e
Chapter 9

Differential Entropy

M

1. Differential entropy. Evaluate the differential entropy A(X) = — [ fln f for the fol-
lowing:

(a) The exponential density, f(z) = Ae™>® | z > 0.
(b) The Laplace density, f(z) = JAe>l=l.

(c) The sum of X1 and X5, where X; and X, are independent normal random
variables with means y; and variances c?,i=1,2.

Solution: Differential Entropy.

(a) E);ponential distribution.

f) = -/ Ae=>7(ln A — Az]de (9.1)
0
= —In A+ 1 nats. : (9.2)
= log < bits. (9.3)
X
(b) Laplace density.
* L e Mely L
) = _/ 5reFlln = 4+ 0 ) - Ne|) o (9.4)
= _m%_m,\ﬂ (9.5)
= In %\E nats. - (9.6)
2
= log Te bits. (9.7)
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(¢) Sum of two normal distributions.

The sum of two normal random variables is also normal, so applying the result
derived the class for the normal distribution, since X1+ Xz ~ N (u1+p2,02+03),

h(f) = —12—log 2me(of + o2) bits. (9.8)

2. Concavity of determinants. Let K; and K, be two symmetric nonnegative definite

n X n matrices. Prove the result of Ky Fan[4]:

IAKy + 0K, 2| K1 P Ko |*, for 0<A<1, X=1-2,
where | K | denotes the determinant of K.

Hint: Let Z = X4, where X; ~ N(0, K1), X2 ~ N(0,K2) and 6 = Bernoulli(}).
Then use H(Z | 8) < H(Z).

Solution: Concavity of Determinants. Let X; and X, be normally distributed n-
vectors, X; ~ ¢x,(x), 1 = 1,2. Let the random variable # have distribution Pr{d =
1} =X, Pr{ =2} =1~ 0<XA<1. Let 6, X;, and X, be independent and
let Z = Xy. Then Z has covariance Kz = AK; + (1 — A)K,. However, Z will not be

multivariate normal. However, since a normal distribution maximizes the entropy for
a given variance, we have

e o)
LT
" P

%ln(27re)“lAK1+(1—A)K2| > h(Z) > h(Z|6) = A-;—1n(2re)“[K1[+(1—A)%1n(27re)"lI{2| .
(9.9)
Thus
[AE1+ (1 - M) Ka| > K1 K>, (9.10)
as desired.

. Mutual information for correlated normals. Find the mutual information I(X;Y),

where

X o?  po?
Evaluate I(X;Y) for p=1,p=0, and p = —1, and comment.

Solution: Mutual information for correlated normals.
X o po?
Using the expression for the entropy of a multivariate normal derived in class

R(X,Y) = %10g(27re)2|K| = -;-log(27re)204(1 - p%). (9.12)

Since X and Y are individually normal with variance o2,

GREY
i

MX)=h(Y)= %log 2mea?. (9.13)
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Hence

I(X;Y) = h(X) + h(Y) - H(X,Y) = -?lz—log(l ~ ). (9.14)

(2) p= 1. In this case, X = Y, and knowing X implies perfect knowledge about
Y . Hence the mutual information is infinite, which agrees with the formula.

(b) p=0. In this case, X and Y are independent, and hence I(X;Y) =0, which
agrees with the formula.

(c) p= —1. In this case, X = ~Y, and again the mutual information is infinite as
in the case when p=1.

. Uniformly distributed noise. Let the input random variable X toa channel be uniformly

distributed over the interval —1/2 < = < +1/2. Let the output of the channel be
Y = X + Z, where the noise random variable is uniformly distributed over the interval
—a/2< z< +af2.

(a) Find I(X;Y) as a function of a.

(b) For a =1 find the capacity of the channel when the input X is peak-limited; that
is, the range of X is limited to ~1/2 < = < +1/2. What probability distribution
on X maximizes the mutual information I(X;Y)?

(c) (Optional) Find the capacity of the channel for all values of a, again assuming
that the range of X is limited to —1/2 < = < +1/2.

