
332:542 Information Theory and Coding Examination 1
March 24, 2005

This is an 80 minute exam. You may have an additional 100 minutes to answer the following questions in the
notebooks provided. The exam is closed book. Make sure that you have included your name, your personal
random 4 digit code number and signature in each book used (5 points). Read each question carefully. All
statements must be justified. Computations should be simplified as much as possible.

1. 25 points Each day, it rains (event R = 1) or not (event R = 0). A TV station subscribes to a weather
forecasting service which delivers a prediction: Q = 1 if the prediction is rain, or Q = 0 if no rain.
Each day, the TV weatherman makes the weather announcement A = Q. Fortunately, Q and R are
not independent and have the following PMF

PR,Q (r, q) q = 1 q = 0
r = 1 1/8 1/16
r = 0 3/16 10/16

(a) 10 points A student observes that the weatherman is correct with probability 12/16 but could be
correct with probability 13/16 by always making the weather announcement A = 0, corresponding
to “no rain.” The student applies for the weatherman’s job, but the boss, who is an information
theorist, turns him down. Why?
When the weatherman always makes the announcement A = 0, the mutual information I(R;A) =
0; i.e., the weatherman communicates no information about the rain. When the weatherman
makes the prediction A = Q, the mutual information communicated to the TV audience about the
weather is

I(R;A) = I(R;Q) = E

[
log

PR,Q (r, q)
PR (r) PQ (q)

]
=

1
8

log
1/8

(3/16)(5/16)
+

1
16

log
1/16

(3/16)(11/16)

+
3
16

log
3/16

(13/16)(5/16)
+

10
16

log
10/16

(13/16)(11/16)

=
1
8

log
32
15

+
1
16

log
16
33

+
3
16

log
48
65

+
10
16

log
160
143

= 0.0906 bits

The boss believes that communicating some information, even 0.09 bits, will attract a bigger au-
dience than communicating no information.

(b) 10 points The prediction Q is based on a maximum likelihood (ML) hypothesis test (using some
unspecified observations X) as to whether R = 0 or R = 1. For what values of p = P (R = 1)
does the weatherman’s announcement A = Q also maximize the probability P (C) of a correct
prediction based on Q?
This question really has not much to do with information theory; it’s mostly a probability question.
From the joint PMF of R and Q, we can conclude that R has marginal PMF

PR (r) =

{
13/16 r = 0,

3/16 r = 1.

The conditional PMF of Q given R is

PQ|R (q|r) =
PR,Q (r, q)

PR (r)
.

In particular,

PQ|R (q|0) =

{
10/13 q = 0,
3/13 q = 1,

PQ|R (q|1) =

{
1/3 q = 0,

2/3 q = 1.
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We can view these conditional probabilities as a channel from R to Q. From the output Q, the
weatherman constructs a channel from Q to the announcement A. If the goal of the weatherman
is to maximize the information communicated, then the weatherman should do no processing and
announce A = Q. However, the probability of a correct announcement is maximized using the
maximum a posteriori decision rule. Given Q = q, the MAP decision is r̂ where r̂ is the argument
of

max
r̂=0,1

PR|Q (r̂|q) = max
r̂=0,1

PR,Q (r̂, q)
PQ (q)

= max
r̂=0,1

PR,Q (r̂, q) = max
r̂=0,1

PQ|R (q|r̂)PR (r̂)

When the weatherman learns Q = 0, the MAP rule becomes

max
r̂=0,1

PQ|R (0|r̂) PR (r̂) = max


10
13

(1− p)︸ ︷︷ ︸
r̂=0

,
1
3
p︸︷︷︸

r̂=1


The MAP rule is A = r̂ = 0 = Q iff

10(1− p)
13

>
p

3
, or

30
43

> p.

