
16:332:542 Information Theory and Coding Final Examination
May 8, 2002
SOLUTION

This is an 180 minute exam. Please answer the following four questions in the notebooks provided. You
are permitted to look at the Cover& Thomas text but not other materials. Make sure that you have included
your name, ID number (last 4 digits only) and signature in each book used (5 points). Read each question
carefully. All statements must be justified. Computations should be simplified as much as possible.

1. 20 points Consider the following k input and k + 1 output discrete erasure channel:

X=0 Y=0

X=1 Y=1

X=2 Y=2

X=k-1 Y=k-1

Y=e
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(a) For a given input distribution p(x), what is the mutual information I (X; Y )? (Express your
answer in terms of H(X))
We can solve this directly via

I (X; Y ) = H(X) − H(X |Y )

= H(X) − H(X |Y = e)P{Y = e} −
∑
y �=e

H(X |Y = y)P{Y = y}.

The event Y = e tells us nothing about X since

P{X = x |Y = e} = P{Y = e|X = x}P{X = x}
P{Y = e} = P{X = x}.

Thus, H(X |Y = e) = H(X). Further, given Y = y �= e, we know exactly what X was
sent across the channel. Hence, for y �= e, H(X |Y = y) = 0. Combining these facts,

I (X; Y ) = H(X) − H(X)P{Y = e} = (1 − ε)H(X).

(b) Define the random variable E as

E =
{

1 Y = e,

0 otherwise.

What are H(Y, E) and H(Y, E |X)?
Since E is a deterministic function of Y , H(E |Y ) = 0. Thus,

H(Y, E) = H(Y ) + H(E |Y ) = H(Y ).
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Furthermore,

H(Y, E) = H(E) + H(Y |E)

= H(ε, 1 − ε) + H(Y |E = 1)P{E = 1} + H(Y |E = 0)P{E = 0}.
Since Y = e when E = 1, H(Y |E = 1) = 0. Also, when E = 0, Y = X , so H(Y |E = 0) =
H(X). Thus,

H(Y ) = H(Y, E) = H(ε, 1 − ε) + H(X)(1 − ε).

For the same reason, H(E |X, Y ) = 0 and

H(Y, E |X) = H(E |X) + H(E |X, Y ) = H(E |X).

Since E is a Bernoulli ε random variable for any X = x .

H(Y, E |X) = H(E |X) =
∑

x

p(x)H(E |X = x) =
∑

x

p(x)H(ε, 1 − ε) = H(ε, 1 − ε).

(c) Suppose an arbitrary j input, k output channel from W to X is followed in cascade by the X, Y
erasure channel from part (a) as follows:

Erasure

Channel

W X Y
I(W;X)

What is I (W ; Y )? Your answer should be expressed in terms of I (W ; X). Hint: consider the
auxiliary random variable E .
We know that I (W ; Y ) = H(Y ) − H(Y |W ) and H(Y ) = (1 − ε)H(X). Since E is a
deterministic function of Y ,

H(Y |W ) = H(Y, E |W ) = H(E |W ) + H(Y |W, E).

For any event W = w, E is a Bernoulli (ε) random variable so H(E |W = w) = H(ε, 1 −
ε). For the second term, we observe that given E = 1, Y = e, no matter what the value
of W . Hence, H(Y |W, E = 1) = 0. On the other hand, if E = 0, then Y = X and
H(Y |W, E = 0) = H(X |W ). It follows that

H(Y |W, E) = P{E = 0}H(Y |W, E = 0) + P{E = 1}H(Y |W, E = 1) = (1 − ε)H(X |W ).

and
H(Y |W ) = H(E |W ) + H(Y |W, E) = H(ε, 1 − ε) + (1 − ε)H(X |W ).

Finally,

I (W ; Y ) = H(Y ) − H(Y |W )

= H(ε, 1 − ε) + H(X)(1 − ε) − [H(ε, 1 − ε) + (1 − ε)H(X |W )]

= (1 − ε)I (X; W ).

2. Consider a channel consisting of two parallel AWGN channels with inputs X1, X2 and outputs

Y1 = X1 + Z1,

Y2 = X2 + Z2.

The noises Z1 and Z2 are independent and have variances N1 and N2 with N1 < N2. However, we are
constrained to use the same symbol on both channels, i.e. X1 = X2 = X , where X is constrained to
have power E

[
X2

] = P .
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(a) Suppose at the receiver, we combine the outputs to produce Y = Y1 + Y2? What is the capacity
C1 of channel with input X and output Y ? What type of signaling achieves this capacity?
This was easy,

Y = Y1 + Y2 = X1 + X2 + (Z1 + Z2) = 2X + Z,

where Z = Z1 + Z2. This is an AWGN channel with received power E
[
(2X)2

] = 4P
and noise power σ 2

Z = σ 2
Z1

+ σ 2
Z2

= N1 + N2. The capacity of the X to Y channel is the
Shannon capacity

C1 = 1

2
log

(
1 + 4P

N1 + N2

)
.

