
16:332:542 Information Theory and Coding Final Examination
May 5, 2005

This is an 180 minute exam. Please answer the following questions in the notebooks pro-
vided. This is a closed book test. Make sure that you have included your name, personal
4 digit code (unrelated to your RU ID digits) and signature in each book used (5 points).
Read each question carefully. All statements must be justified. Computations should be
simplified as much as possible.

1. 20 points Let X1, Z1, Z2, . . . be iid Bernoulli random variables which take values 0
and 1 with equal probability. Define the sequence of random variables Xi as

Xi+1 = Xi + Zi, i = 1, 2, . . . , n− 1.

Find the mutual information I(X1;X2, X3, . . . , Xn).

From the definition of mutual information,

I(X1;X2, X3, . . . , Xn) = H(X2, . . . , Xn)−H(X2, . . . , Xn|X1)

= H(X2) +
n∑

i=3

H(Xi|Xi−1, . . . , X2)−
n∑

i=2

H(Xi|Xi−1, . . . , X1)

Note that for 1 ≤ j ≤ i− 1,

H(Xi|Xi−1, . . . , Xj) = H(Xi−1+Zi−1|Xi−1, . . . , Xj) = H(Xi−1+Zi−1|Xi−1) = H(Zi−1)

since Zi−1 is independent of the prior Xi−1, Xi−2, . . . , Xj . Thus

I(X1;X2, X3, . . . , Xn) = H(X2) +
n∑

i=3

H(Zi−1)−
n∑

i=2

H(Zi−1)

= H(X2)−H(Z1)

In addition, the PMF of X2 = X1 + Z1 is

PX2 (x) =


1/4 x = 0, 2
1/2 x = 1
0 otherwise

It follows that

H(X2) = −2
[
1
4

log
1
4

]
− 1

2
log

1
2

=
3
2
.

Since H(Z1) = 1, I(X1;X2, X3, . . . , Xn) = 1/2.

2. 35 points Let Z take values 0 and 1 with probabilities 1− p and p. Let X, which is
independent of Z, take values 1, 2, . . . , n with probabilities q = [q1, q2, . . . , qn]. Let

Y = XZ.
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(a) 10 points Find the entropy of Y in terms of the entropies of X and Z.
The PMF of Y is

PY (y) =


1− p y = 0
pqi y = 1, 2, . . . , n

0 otherwise.

It follows that the entropy of Y is

H(Y ) = −(1− p) log(1− p)−
n∑

i=1

pqi log(pqi)

= −(1− p) log(1− p)− p
n∑

i=1

qi (log p + log qi)

= −(1− p) log(1− p)− p log p
n∑

i=1

qi︸ ︷︷ ︸
1

−p
n∑

i=1

qi log qi

= H(Z) + pH(X)

(b) 10 points Find the p and q that maximize H(Y ).
For any p, we want to choose q to maaximize H(X). This is done by choosing
q = [1/n, . . . , 1/n], which yields H(X) = log n. With this choice of q,

H(Y ) = H(p) + p log n.

Working in nats, we find the optimal p via

dH(Y )
dp

= log(1− p)− log p + log n = 0.

This implies H(Y ) is maximized at p = n/(n + 1). In fact, for this choice of p, all
values of Y are equiprobable and H(Y ) = log(n + 1).

(c) 15 points Suppose X and Y are the input and output of a discrete memoryless
channel. For fixed p, what is the capacity C(p) of the channel? What value of p
maximizes C(p)?
First we find the mutual information

I(X;Y ) = H(Y )−H(Y |X).

Fortunately, we know already know H(Y ) = H(Z) + pH(X). This leaves

H(Y |X) = H(XZ|X) = H(Z).

Thus I(X;Y ) = pH(X). This is not surprising Z = 0 erases the symbol X.
Essentially the channel is an n input erasure channel.

For fixed p > 0, I(X;Y ) = pH(X) is maximized by choosing q = [1/n, . . . , 1/n] so
as to maximize H(X). Thus C(p) = p log n. Finally, C(p) is maximized at p = 1.
That is, the capcity of the erasure channel is highest when there are no erasures.
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3. 40 points A discrete memoryless multiple access channel has inputs X1 and X2 and
output Y = X1 + X2. The inputs X1 and X2 both use alphabet X = {0, 1, 2}; the
output Y has alphabet Y = {0, 1, . . . , 4}.

(a) 20 points Under the assumption that each Xi uses equiprobable inputs, find and
sketch the (R1, R2) region of achievable rates for this 2-user MAC.
Under the assumption that

PXi (x) =

{
1/3 x = 0, 1, 2,

0 otherwise,

The achievable rate region of the 2-user MAC is given by the constraints

R1 ≤ I(X1;Y |X2), R2 ≤ I(X2;Y |X1), R1 + R2 ≤ I(X1, X2;Y ).

