Chapter 8

Channel Capacity

1. Preprocessing the output. One is given a communication channel with transition prob-
abilities p(y | ) and channel capacity C = maxy,) [(X;Y). A helpful statistician

preprocesses the output by forming ¥ = 9(Y). He claims that this will strictly improve
the capacity.

(a) Show that he is wrong.

(b) Under what conditions does he not strictly decrease the capacity?
Solution: Preprocessing the output.

(a) The statistician calculates ¥ = g(Y). Since X —» Y — ¥ forms a Markov chain,
we can apply the data processing inequality. Hence for every distribution on z ,

) I(X;Y)2 I(X; 7). (8.1)
Let p(z) be the distribution on z that maximizes I(X;Y). Then
C = max I(X;Y) 2 I(X3 Y )p(aympiz) 2 I(X;Y)(z)epia) = rgl(ia)cI(X;f’) =C.
(8.2)
Thus, the statistician is wrong and processing the output does not increase capac-
ity.
(b) Vge have equality (no decrease in capacity) in the above sequence of inequalities

only if we have equality in data processing inequality, i.e., for the distribution that
maximizes I(X;Y), we have X — ¥ — Y forming a Markov chain.

2. Mazimum likelihood decoding. A source produces independent, equally probable sym-
bols from an alphabet (a1, a;) at a rate of one symbol every 3 seconds. These symbols
are transmitted over a binary symmetric channel which is used once each second by
encoding the source symbol a; as 000 and the source symbol a, as 111. I in the corre-
sponding 3 second interval of the channel output, any of the sequences 000,001,010,100
is received, a; is decoded; otherwise, as is decoded. Let € < %— be the channel crossover
probability.
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(a) For each possible received 3-bit sequence in the interval corresponding to a given
source letter, find the probability that a; came out of the source given that re-
ceived sequence.

(b) Using part (a), show that the above decoding rule minimizes the probability of an
incorrect decision.

(c) Find the probability of an incorrect decision (using part (a) is not the easy way
here).

(d) If the source is slowed down to produce one letter every 2n+1 seconds, a; being
encoded by 2n + 1 0’s and ay being encoded by 2n + 1 1’s. What decision rule
minimizes the probability of error at the decoder? Find the probability of error

as n — 00.
Solution: Mazimum likelthood decoding.

(2) By Bayes rule, for any events A and B,

Pr(A) Pr(B|A)
Pr(B) ’

Pr(A|B) = (8.3)

. In this case, we wish to calculate the conditional probability of a; given the channel
output. Thus we take the event A to the event that the source produced a;, and
B to be the event corresponding to one of the 8 possible output sequences. Thus
Pr(A) = 1/2, and Pr(B|A) = ¢(1 — €)>*, where ¢ is the number of ones in the
received sequence. Pr(B) can then be calculated as Pr(B) = Pr(a;) Pr(Ble;) +
Pr(Blaz). Thus we can calculate

_ l(1 —¢)?
Pr(a;|000) = %(12__ Fiia (8.4)
_ B _ (1 - €)%
Pr(e1]100) = Pr(a1|010) = Pr(a,/001) = T :)26 109 (8.5)
- (1 - €)é?
Pr(aq]110) = Pr(a1]|011) = Pr(a;]101) = s 52)52 Tl (8.6)
Pr(ay}111) = 3€ (8.7)

7€+ 3(1-¢p

(b) ¥ € < 1/2, then the probability of a; given 000,001,010 or 100 is greater than 1/2,
and the probability of ao given 110,011,101 or 111 is greater than 1/2. Therefore,
the decoding rule above chooses the source symbol that has maximum probability
given the observed output. This is the mazimum a posteriori decoding rule, and
is optimal in th.at it minimizes the probability of error. To see that this is true,
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let the input source symbol be X, let the output of the channel be denoted by Y
and the decoded symbol be X (V). Then

Pr(E) = Pr(X #X) (8.8)

= YPrY =y)Pr(X # X|Y =v) (8.9)

= Z::Pr(}’ =1) Z Pr(z|Y =) (8.10)

= Y Pr(Y = y)zyléz—(y;’r(é(y)lY = 1)) (8.11)

B = Zy:Pr(Y =y)=- ) Pr(Y =) Pr@W)lY =v)  (8.12)
= 1y— Z:, Pr(Y = y)yPr(-’E(y)lY =) (8:13)

(c)

(d)

and thus to minimize the probability of error, we have to maximize the second
term, which is maximized by choosing £(y) to the the symbol that maximizes the
conditional probability of the source symbol given the output.