Any rate R < C1 can be achieved using a (n, 2nR) Gaussian codebook for sufficiently
large n. The fact that the received power is 4P rather than 2P may seem surprising.
The typical case where X1 + X2 has power 2P occurs when X1 and X2 are uncorrelated.
When X1 = X2 = X , then X1 + X2 has power 4P. When transmitting the same signal
over two channels in a communications system, this benefit is realized only when the
two copies of the received signal are combined coherently.

(b) Suppose the receiver can view both outputs Y1 and Y2. What is the capacity C2 of this system?
Does the optimal signaling change from part (a)?
In this case, we have a vector channel Y = X + Z of the form[

Y1

Y2

]
=

[
1

1

]
X +

[
Z1

Z2

]
.

We can follow the derivation of mutual information for the colored Gaussian noise chan-
nel, except here the inputs (X1, X2) are completely correlated since X1 = X2 = X and
the noises are uncorrelated. In particular (X 1, X2) have covariance matrix

KX = E
[
XX′] = E

[[
1

1

]
X X

[
1 1

]]
=

[
1 1

1 1

]
E

[
X2

] =
[

1 1

1 1

]
P.

In addition, since noises Z1 and Z2 are independent, and also independent of the input
X ,

KZ =
[

N1 0

0 N2

]
, KY = KX + KZ =

[
P + N1 P

P P + N2.

]

For the mutual information,

I (X; Y1, Y2) = I (X1, X2; Y1, Y2) = h(Y1, Y2) − h(Y1, Y2|X1, X2)

= h(Y1, Y2) − h(Z1, Z2).

The mutual information is maximized when the differential entropy h(Y1, Y2) is maxi-
mized, which occurs when Y1, Y2 are Gaussian. In this case,

C2 = I (X; Y1, Y2) = 1

2
log

(
(2πe)2|KY |) − 1

2
log

(
(2πe)2|KZ |)

= 1

2
log

|KY |
|KZ |

= 1

2
log

(P + N1)(P + N2) − P2

N1 N2

= 1

2
log

(
1 + P(N1 + N1)

N1 N2

)

= 1

2
log

(
1 + P

N1
+ P

N2

)
.
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Because C1 is derived by the processing Y1+Y2, we should be able to show that C1 < C2.
Equivalently, if we write C1 = (1/2) log(1+γ1) and C2 = (1/2) log(1+γ2), then we should
be able to show γ2 > γ1. In fact,

γ2 − γ1 = P

N1
+ P

N2
− 4P

N1 + N2
= P(N1 − N2)

2

N1 N2(N1 + N2)

After the next part, it won’t be surprising that N1 = N2 implies C1 = C2.

(c) Suppose the receiver must combine the two received signals to produce Y′ = αY1 + (1 − α)Y2

where 0 ≤ α ≤ 1. However, as the receiver designer, you can choose the best α for combining.
What is the capacity C′ of this system with input X and output Y′? Is there a loss in capacity
relative to C2?
We observe that for X1 = X2 = X , the output Y ′ is

Y ′ = αY1 + (1 − α)Y2

= α(X + Z1) + (1 − α)(X + Z2)

= X + αZ1 + (1 − α)Z2

= X + Z .

Hence, we have an AWGN channel with signal power E
[
X2

] = P and noise power

N = E
[
Z2] = σ 2

Z = α2σ 2
Z1

+ (1 − α)2σ 2
Z2

= α2N1 + (1 − α)2N2.

The capacity of the system is maximized by choosing α = α∗ so that N is minimized.
Setting d N/dα|α=α∗ = 0 yields

2α∗N1 − 2(1 − α∗)N2 = 0 =⇒ α∗ = N2

N1 + N2
.

With the optimal α, the noise variance is

N =
(

N2

N1 + N2

)2

N1 +
(

N1

N1 + N2

)2

N2 = N1 N2

N1 + N2
.

Lastly, using the optimal α, the capacity of the system is

C ′ = 1

2
log

(
1 + P

N

)
= 1

2
log

(
1 + P

N1
+ P

N2

)
.

We see that C ′ = C2. That is, there is no loss in capacity by using optimal linear
combining of the two signals. The reason for this is because in both case, the two
signals are constrained to carry the same information signal. If we were allowed to
transmit independent X 1 and X2, linear combining would result in a significant loss in
capacity.