Note that

I(X1;Y |X2) = I(X1;X1 + X2|X2) = H(X1|X2)−H(X1|X1 + X2, X2)
= H(X1|X2)−H(X1|X1, X2)
= H(X1|X2) = H(X1)

By symmetry, or by a symmetric sequence of steps if you don’t believe in symmetry,
we can conclude that I(X2;Y |X1) = H(X2).
For the sum rate constraint,

I(X1, X2;Y ) = H(Y )−H(Y |X1, X2) = H(Y )

since Y = X1 + X2 implies H(Y |X1, X2) = 0. The PMF of Y is the convolution
of the PMFs of X1 and X2. From the following table of Y as a function of X1 and
X2,

Y X2 = 0 X2 = 1 X2 = 2

X1 = 0 0 1 2
X1 = 1 1 2 3
X1 = 2 2 3 4

Since each X1, X2 pair has probability 1/9,

PY (y) =


1/9 y = 0, 4,

2/9 y = 1, 3,

3/9 y = 2,

0 otherwise.

It follows that

H(Y ) = −2
[
1
9

log
1
9

]
− 2

[
2
9

log
2
9

]
− 3

9
log

3
9

=
15 log 3− 4

9
= 2.197 bits

Since H(X1) = H(X2) = log 3 = 1.585 bits, the rate region (which all of you should
have skteched) is

R1 ≤ 1.585 R2 ≤ 1.585, R1 + R2 ≤ 2.197.
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(b) 20 points Suppose user 1 and user 2 collaborate and act as single transmitter
of rate R with input X = (X1, X2) and output Y . What is the capacity of the
channel? What input distribution achieves capacity?
Since Y = X1 + X2, H(Y |X) = 0 and

I(X;Y ) = H(Y )−H(Y |X) = H(Y ).

Thus, we achieve capacity by maximizing the output entropy H(Y ). Since Y ∈
{0, 1, . . . , 4}, we know that H(Y ) ≤ log 5. This upper bound is achieved if we can
make the outputs equiprobable. referring to the table for the value of Y as a function
of X1 and X2 in the previous part, we see that this is possible in many ways. One
such way is the following joint PMF

PX1,X2 (x1, x2) x2 = 0 x2 = 1 x2 = 2

X1 = 0 1/5 1/10 1/15
X1 = 1 1/10 1/15 1/10
X1 = 2 1/15 1/10 1/5

Any other joint PMF such that each anti-diagonal sums to 1/5 will also achieve
capacity. Also, note that log 5 = 2.322 > 2.197. That is, a cooperative strategy
achieves a sum rate that is about 0.1 bits per channel use higher than that achieved
by independent signaling.

4. 20 points Consider two parallel channels with independent Gaussian noise Z1 and Z2

with variances N1 = 1 and N2 = 2. The signalling is

Y1 = X1 + Z1

Y2 = X2 + Z2

The transmitter is subject to the power constraint E
[
X2

1 + X2
2

]
≤ P . Find and sketch

the capacity C(P ) of this channel as a function of P .

This problem is a gift. It was going to be harder ... but it seemed like the exam was going
to be too long. The solution, of course, is the waterfilling allocation. We choose powers
Pi = E

[
X2

i

]
such that

Pi = (λ−Ni)+.

where λ is chosen so that P1 + P2 = P . In this problem, N1 = 1 and N2 = 2, so that

P1 = (λ− 1)+, P2 = (λ− 2)+

Since the channels are Gaussian,

C(P ) =
1
2

∑
i

log
(

1 +
Pi

Ni

)
=

1
2

log(1 + (λ− 1)+) +
1
2

log
(

1 +
(λ− 2)+

2

)
.

The average power constraint implies

(λ− 1)+ + (λ− 2)+ = P .
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For very small P , we obtain 1 ≤ λ < 2, implying (λ− 2)+ = 0. It follows that λ = 1 + P
and that

C(P ) =
1
2

log(1 + P ), P small

5. 55 points Every coding theorem we proved this semester included a converse that
was proven using the Fano bound. For example, in the case of a discrete, mem-
oryless channel, for any sequence of (2nR, n) codes with message index X, code-
words Xn(W ), receiver output Y n, decoding function g(Y n), and error probability
P

(n)
e = P [W 6= g(Y n)], the proof used these steps:

nR = H(W ) (1)
= H(W |Y n) + I(W ;Y n) (2)
≤ H(W |Y n) + I(Xn(W );Y n) (3)

≤ 1 + P (n)
e nR + I(Xn(W );Y n) (4)

≤ 1 + P (n)
e nR + nC (5)

(a) 25 points For each of the above steps, (1) through (5), there is a specific reason
that step holds. Given a precise justification for each of the five steps above.

(b) 10 points Explain how step (5) implies a converse to the coding theorem.

(c) 20 points For one of the above five steps, the correct reason is simply “the Fano
bound” or “Fano’s inequality.” Derive the Fano bound as used in the above five
step proof. Hint: The proof defines the error event

E =

{
1 g(Y n) 6= W

0 g(Y n) = W

and then expands H(E,W |Y n) in two different ways.
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