The probability of error can also be expanded

Pr(E) = PrX #X) (8.14)
= Y Pr(z)Pr(X #2) (8.15)
= Pzr(al) Pr(Y = 011,110,101, or 111)
+ Pr(az) Pr(Y = 000,001,010 or 100) (8.16)
12 3\, 1 (a2 3
= 5(36(1—e)+€)+§(36(1—€)+6) (8.17)
= 3e(l—¢)+é. (8.18)

By extending the same arguments, it is easy to see that the decoding rule that
minimizes the probability of error is the maximum a posteriori decoding rule,
which in this case is the same as the maximum likelihood decoding rule (since the
two input symbols are equally likely). So we choose the source symbol that is most
likely to have produced the given output. This corresponds to choosing a; if the
number of 1’s in the received sequence is n or less, and choosing a; otherwise.
The probability of error is then equal to (by symmetry) the probability of error
given that a; was sent, which is the probability that n+ 1 or more 0’s have been
changed to 1's by the channel. This probability is

2n+41
2n+1

t=n+1l

)e"(l — ¢)Pntlt (8.19)

This probability goes to 0 as n — oo, since this is the probability that the number
of 1’s is n+ 1 or more, and since the expected proportion of 1’s is ne < n+1, by
the weak law of large numbers the above probability goes to 0 as n — oo
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3. An additive noise channel. Find the channel capacity of the following discrete memo-
ryless channel:
Z
X {+} Y
where Pr{Z = 0} = Pr{Z = a} = }. The alphabet for z is X = {0,1}. Assume that
Z is independent of X.
Observe that the channel capacity depends on the value of a.
Solution: A sum channel.
Y=X+2Z2 Xe{0,1}, Ze€{0,a} (8.20)
We have to distinguish various cases depending on the values of a.
a =0 In this case, ¥ = X, and maxI(X;Y) = max H(X) = 1. Hence the capacity %\ ’
is 1 bit per transmission. RN

a #0,£1 In this case, Y has four possible values 0,1,a and 1+ a. Knowing Y,
we know the X which was sent, and hence H(X|Y) = 0. Hence maxI(X;Y) =
~max H(X) =1, achieved for an uniform distribution on the input X.

a = 1 In this case Y has three possible output values, 0,1 and 2, and the channel
is identical to the binary erasure channel discussed in class, with a = 1/2. As
derived in class, the capacity of this channel is 1 — a = 1/2 bit per transmission.

a = —1 This is similar to the case when a = 1 and the capacity here is also 1/2 bit
per transmission.

. Channels with memory have higher capacity. Consider a binary symmetric channel with

Y; = X; ® Z;, where @ is mod 2 addition, and X;,Y; € {0,1}.

Suppose that {Z;} has constant marginal probabilities Pr{Z; =1} =p=1-Pr{Z; =
0}, but that Zy, Zs,..., 2, are not necessarily independent. Assume that Z" is inde-
pendent of the input X™. Let C =1 — H(p,1— p). Show that

max J(Xy,X2,...,Xni11,Y2,...,Y5) > nC.

P(z1,%2,-..1Tn)
Solution: Channels with memory have a higher capacity.

i=X:0Z (8.21)
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where

~_J 1 with probability p
Zi = { 0 with probability 1 —p (8.22)

and Z; are not independent.