(d) Suppose the transmitter, is still constrained to transmit the same signal on both channels, but can
choose how much power to use on each channel. That is, for constants a and b, X1 = aX and
X2 = bX . Subject to a constraint that the total transmitted power is bounded by 2P , what are
the optimal a and b and corresponding capacity C′′ of the system with outputs (Y1, Y2)?

In this case, the constraint on total transmitted power is that E
[
X2

1 + X2
2

] = a2 P +b2 P ≤
2P or a2 + b2 ≤ 2. In this case, it is helpfult to view this as a vector system Y = X + Z
where [

Y1

Y2

]
=

[
a

b

]
X +

[
Z1

Z2

]
.
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The input has covariance

KX = E
[
XX′] = E

[[
a

b

]
X X

[
a b

]]
=

[
a2 ab

ab b2

]
P.

As always, since Z has independent components,

KZ =
[

N1 0

0 N2

]
, KY = KX + KZ =

[
a2 P + N1 abP

abP b2 P + N2

]
.

As in part (b), capacity is acheived with Gaussian signaling, yielding In this case,

C ′′ = I (X1, X2; Y1, Y2) = 1

2
log

|KY |
|KZ |

= 1

2
log

(a2 P + N1)(b2 P + N2) − (abP)2

N1 N2

= 1

2
log

(
1 + a2 P

N1
+ b2 P

N2

)
.

Hence, we want to maximize

S = a2 P

N1
+ b2 P

N2

subject to a2 + b2 = 2. Making the substitution b2 = 2 − a2, we have

S = 2P

N2
+ a2

(
P

N1
− P

N2

)

where we must have 0 ≤ a2 ≤ 2. Since N1 < N2, P/N1 > P/N2, implying we want to
choose a2 as large as possible. In this case, a2 = 2 and b2 = 0, yielding S = 2P/N1 and

C ′′ = 1

2
log

(
1 + 2P

N1

)
.

We see that C ′′ > C2. When we are constrained to use the same signal in two orthogo-
nal channels, its best to put all the power into the channel with less noise.

(e) Added during the exam Can a higher capacity be achieved using an arbitary linear combination
Ŷ = aY1 + bY2 rather than (as we did in part (c)) a = λ, b = 1 − λ, with 0 ≤ λ ≤ 1.

For the optimal a and b, let Ŷ = aY1 + bY2. Similarly, for the optimal λ, let Y ′ = λY1 +
(1−λ)Y2. By the data processing theorem, I (X; Y1, Y2) ≥ I (X; Ŷ ). Also, sicne we could
have chosen a = λ and b = 1 − λ, using the optimal a and b implies I (X; Ŷ ) ≥ I (X; Y ′).
Thus

I (X; Y1, Y2) ≥ I (X; Ŷ ) ≥ I (X; Y ′)

Finally, in parts (b) and (c), we showed I (X; Y1, Y2) = I (X; Y ′). Hence, there is no
advantage in choosing arbitrary a and b.
To understand why this is true, for any a and b, we can write

Ŷ = aY1 + bY2 = (a + b)X + aZ1 + bZ2 = (a + b)[X + a

a + b
Z1 + b

a + b
Z2].

We note that if a + b = 0, then Ŷ contains no signal components, which is clearly
suboptimal. When a + b �= 0, we can define λ = a/(a + b) so that

Ŷ = (a + b)[X + λZ1 + (1 − λ)Z2] = (a + b)Ỹ
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where Ỹ = X + λZ1 + (1 − λ)Z2. Since amplifying the received signal by a constant
cannot increase capacity, I (X; Ŷ ) = I (X; Ỹ ). Perhaps the only remaining question is
why the constraint 0 ≤ λ ≤ 1 does not limit capacity. The reason is that for λ < 0, or
λ > 1 and 1−λ < 0, we are actually throwing away signal power and then renormalizing
the received power; the result is enhanced noise power.

3. Consider the binary symmetric channel and the binary erasure channel shown below:

X=0 Y=0

X=1 Y=1

���

�
�

���

X=0 Y=0

X=1 Y=1
Y=e

���

���
�
�

BSC BEC

(a) Find the capacity CBSC(ε) of the BSC and CE (δ) of the erasure channel.
I forgot that the exam was open book when I tossed in this part. Straight from the text,

CBSC(ε) = 1 − H(ε), CE (δ) = 1 − δ.

(b) When δ = ε, use the data processing theorem to prove that the BEC has higher capacity than the
BSC.
Perhaps I should have given a better hint for this. The idea of the hint was that the data
processing inequality says that the capacity of a cascade of two channels is less than
capacity of the first channel. If the first channel is the BEC, we can cascade a second
channel to create a composite BSC. then the BSC has lower capacity. The cascade
structure

X=0 Z=0Y=0

X=1 Z=1Y=1
Y=e

��� �

��� �
�
� ½

½

is a BSC with crossover probability δ/2. For this cascade, the data processing inequality
says I (X; Z) ≤ I (X; Y ). If I (X; Z) is maximized by input distribution p1(x) while p2(x)

maximizes I (X; Y ), then

CBSC(δ/2) = I (X; Z)|p(x)=p1(x) ≤ I (X; Y )|p(x)=p1(x) ≤ I (X; Y )|p(x)=p2(x) = CE (δ).

