Chapter 10

The Gaussian Channel

1. A mutual information game. Consider the following channel:

Z -

X @ Y

Throtfghout this problem we shall constrain the signal power

EX=0, EX*=P, (10.1)
and the noise power
EZ =0, EZ? =N, (10.2)

and assume that X and Z are independent. The channel ca.pécity is given by I(X; X +
Z). :

Now for the game. The noise player chooses a distribution on Z to minimize I(X;X +
Z), while the signal player chooses a distribution on X to maximize I(X;X + Z).

Letting X* ~ N(0,P),Z2* ~ N(0,N), show that X* and Z* satisfy the saddlepoint

conditions '
I(X;X—i-Z‘)SI(X';X'-}-Z')SI(X";X'-}-Z). (10.3)
Thus
ngnm)?.xI(X;X-{—Z) = m]?.memI(X;X-i—Z) (10.4)
1 P
= =1 14 — 10.
5 og( + N), (10.5)

131



132

The Gaussian Channel i S,

and the game has a value. In particular, a deviation from normal for either player
worsens the mutual information from that player’s standpoint. Can you discuss the
implications of this?

Note: Part of the proof hinges on the entropy power inequality from Section 16.7, which
states that if X and Y are independent random n-vectors with densities, then

eSMX+Y) 5 (2h(X) 4 oZMY) (10.6)

Solution: A mutual information game.

Let X and Z be random variables with EX =0, EX?=P, EZ=0and EZ°=N.
Let X* ~ AN/(0, P) and Z* ~ N(0,N). Then as proved in class,

I(X;X+2%) = MX+2)-hX+2"X) (10.7)
= h(X +2%)-h2Z") (10.8)
< WX+ 2%)-n2Z) (10.9)
= I(X*X*+ 2%, (10.10)

where the inequality follows from the fact that given the variance, the entropy is max-
imized by the normal.

%log (27€)P + (27e)g(Z)) - %log(27re)g(Z) (10.16)
1 P
= —2-log (l + M) ) I (10-1?)

where the inequality follows from the entropy power inequality. Now 1 + a% is a

decreasing function of g(Z), it is minimized when ¢(Z) is maximum, which occurs

when A(Z) is maximized, i.e., when Z is normal. In this case, ¢(Z*) = N and we
have the following inequality,

oy,

st

To prove the other inequality, we use the entropy power inequality, "%
22h(X+Z) < 22’1(X) + 22"(2)_ (1011)
Let
. 92h(2) .
Z) = . 10.
| 9(2) = 55— (10.12)
Then
I(X*X*+2Z) = h(X*+2)-h(X*+Z|X*) (10.13)
= hMX*"+2Z)-H2Z) (10.14)
> _;_k,g (22HX) 4 22D _ p(7) (10.15)

f"“ -

I(X*%X* +2) > I(X* X* + 2°). - (10.18)
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Combining the two inequalities, we have
I(X;X+Z‘)§I(X';X'+Z’)SI(X';X'+Z). (10.19)

Hence, using these inequalities, it follows directly that

mzinm)?.xI(X;X-}-Z) < mgxI(X;X—%Z') (10.20)
= (X" X*+2% (10.21)
= minI(X%X"+2) (10.22)
< m)%meinI(X';X' +2). - . (10.23)

U § Nedilail A1 -~ TN

Z) and maxx minz I(X;X 4+ Z). We will now prove the inequality in the other direc-
tion is a general result for all functions of two variables.

For any function f(a,b) of two variables, for all b, for any ap,

F(ao,b) > min f(a,b). (10.24)
Hence- :
max f(ao,b) > mga.xmain f(a,b). (10.25)
Taking the minimum over aq, we have
n‘z;'znmgx f(ag,b) > I’%l;nmfxmén f(a,b). (10.26)
or .
mgnm?xf(a, b) > mga.xmain f(a,b). (10.27)
From »this result,
m%nm}?xI(X;X-*-Z)Zm)?.xm%nI(X;X-\LZ)'. (10.28)

From (10.23) and (10.28), we have

1l

min max I(X; X + Z) maxmin I[(X; X + Z) (10.29)
zZ X , X 'z

1 P
= log (1 + —ﬁ) : (10.30)

This inequality implies that we have a saddlepoint in the game, which is the value of
the game. If signal player chooses X*, the noise player cannot do any better than
choosing Z*. Similarly, any deviation by the signal player from X* will make him do

worse, if the noise player has chosen Z*. Any deviation by either player will make him
do worse.