I(-XI:XQ)"‘PXn;}rI’},?y""Yn)
= H(X1,Xy,...,Xn) = H(X1, X, ..., XalV1,Ya, ..., Yo)
H(Xl,Xz,-..,Xn) - H(ZlyZQq-.-.Zn[Y'l~Y') ..... Yn)

> H(X1,X2,---yXn)— H(Z1, 24, ..., 2,) (8.23)
> H(X1,Xy,...,Xn) - ) H(Z) (8.24)
= H(X3,X,,..., X,) — nH(p) (8.25)
= n-—nH(p), (8.26)

if X3,X,,...,X, are chosen ii.d. ~ Bern(%). The capacity of the channel with
memory over 1 uses of the channel is

nCc® = max  I(X1,Xo,..., Xn;¥1,72,...,Y3) (8.27)
p(z1,32,000sTn
> I(XliX27' . '7Xn;.-Y11Y21" ‘7Yﬂ)p(:cl,:g,...,zn)zBern(%) (828)
| > (- H(p) (8.29)
o = aC. (8.30)

Hence channels with memory have higher capacity. The intuitive explanation for this
result is that the correlation between the noise decreases the effective noise; one could
use the information from the past samples of the noise to combat the present noise.

5. Channel capacity. Conmsider the discrete memoryless channel ¥ = X + Z (mod 11),

where
7= 1, 2, 3
1/3, 1/3, 1/3

and X € {0,1,...,10}. Assume that Z is independent of X .
(a) Find the capacity. ,
(b) What is the maximizing p*(z)?

Solution: Channel capacity.

Y = X + Z(mod 11) (8.31)

where
‘ 1 with probability1/3
Z = 2 with probabilityl/3 (8.32)
3  with probability1/3 .
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In this case,
H(Y|X)= H(Z|X)= H(Z) =log3, (8.33)
independent of the distribution of X, and hence the capacity of the channel is
¢ = maxI(X;Y) (8.34)
p(z)
= rg(aa)cH(Y) - H(Y|X) (8.35)
= maxH(Y)—log3 - (8.36)
. PT)
= logll—log3, (8.37)
which is attained when Y has an uniform distribution, which occurs (by symmetry)
when X has an uniform distribution:
(a) The capacity of the channel is log —131 bits/transmission.
(b) The capacity is achieved by an uniform distribution on the inputs. p(X = 1) = 3
for 1=0,1,...,10.
6.

Using two channels at once. Consider two discrete memoryless channels (X, p(y:1 |
z1), V1) and (Xa,p(y2 | £2), V2) with capacities Cy and C, respectively. A new channel
(X1 x A2, p(w | 21) X P(y2 | 22), 1 Y,) is formed in which z; € X1 and z; € &, are
simultaneously sent, resulting in y,y2. Find the capacty of this channel.

Solution: Using two channels at once. Suppose we are given two channels, (X, p(nlze), }‘

and (X2, p(y2|x2),V2), which we can use at the same time. We can define the product

» channel as the channel, (X X X2,p(n1, v2l21,22) = p(n1]z1)p(v2lz2), Jh X V2). To find

the capacity of the product channel, we must find the distribution p(zy,z2) on the
input alphabet X; x X that maximizes [ (X1,X2;Y1,Y2). Since the joint distribution

(1, 2, Y1, ¥2) = p(21, 22)P(N1l21)P(2l22), (8.38)
Yy = X1 — X2 — Y, forms a Markov chain and therefore
I(X1,X%1,Y2) = H(N,Y:)- HN,Y:[X,, X2) (8.39)
= H(Y,Y:) - H(Nh|X1, X2) - H(Y2]X:, X2) (8.40)
= HN,Y:)- HY1|X1) - H(Y2|X2) (8.41)
< H(1W)+ H(Y:) - HN|Xy) - H(Y:|X,) (8.42)
= I(X1;Y1)+I(X2;Y2), (8.43)

‘where (8.40) and (8.41) follow from Markovity, and we have equality in (8.42)if ¥; and

Y, are independent. Equality occurs when X; and X, are independent. Hence

L%

o

s

s

Cc = (rnax)I(Xl,Xz;Y1,Y2) (8.44)
P Ty .22
< max I(Xl;Y1) + max I(XQ;Y2) (845)
p(z1,22) p(z1,22)
= ma.xI(Xl;Yl) +ma.xI(X2,Y2) (8.46)
p(z1) p(z2) fg‘
= C;+C,. _ ’ (8'47) A

%
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with equality iff p(z1,22) = p*(21)p*(z2) and p*(z;) and p"(:z:g) are the distributions
that maximize C; and C; respectively.