Finally, for small δ, we know that

CBSC(δ) ≤ CBSC(δ/2) ≤ CE(δ).

(c) Consider the Z-channel:

X=0 Y=0

X=1 Y=1

�

���

�

Use the data processing theorem to find an upper bound and a lower bound to the capacity CZ (α)

of the z channel. Express these bounds in terms of CBSC(·) and CE (·).
To find an upper bound to capacity of the Z-channel, consider the following concaten-
tation to the binary erasure channel:
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X=0 Z=0Y=0

X=1 Z=1Y=1
Y=e

��� �
�

�
���

�
�

The X → Z channel is a Z-channel with crossover probability δ. For this cascade, the
dataprocessing inequality says I (X; Z) ≤ I (X; Y ) for any input distribution. If I (X; Z)

is maximized by input distribution p1(x) while p2(x) maximizes I (X; Y ), then

CZ(δ) = I (X; Z)|p(x)=p1(x) ≤ I (X; Y )|p(x)=p1(x) ≤ I (X; Y )|p(x)=p2(x) = CE (δ).

For a lower bound to the capacity of the Z channel, consider the following concatenation
of two Z-channels

X=0 Y=0 Z=0

X=1 Y=1 Z=1

� �

��� ���

� �

By choosing β = α/(1 + α), the concatenation is a BSC with crossover probability
ε = α/(1 + α). The X → Z channel is a BSC with crossover probability α/(1 + α).
For this cascade, the dataprocessing inequality says I (X; Z) ≤ I (X; Y ) for any input
distribution. If I (X; Z) is maximized by input distribution p1(x) while p2(x) maximizes
I (X; Y ), then

CBSC(α/(1 + α)) = I (X; Z)|p(x)=p1(x) ≤ I (X; Y )|p(x)=p1(x) ≤ I (X; Y )|p(x)=p2(x) = CZ(α).

Putting the two bounds together, we have

CBSC(α/(1 + α)) ≤ CZ(α) ≤ CE (α) = 1 − α.

4. Suppose we have a wireless network with n hops. For i = 0, 1, . . . , n − 1, node i transmits coded
messages at rate Ri to node i + 1 over an AWGN channel with noise variance Ni :

+ ++

Z1 Zn-1
Z0

X1` X2` Xn-1`
X0` Yn-2

Y1 Yn-1
Y0

Node

2

Node

n

Node

1

Node

n-1

Node

0

...

Assume each node transmits in an orthogonal channel. Node i decodes messages the transmission of
node i −1 and forwards to node i +1. Note that the nodes may or may not use different coding strate-
gies. Node i transmits at power Pi and the multihop system is subject to the constraint

∑n−1
i=0 Pi = P .

(a) In terms of Pi and Ni , what is the capacity Ci of the channel i from node i to node i + 1? (Yes,
this is a gift.)
Each channel i is just an AWGN channel with capacity

Ci = 1

2
log

(
1 + Pi

Ni

)
.

(b) For a given set of powers P0, . . . , Pn , what is the capacity of C of the multihop communication
system from node 0 to node n? Express your answer in terms of Ci . Explain your answer in
terms of the end-to-end data rate R.
On channel i , reliable communication at rate R is possible iff R < Ci . Hence, end-to-end
reliable communication is possible iff R < C = mini Ci .
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(c) What is the optimal power allocation P0, . . . , Pn−1? What is the corresponding channel capacity
C?
For a given set of powers P = (P0, . . . , Pn−1),

C(P) = min
i

1

2
log

(
1 + Pi

Ni

)
= 1

2
log

(
1 + min

i

Pi

Ni

)
.

Let γ = mini Pi/Ni . The optimal solution has

γ = P0

N0
= P1

N1
= · · · = Pn−1

Nn−1

To see this, suppose there exists j such that Pj/N j > 0. In that case, we can decrease
Pj by ε > 0 and then we can raise the power by some δ > 0 on all channels i such
that Pi/Ni = γ . This will increase capacity. This implies Pi = γ Ni . The constraint∑n−1

i=0 E = P implies

n−1∑
i=1

γ Ni = P =⇒ γ = P

N0 + · · · + Nn−1

Finally,

C = 1

2
log(1 + γ ) = 1

2
log

(
1 + P

N0 + N1 + · · · + Nn−1

)
.
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