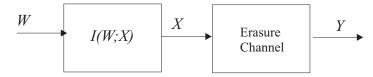

This is an 180 minute exam. Please answer the following four questions in the notebooks provided. You are permitted to look at the Cover& Thomas text but not other materials. Make sure that you have included your name, ID number (last 4 digits only) and signature in each book used (*5 points*). Read each question carefully. All statements must be justified. Computations should be simplified as much as possible.

1. 20 points Consider the following k input and k + 1 output discrete erasure channel:

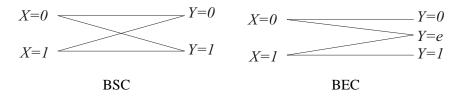


- (a) For a given input distribution p(x), what is the mutual information I(X; Y)? (Express your answer in terms of H(X))
- (b) Define the random variable *E* as

$$E = \begin{cases} 1 & Y = e \\ 0 & \text{otherwise} \end{cases}$$

What are H(Y, E) and H(Y, E|X)?

(c) Suppose an arbitrary *j* input, *k* output channel from *W* to *X* is followed in cascade by the *X*, *Y* erasure channel from part (a) as follows:

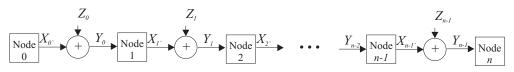

What is I(W; Y)? Your answer should be expressed in terms of I(W; X). Hint: consider the auxiliary random variable E.

2. 20 points Consider a channel consisting of two parallel AWGN channels with inputs X_1 , X_2 and outputs

$$Y_1 = X_1 + Z_1$$
$$Y_2 = X_2 + Z_2$$

The noises Z_1 and Z_2 are independent and have variances N_1 and N_2 with $N_1 < N_2$. However, we are constrained to use the same symbol on both channels, i.e. $X_1 = X_2 = X$, where X is constrained to have power $E[X^2] = P$.

- (a) Suppose at the receiver, we combine the outputs to produce $Y = Y_1 + Y_2$? What is the capacity C_1 of channel with input X and output Y? What type of signaling achieves this capacity?
- (b) Suppose the receiver can view both outputs Y_1 and Y_2 . What is the capacity C_2 of this system? Does the optimal signaling change from part (a)?
- (c) Suppose the receiver must combine the two received signals to produce $Y = \alpha Y_1 + (1 \alpha)Y_2$ where $0 \le \alpha \le 1$. However, as the receiver designer, you can choose the best α for combining. What is the capacity *C'* of this system with input *X* and output *Y'*? Is there a loss in capacity relative to C_2 ?
- (d) Suppose the transmitter, is still constrained to transmit the same signal on both channels, but can choose how much power to use on each channel. That is, for constants *a* and *b*, $X_1 = aX$ and $X_2 = bX$. Subject to a constraint that the total transmitted power is bounded by 2*P*, what are the optimal *a* and *b* and corresponding capacity *C'* of the system with outputs (Y_1, Y_2)?
- 3. Consider the binary symmetric channel and the binary erasure channel shown below:



- (a) Find the capacity $C_{BSC}(\epsilon)$ of the BSC and $C_E(\delta)$ of the erasure channel.
- (b) When $\delta = \epsilon$, use the data processing theorem to prove that the BEC has higher capacity than the BSC.
- (c) Consider the *Z*-channel:

Use the data processing theorem to find an upper bound and a lower bound to the capacity $C_Z(\alpha)$ of the *z* channel. Express these bounds in terms of $C_{BSC}(\cdot)$ and $C_E(\cdot)$.

4. Suppose we have a wireless network with *n* hops. For i = 0, 1, ..., n - 1, node *i* transmits coded messages at rate R_i to node i + 1 over an AWGN channel with noise variance N_i :

Assume each node transmits in an orthogonal channel. Node *i* decodes messages the transmission of node i - 1 and forwards to node i + 1. Note that the nodes may or may not use different coding strategies. Node *i* transmits at power P_i and the multihop system is subject to the constraint $\sum_{i=0}^{n-1} P_i = P$.

- (a) In terms of P_i and N_i , what is the capacity C_i of the channel *i* from node *i* to node i + 1? (Yes, this is a gift.)
- (b) For a given set of powers P_0, \ldots, P_n , what is the capacity of C of the multihop communication system from node 0 to node n? Express your answer in terms of C_i . Explain your answer in terms of the end-to-end data rate R.
- (c) What is the optimal power allocation P_0, \ldots, P_{n-1} ? What is the corresponding channel capacity *C*?