7. Noisy typewriter. Consider a 26-key typewriter.

(b) Now suppose that pushing a key results in printing that letter or the next (with

equal probability)? Thus A —» A or B,...,Z — Z or A. What is the capacity?

(c) What is the highest rate code with block length one that you can find that achieves
zero probability of error for the channel in part (b) .

Solution: Noisy typewriter.

(a) If the typewriter prints out whatever key is struck, then the output, Y, is the
same as the input, X, and

C =maxI(X;Y) = max H(X) = log 26, (8.48)

attained by a uniform distribution over the letters.

(b) In this case, the output is either equal to the input (with probability %) or equal

‘to the next letter ( with probability ). Hence H(Y|X) =log2 independent of
- the distribution of X, and hence

C =maxI(X;Y) = max H(Y) - log 2 = log 26 — log 2 = log 13, (8.49)
. attained for a uniform distribution over the output, which in turn is attained by
- _a uniform distribution on the input.

(c) A simple zero error block length one code is the one that uses every alternate
letter, say A,C,E,... ,W,Y. In this case, none of the codewords will be confused,

since A will produce either A or B, C will produce C or D, etc. The rate of this
code,

R=

_ log(# codewords) logl13

Block length  ~ 1~ o813 (8.50)

In this case, we can achieve capacity with a simple code with zero error.

8. Cascade of Binary Symmetric Channels. Show that a cascade of n identical binary
symmetric channels,

Xo = [BSCHT] — Xs - -+ = Xy — [B5C #2) - X,

each with raw error probability p, is equivalent to a single BSC with error probability
(1 = (1 — 2p)") and hence that nlLr%oI(Xo;Xn) =0 if p # 0,1. No encoding or
decoding takes place at the intermediate terminals X;,...,X,_;. Thus the capacity
of the cascade tends to zero.
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Solution: Cascade of binary symmetric channels. There are many ways to solve
this problem. One way is to use the singular value decomposition of the transition
probability matrix for a single BSC.

Let,
A=|1t7? P
p 1l-p
be the transition probability matrix for our BSC. Then the transition probability matrix
A, = A"
Now check that,
-1l 1 0
A=T 0 1-2p ] T
where, R
1 1
<[ 4]
Using this we have,
A, = A" .
_ 111 0
P
= | FQ-2pm F(1-(1-20))
3(1-(1-2p)") 3(1+(1-2p)")
From this we see that the cascade of n BSC'’s is also a BSC with probablility of error,
1 n
P = 5(1- (1= 29)")
The matrix, 7', is simply the matrix of eigenvectors of A.
This problem can also be solved by induction on n.
Probably the simplest way to solve the problem is to note that the probability of
error for the cascade channel is simply the sum of the odd terms of the binomial
expansion of (z + y)® with £ = p and y = 1 — p. But this can simply be written as
Wty -3y -2 =3(1-(1-2p). |
9. The Z channel. The Z-channel has binary input and output alphabets and transition

probabilities p(y|z) given by the following matrix:

Q=[1}2 1(}2] 2,9 €{0,1}

Find the capacity of the Z-channel and the maximizing input probability distribution.

i

oo,

i
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Solution: The Z channel. First we express I(X;Y), the mutual information between
the input and output of the Z-channel, as a function of ¢ = Pr(X = 1):

HY|X) = Pr(X=0)-0+Pr(X=1)-1=3
HY) = H(Px(Y =1))=H(z/2)
I(X:;Y) = HY)-H{Y|X)=H(z/2)-=

Since I(X;Y) = 0 when z = 0 and z = 1, the maximum mutual information is
i ‘ value of £ suchthat 0 < < 1.

Using elementary calculus, we determine that

d 1. 1-z/2
EI(X;Y) = §log2 ) -1,

which is equal to zero for z = 2/5. (It is reasonable that Pr(X = 1) < 1/2 because

X =1 is the noisy input to the channel.) So the capacity of the Z-channel in bits is
H(1/5)—2/5 = 0.722 — 0.4 = 0.322.

10. Suboptimal codes. For the Z channel of the previous problem, assume that we choose a
(27 n) code at random, where each codeword is a sequence of fair coin tosses. This
will not achieve capacity. Find the maximum rate R such that the probability of error

Pc(") , averaged over the randomly generated codes, tends to zero as the block length n
tends to infinity.