Solution: Uniformly distributed noise. The probability density function for ¥ = X+2Z
is the convolution of the densities of X and Z. Since both X and Z have rectangular

- densities, the density of Y is a trapezoid. For a < 1 the density for ¥ is

(1/2a)(y+(1+4a)/2) -(1+a)/2<y<—(1-0)/2
pr(y)=¢ 1 ~(1—-a)/2<y<+(1~a)/2
(1/2a)(-y - (1+¢)/2) +(1-a)/2<y<+(1+4a)/2-
and for a > 1 the density for Y 1s
y+(e+1)/2  —(a+1)/2<y< —(a-1)/2
pr(y) =4 1/e —(e-1)/2<y< +(a—-1)/2
—y—(a+1)/2 He-1)/2<y< +Ha+1)/2
(When a = 1, the density of ¥ is triangular over the interval [-1, +1].)

(a) We use the identity I(X;Y) = h(Y) — A(Y|X). It is easy to compute A(Y)
directly, but it is even easier to use the grouping property of entropy. First suppose
that a < 1. With probability 1 — a, the output Y is conditionally uniformly
distributed in the interval [—(1 — a)/2,+(1 — a)/2]; whereas with probability a,
Y has a split triangular density where the base of the triangle has width a. As
shown in examples in class,

MY) = H(@)+(-a)ha(l-a)+a(;+1e)

= —alna—(l—a)ln(l—a)+(1—a)ln(l—-a)—i—%-{—alna: % nats.
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(b)

I @ > 1 the trapezoidal density of Y can be scaled by a factor @, which yields
h(Y) =Ina+1/2a. Given any value of z,the output Y is conditionally uniformly
distributed over an interval of length a, so the conditional differential entropy in
nats is A(Y|X) = h(Z) =1Ina for all a > 0. Therefore the mutual information in

nats is
vy ) af2—Ina Hfa<ll
I(X’Y)‘{ 1/2a ifa>0.

As expected, I(X;Y) > o0 as a =+ 0 and I(X;Y)— 0 as ¢ = .
As usual with additive noise, we can express I(X;Y) in terms of A(Y') and h(Z):

I(X;Y) = h(Y) = h(Y|X) = h(Y) — h(Z).

Since both X and Z are limited to the interval [-1/2,41/2], their sum Y is
limited to the interval [—1,+1]. The differential entropy of Y is at most that of
a random variable uniformly distributed on that interval; that is, A(Y) < 1. This
maximum entropy can be achieved if the input X takes on its extreme values z =
+1 each with probability 1/2. In this case, I(X;Y)=MY) - h(Z)=1-0=1.
Decoding for this channel is quite simple:

X _ —-1/2 if y < 0
] +1/2 ify>o0. %,

This coding scheme transmits one bit per channel use with zero error probability.
(Only a received vaiury—'ﬁ-:rmbrgummmobzbﬁtrﬁ‘)——

When a is of the form 1/m for m = 2,3,..., we can achieve the maximum
possible value I(X;Y) = logm when X is umformly distributed over the discrete
points {—1,-1+2/(m—-1),...,41=2/(m—1),+1}. In this case ¥ has a uniform
probability density on the interva.l [-1-1/(m—-1),4141/(m—1)]. Other values

of a are left as an exercise.

5. Quantized random variables. Roughly how many bits are required on the average to
describe to 3 digit accuracy the decay time (in years) of a radium atom if the half-life
of radium is 80 years? Note that half-life is the median of the distribution.

Solution: Quantized random variables. The differential entropy of an exponentially
distributed random variable with mean 1/X is log § bits. If the median is 80 years,

“then

or

80 1
e dz = (9.15)
0 2
In2
A = — = 0.00866 :
% 6 (9.16)

and the differential entropy is loge/A. To represent the random variable to 3 digits ~ 4%
10 bits accuracy would need loge/X + 10 bits = 18.3 bits.
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6. Scaling. Let h{X) = - [ f(x)log f(x) dx. Show h(AX) = log | det(A4) | +A(X).
Solution: Scaling. Let Y = AX. Then the density of Y is

1

o(v) = T A7) (9.17)
Hence

hAX) = - / 9(y)lng(y)dy (9.18)

= -/ ﬁf(A'IY) [in f(471y) - log | 4] dy (9.19)

= - [ G0 R ) — Tog 4] 4] x (9.20)

R(X) + log | A]. (9.21)



