 2
= -3
= A,
which implies that,

A
b= 4
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Plugging these values into the expression for the maximum entropy,
—loga— Alogf =(A+1)log(A +1) - Alog A.
The general form of the distribution,
pi = af’

can be obtained either by guessing or by Lagrange multipliers where,
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F(pi, A1, X2) = - Zp.— log pi + A1(Zp.- -1+ Ag(Zip.- - A)

1=0 1=0 1=0
is the function whose gradient we set to 0.

Many of you used Lagrange multipliers, but failed to argue that the result obtained is
a global maximum. An argument similar to the above should have been used. On the
other hand one could simply argue that since —H(p) is convex, it has only one local
minima, no local maxima and therefore Lagrange multiplier actually gives the global
maximum for H(p).