Solution: Suboptimal codes. From the proof of the channel coding theorem, it follows
that using a random code with codewords generated according to probability p(z), we
can send information at a rate I(X;Y) corresponding to that p(z) with an arbitrarily
low probability of error. For the Z channel described in the previous problem, we can

calculate J(X;Y) for a uniform distribution on the input. The distribution on Y is
(3/4, 1/4), and therefore

31 1 11 3 3
11. Zero-error capacity. A channel with alphabet {0,1,2,3,4} has transition probabilities

| of the form

_ 1 1/2 fy=z+1lmod5
p(ylz) = { 0 otherwise.

(a) Compute the capacity of this channel in bits.

(b) The zero-error capacity of a channel is the number of bits per channel use that
can be transmitted with zero probability of error. Clearly, the zero-error capacity
of this pentagonal channel is at least 1 bit (transmit 0 or 1 with probability 1/2).
Find a block code that shows that the zero-error capacity is greater than 1 bit.
Can you estimate the exact value of the zero-error capacity?
v (Hint: Consider codes of length 2 for this channel.)

The zero-error capacity of this channel was found by Lovasz[8].
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Solution: Zero-error capacity.

(2)

(b)

Since the channel is symmetric, it is easy to compute its capacity:

H(Y|X) 1
I(X;Y) = H(Y)-HY|X)=H(Y)-1.

So mutual information is maximized when Y is uniformly distributed, which oc-
curs when the input X is uniformly distributed. Therefore the capacity in bits is
C = 10g25 -1= 10g2 2.5=1.32.

Let us construct a block code consisting of 2-tuples. We need more than 4 code-
words in order to achieve capacity greater than 2 bits, so we will pick 5 codewords

~

>
aat

]

with distinct first symbols: {0a, 1, 2¢, 3d,4e}. We must choose a,b, ¢, d, e so that ““
the receiver will be able to determine which codeword was transmitted. A sim- =

ple repetition code will not work, since if, say, 22 is transmitted, then 11 might
be received, and the receiver could not tell whether the codeword was 00 or 22.
Instead, we use the code {03,14,20,31,42}; that is, each codeword is of the form
uv, where v = u + 3 mod 5. Then whenever zy is received, there is exactly one
possible codeword. (Each codeword will be received as one of 4 possible 2-tuples;
so there are 20 possible received 2-tuples, out of a total of 25.) Since there are

5 possible error-free messages with 2 channel uses, the zero-error capacity of this
channel is at least %logz 5 = 1.161 bits.

In fact, the zero-error capacity of this channel is exactly %log?_ 5. This result
was obtained by Laszlé Lovasz, “On the Shannon capacity of a graph,” IEEE
Transactions on Information Theory, Vol IT-25, pp. 1-7, January 1979. The
first results on zero-error capacity are due to Claude E. Shannon, “The zero-
error capacity of a noisy channel,” IEEE Transactions on Information Theory, Vol
IT-2, pp. 8-19, September 1956, reprinted in Key Papers in the Development of
Information Theory, David Slepian, editor, IEEE Press, 1974.

12. Time-varying channels. Consider a time-varying discrete memoryless channel. Let

Y1,Ys,...,Y, be conditionally independent given X, X»,..
ribution given by p(y | x) = [T%, pi(w: | =4).

., Xn, with conditional di sg;r

s
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Let X = (X1, %,..,%,),Y = (11,Ya,...,Y,). Fing max,x) I(X; Y).
Solution: Time-varying channels,

We can use the Same chain of inequalities ag jp the proof of the converse to the channe]
coding theorem. Hence

I(x™yymy H(Y™) ~ By xm (8.52)
= A0 AW,y e (8.53)
= A(¥Y)-YEmyix,, (8.54)

=1

M) = By - S rvxy (8.55)
=]
S AW amx, (8.56)
1=} 1=}
< éuwm» N (8.57)
with equality jf X0 X0 X is chosen iid. ~ Bern(1/2) Hence
mT(X1, Ko, X, Y, Y = i(l ~ h(p:)). (8.58)

1=}