When the weatherman learns Q = 1, the MAP rule becomes

max
r̂=0,1

PQ|R (1|r̂) PR (r̂) = max


3
13

(1− p)︸ ︷︷ ︸
r̂=0

,
2
3
p︸︷︷︸

r̂=1


The MAP rule is A = r̂ = 1 = Q iff

3(1− p)
13

<
2p

3
, or

9
35

< p

Thus, for p = P (R = 1), the probability of correct decision is maximized by the announcement
A = Q iff

9
35

< p <
30
43

Otherwise, if p < 9/35, then the probability of a correct announcement is maximized by the
announcement A = 0 corresponding to “no rain;” while if p > 30/43, the probability of a correct
announcement is maximized by A = 1, corresponding to “rain.” Note that in the original problem,
we were given that p = 3/16, which is less than 9/35, and announcing “no rain” maximized the
probability of a correct announcement.

(c) 5 points Was it necessary in the preceding step to specify that the prediction Q was based on
maximum likelihood?
It was necessary to specify that Q was based on a maximum likelihood decision because it made
it clear that the output Q did not depend on the prior probabilities p = PR (1) = 1 − PR (0).
Otherwise, in examining how to maximize the probability of a correct decision based on Q, we
would need to know how Q depends on the a priori distribution of R.

2. 30 points Let X, Y, Z be an ensemble of discrete random variables. In each of the following problems,
there exists an equality or inequality between the two quantities. Fill in the blank ? with the
appropriate relationship (≤, =, or ≥) and justify the correctness of that relationship.

(a) I(X, Y ;Z) ? I(X;Z)
The correct answer is

I(X, Y ;Z) ≥ I(X;Z).

Proof: Since

I(X, Y ;Z) = H(Z)−H(Z|X, Y )
≥ H(Z)−H(Z|X)
= I(X;Z)

Note that H(Z|X, Y ) ≤ H(Z|X) because conditioning reduces entropy.
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(b) H(X|Z) ? H(X, Y |Z)
The correct answer is

H(X|Z) ≤ H(X, Y |Z).

Proof: By the chain rule

H(X, Y |Z) = H(X|Z) + H(Y |X, Z) ≥ H(X|Z)

since H(Y |X, Z) ≥ 0 because entropy is always non-negative.

(c) H(X, Z)−H(X) ? H(X, Y, Z)−H(X, Y )
The correct answer is

H(X, Z)−H(X) ≥ H(X, Y, Z)−H(X, Y ).

Proof: First we observe by the chain rule that

H(X, Z)−H(X) = H(X) + H(Z|X)−H(X) = H(Z|X).

Again by the chain rule,

H(X, Y, Z)−H(X, Y ) = H(X, Y ) + H(Z|X, Y )−H(X, Y ) = H(Z|X, Y )

The inequality follows since H(Z|X) ≥ H(Z|X, Y ).

3. 30 points The process X1, X2, . . . is an iid Bernoulli (p) random sequence. Let Rn = (X1 + · · ·+Xn)/n
denote the success rate of the process.

(a) In terms of Rn, characterize the set A
(n)
ε of typical sequences.

A sequence xn = (x1, . . . , xn) ∈ A
(n)
ε if

2−n(H(X)+ε) ≤ P (x1, . . . , xn) ≤ 2−n(H(X)−ε),

or equivalently,
−n(H(X) + ε) ≤ log P (x1, . . . , xn) ≤ −n(H(X)− ε).

Since each Xi is Bernoulli, we can write the Bernoulli PMF in the form

P (Xi = xi) = (1− p)1−xipxi , xi = 0, 1.

Since the Xi are independent,

P (x1, . . . , xn) =
n∏

i=1

P (Xi = xi)

= (1− p)n−
Pn

i=1 xip
Pn

i=1 xi

= (1− p)n−nrnpnrn

= (1− p)n

(
p

1− p

)nrn

where rn = (x1 + · · ·+ xn)/n. Thus,

log P (x1, . . . , xn) = n log(1− p) + nrn log
p

1− p
.