Another implication of this result is that not only is the normal the best possible signal
distribution, it is the worst possible noise distribution.
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2. A channel with two independent looks at Y. Let ¥; and Y; be conditionally independent
and conditionally identically distributed given X. .

(a) Show I(X;Y11,Y?) = 2I(X; Y1) — I(Y1; Y2).
(b) Conclude that the capacity of the channel

X (Y1,Y2)

is less than twice the capacity of the channel

X ¢

Solution: A channel with two independent looks at Y. Channel with two independent

looks at Y .
(2)
I(X;¥h,Ya) = H(W,Y) - H(Y,YalX) | (10.31)
= HN)+ H(Y:)-I(Y1;13) - H1|X) - H(YX) (10.32) -
(since Y7 and Y3 are conditionally independent given(20)33) £ -
= X))+ I(X;Y,) - I(Y4; Ys) (10.34) _.

= 2I(X;Y1) - I(Y};Y2) (since Y7 and Y; are conditiphaldp)
identically distributed)

(b) The capacity of the single look channel X — Y is

Cy = m(a;)cI(X;Yl). (10.36)
p{x

The capacity of the channel X — (¥3,Y2) is

C: = maxl(X;¥,1y) (10.37)
o= 1;51(33(21(75;1’1) —I(%1;Y?) (10.38)

S max2l(Xih) | (10.39)

= 20 , (10.40)

Hence, two independent looks cannot be more than twice as good as one look.

3. The two-look Gaussian channel.

X (YI,YQ)
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Consider the ordinary Shannon Gaussian channel with two correlated looks at X, i.e.,
Y = (N,Y2), where

Y = X424 : ’ (10.41)
Y, = X+ 2, (10.42)

‘with a power constraint P on X, and (Z1,2Z2) ~ N2(0, K), where

e | N Np ]
[ ¥ |

.CD
.
(4%

~
iy
Nde”

Find the capacity C for

(a) p=1
(®) p =0
(c) p=-1

Solution: The two look Gaussian channel.

It is clear that the input distribution that maximizes the capacity is X ~ N(0, P).
Evaluating the mutual information for this distribution,

Cg = ma.xI(X;Yl,Yg) (10.44)
= hN,Y) - A1, Y2]X) (10.45)
= h(Y]_,Yz) - h(Z], Zng) (10.46)
= h(1h,Y7) - hZ1, Z2) (10.47)
Now since
' N Np '
~ AN
SR A R
we have 4
_ 1 2 _1 2ar201 _ 2
hMZy, 25) = 2log(27re) |Kz| = 2log(27re) N%(1 - p*). (10.49)
Since Y1 = X 4+ Z;,and Y5 = X 4+ Z,, we have
' P+N P4pN
and

hY:,Ys) = %log(Qwe)zjKyl - %log(21re)2(N2(1 — ) +2PN(1-p)).  (1051)

Hence the capacity is

C: = h(,Yy) - h(Z,2Z) (10.52)
2P

= %log (1 + m) . (10.53)
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(a) p = 1. In this case, C = 1log(1 + ]15,), which is the capacity of a single look
channel. This is not surprising, since in this case ¥; = ¥5.

(b) p=0. In this case,

1 2P
C=3log (1 + —A—;) : (10.54)

which corresponds to using twice the power in a single look. The capacity is the
same as the capacity of the channel X — (¥; +Y3).

(¢) p= —1. In this case, ' = oo, which is not surprising since if we add ¥; and Y3,
we can recover X exactly.

Note that the capacity of the above channel in all cases is the same as the capacity of
the channel X - Y; +Y5.

. Parallel channels and waterfilling. Consider a pair of parallel Gaussian channels, i.e.,

(2)-(2)(2) s
(‘?2)'»/\/(0,[? gg D (10.56)

and there is a power constraint E(X} + X}) < 2P. Assume that o? > o?. At what
power does the channel stop behaving like a single channel with noise variance o2, and
begin behaving like a pair of channels?

wihiere

Solution: Parallel channels and waterfilling. By the result of Section 10.4, it follows
that we will put all the signal power into the channel with less noise until the total
power of noise + signal in that channel equals the noise power in the other channel.
After that, we will split any additional power evenly between the two channels.

Thus the combined channel begins to behave like a pair of p&raﬂel channels when the
signal power is equal to the difference of the two noise powers, i.e., when 2P = o} -2,

£,