Combining these facts, we see that xn ∈ A
(n)
ε iff

−n(H(X) + ε) ≤ n log(1− p) + nrn log
p

1− p
≤ −n(H(X)− ε),

or, equivalently, xn ∈ A
(n)
ε ,

−ε ≤ H(X) + log(1− p) + rn log
p

1− p
≤ ε.

3



Note that

H(X) + log(1− p) = −p log p− (1− p) log(1− p) + log(1− p)

= −p log
p

1− p
.

It follows that xn ∈ A
(n)
ε if

−ε ≤ (rn − p) log
p

1− p
≤ ε.

(b) When p = 1/2, what sequences are typical?
When p = 1/2, we see that log(p/(1− p)) = 0 and a sequence xn is typical if

−ε ≤ (rn − p) · 0 ≤ ε.

That is, all sequences xn are typical for all ε > 0. This should not be surprising since every
sequence has the same probability.

(c) For what values of p > 1/2, if any, does A
(n)
ε include the most probable sequence? For such p,

does A
(n)
ε include the most probable sequence for all ε > 0?

For p > 1/2, the most probable sequence is the all one sequence xn = (1, 1 . . . , 1). For the all one
sequence, rn = 1, implying the all one sequence is typical iff

−ε ≤ (1− p) log
p

1− p
≤ ε.

For p > 1/2, this condition simplifies to

g(p) = (1− p) log
p

1− p
≤ ε.

Note that g(1/2) = 0 and limp→1 g(p) = 0. Note that g(p) > 0 for 1/2 < p < 1. Also note that

g′′(p) = − 1
p2(1− p)

< 0,

implying that g(p) is a concave function. Thus, there exists δ1 and δ2 such that the all one sequence
is typical if

1/2 ≤ p ≤ 1/2 + δ1, or 1− δ2 ≤ p ≤ 1.

Note that we can lower bound δ1 since log x ≤ (x− 1) log e implies

g(p) ≤ (1− p)
(

p

1− p
− 1
)

log e = (2p− 1) log e.

Thus (2p− 1) log e ≤ ε, or equivalently,

p ≤ 1
2

+
ε

2 log e

is a sufficient condition to ensure that the all-one sequence is typical. A similar sufficient condition
can be derived for p close to 1. Note that for p close to 1/2, the all-one sequence is typical because
every sequence with rn ≥ p is typical. For p close to 1, the all one sequence is typical because the
typical sequences are those with rn close to 1.

4. 20 points Consider the code {0, 10, 01} for a ternary source. Justify your answers to the following
questions:

(a) 5 points Is the code instantaneous?
No because 0 is a prefix of 01.

(b) 5 points Is the code nonsingular?
Yes, because all the code words are unique.
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(c) 5 points Is the code uniquely decodable?
No because 010 can be decoded as 0, 10 or 01, 0.

(d) 5 points Is there an instantaneous code with the same codeword lengths? If so, find an example
of such a code.
The code has codeword lengths l1 = 1, l2 = 2, l3 = 3. Since

3∑
i=1

2−li = 2−1 + 2−2 + 2−2 = 1,

the Kraft inequality is satisfied with equality. Thus an instantaneous code with these lengths is
satisfied. A simple example is {0, 10, 11}.

5. 50 points The outcome of a roulette wheel is either red X = 1 or black X = 0, equiprobably and
independently from spin to spin. By observing the ball until the last instant that bets can be placed,
a gambler can predict X with some accuracy. Given the gambler’s prediction, Y = 0 or Y = 1,
conditional probabilities for X are given by

PX|Y (1|1) = PX|Y (0|0) = 3/4.

(a) Calculate the mutual information I(X;Y ).
The channel from X to Y is a BSC with crossover probability ε = 1/4. With equiprobable inputs,
the outputs are equiprobable and H(y) = 1. For each input X = 0, 1, the conditional entropy of
Y is

H(Y |X = 1) = H(Y |X = 0) = H(ε) = −1
4

log
1
4
− 3

4
log

3
4
.

This implies H(Y |X) = H(ε) and

I(X;Y ) = H(Y )−H(Y |X) = 1−H(ε) =
3
4

log 3− 1 = 0.1887 bits.

(b) The gambler has some initial capital C0. On each spin, she bets a fraction 1 − q of her total
capital on the predicted color and a fraction q on the other color. Let Zn = 1 if the gambler’s
prediction is correct on trial n. After N spins, the gamblers capital is the random variable CN .
Express CN in terms of Z1, . . . , ZN .
Given capital Cn−1 after n− 1 steps, the gambler’s capital after step n will be

Cn =

{
2Cn−1(1− q) Zn = 1
2Cn−1q Zn = 0

In terms of the outcome Zn = 0, 1, this can be expressed as

Cn = [2Cn−1(1− q)]Zn [2Cn−1q]1−Zn = 2Cn−1(1− q)Znq1−Zn

It follows that

CN = C02N
N∏

n=1

(
(1− q)Znq1−Zn

)
Comment: An equivalent and perhaps simpler formulation is

CN = C02N
N∏

n=1

((1− q)Zn + q(1− Zn))

(c) Find q∗C , the value of q that maximizes the expected value E [CN ].
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Note that Z1, Z2, . . . is a seuqnece of iid Bernoulli (p = 3/4) random variables. This implies

E [CN ] = C02NE

[
N∏

n=1

(
(1− q)Znq1−Zn

)]

= C02N
N∏

n=1

E
[
(1− q)Znq1−Zn

]
= C02N

N∏
n=1

(
3
4
(1− q) +

1
4
q

)

= C02N

(
3
4
− q

2

)N

= C0

(
3
2
− q

)N

Note that E [CN ] is maximized by choosing q = q∗C = 0, i.e., she bets all her money on the
prediction.

(d) Define the rate of growth as

RN =
1
N

log2

CN

C0
.

Find q∗R, the value of q that maximizes the expected value E [RN ]. For q = q∗R, compare E [RN ]
and I(X;Y ).

RN =
1
N

(
N +

N∑
n=1

log
[
(1− q)Znq1−Zn

])

= 1 +
1
N

N∑
n=1

[Zn log(1− q) + (1− Zn) log(q)] .

Since the expected value of a sum is the sum of the expected values,

E [RN ] = 1 +
1
N

N∑
n=1

E [Zn log(1− q) + (1− Zn) log(q)]

= 1 +
1
N

N∑
n=1

[E [Zn] log(1− q) + (1− E [Zn]) log(q)]

= 1 +
[
3
4

log(1− q) +
1
4

log(q)
]

By taking the derivative of E [RN ] with respect to q, we find that E [RN ] is maximized at q =
q∗R = 1/4. In this case, the expected rate of return is

E [RN ] = 1 +
3
4

log
3
4

+
1
4

log
1
4

= 1−H(ε) = I(X;Y ).

(e) If you were the gambler, would you use q = q∗R or q = q∗C? Explain why.
If you use q = q∗C = 0, then you go broke as soon as your prediction is wrong. The probability you
have zero capital at time N is

P (CN = 0) = 1− (1− ε)N ,

which goes to 1 as N → ∞. Thus, using q = q∗C guarantees she eventually goes broke. On the
other hand, if you use q = q∗R = 1/4, then

RN = 1 +
1
N

N∑
n=1

[
Zn log

3
4

+ (1− Zn) log
1
4

]
.

6



If we define

Wn = Zn log
3
4

+ (1− Zn) log
1
4
,

then

RN = 1 +
1
N

N∑
n=1

Wn.

Since W1,W2, . . . is an iid sum, we know by the law of large numbers that RN will converge to
1 + E [Wn] = E [RN ] = I(X;Y ). In this case, CN will be close to C02NI(X;Y ). The law of large
numbers promises us that q = q∗R is a good solution.
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