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Problem 5.7.7 Solution

The difficulty of this problem is overrated since its a pretty simple application of Prob-
lem 5.7.6. In particular,

Q =
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sin θ cos θ

]∣
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∣
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Since X = QY, we know from Theorem 5.16 that X is Gaussian with covariance matrix

CX = QCYQ′ (2)

=
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] [
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=

[

1 ρ
ρ 1

]

. (5)

Problem 5.7.9 Solution

(a) If you are familiar with the Gram-Schmidt procedure, the argument is that applying
Gram-Schmidt to the rows of A yields m orthogonal row vectors. It is then possible to
augment those vectors with an additional n−m orothogonal vectors. Those orthogonal
vectors would be the rows of Ã.

An alternate argument is that since A has rank m the nullspace of A, i.e., the set
of all vectors y such that Ay = 0 has dimension n − m. We can choose any n − m
linearly independent vectors y1,y2, . . . ,yn−m in the nullspace A. We then define Ã′

to have columns y1,y2, . . . ,yn−m. It follows that AÃ′ = 0.

(b) To use Theorem 5.16 for the case m = n to show

Ȳ =

[

Y

Ŷ

]

=

[

A

Â

]

X. (1)

is a Gaussian random vector requires us to show that

Ā =

[

A

Â

]

=

[

A

ÃC−1
X

]

(2)
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is a rank n matrix. To prove this fact, we will suppose there exists w such that
Āw = 0, and then show that w is a zero vector. Since A and Ã together have n
linearly independent rows, we can write the row vector w′ as a linear combination of
the rows of A and Ã. That is, for some v and ṽ,

w′ = vt′A + ṽ′Ã. (3)

The condition Āw = 0 implies

[

A

ÃC−1
X

]

(

A′v + Ã′ṽ′

)

=

[

0

0

]

. (4)

This implies

AA′v + AÃ′ṽ = 0 (5)

ÃC−1
X

Av + ÃC−1
X

Ã′ṽ = 0 (6)

Since AÃ′ = 0, Equation (5) implies that AA′v = 0. Since A is rank m, AA′ is an
m×m rank m matrix. It follows that v = 0. We can then conclude from Equation (6)
that

ÃC−1
X

Ã′ṽ = 0. (7)

This would imply that ṽ′ÃC−1
X

Ã′ṽ = 0. Since C−1
X

is invertible, this would imply
that Ã′ṽ = 0. Since the rows of Ã are linearly independent, it must be that ṽ = 0.
Thus Ā is full rank and Ȳ is a Gaussian random vector.

(c) We note that By Theorem 5.16, the Gaussian vector Ȳ = ĀX has covariance matrix

C̄ = ĀCXĀ′. (8)

Since (C−1
X

)′ = C−1
X

,

Ā′ =
[

A′ (ÃC−1
X

)′
]

=
[

A′ C−1
X

Ã′
]

. (9)

Applying this result to Equation (8) yields

C̄ =

[

A

ÃC−1
X

]

CX

[

A′ C−1
X

Ã′
]

=

[

ACX

Ã

]

[

A′ C−1
X

Ã′
]

=

[

ACXA′ AÃ′

ÃA′ ÃC−1
X

Ã′

]

.

(10)

Since ÃA′ = 0,

C̄ =

[

ACXA′ 0

0 ÃC−1
X

Ã′

]

=

[

CY 0

0 C
Ŷ

]

. (11)

We see that C̄ is block diagonal covariance matrix. From the claim of Problem 5.7.8,
we can conclude that Y and Ŷ are independent Gaussian random vectors.
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Problem 12.5.4 Solution

From the problem statement, the Markov chain is

1 i Ki+1

p p p p

1-p p

1-p1-p1-p1-p

0
××× ×××

The self-transitions in state 0 and state K guarantee that the Markov chain is aperiodic.
Since the chain is also irreducible, we can find the stationary probabilities by solving π

′ =
π
′P; however, in this problem it is simpler to apply Theorem 12.13. In particular, by

partitioning the chain between states i and i + 1, we obtain

πip = πi+1(1 − p). (1)

This implies πi+1 = απi where α = p/(1 − p). It follows that πi = αiπ0. REquiring the
stationary probabilities to sum to 1 yields

K
∑

i=0

πi = π0(1 + α + α2 + · · · + αK) = 1. (2)

This implies

π0 =
1 − αK+1

1 − α
(3)

Thus, for i = 0, 1, . . . ,K,

πi =
1 − αK+1

1 − α
αi =

1 −
(

p
1−p

)K+1

1 −
(

p
1−p

)

(

p

1 − p

)i

. (4)

Problem 12.5.7 Solution

In this case, we will examine the system each minute. For each customer in service, we need
to keep track of how soon the customer will depart. For the state of the system, we will use
(i, j), the remaining service requirements of the two customers, To reduce the number of
states, we will order the requirements so that i ≤ j. For example, when two new customers
start service each requiring two minutes of service, the system state will be (2, 2). Since the
system assumes there is always a backlog of cars waiting to enter service, the set of states
is

0 (0, 1) One teller is idle, the other teller has a customer requiring one more minute of
service

1 (1, 1) Each teller has a customer requiring one more minute of service.

2 (1, 2) One teller has a customer requring one minute of service. The other teller has
a customer requiring two minutes of service.
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3 (2, 2) Each teller has a customer requiring two minutes of service.

The resulting Markov chain is shown on the right. Note that when we
departing from either state (0, 1) or (1, 1) corresponds to both custoemrs
finishing service and two new customers entering service. The state
transiton probabilities reflect the fact that both customer will have two
minute service requirements with probability 1/4, or both customers
will hae one minute service requirements with probability 1/4, or one
customer will need one minute of service and the other will need two
minutes of service with probability 1/2.

½¼

¼

¼

1

½

1

0
(0,1)

2
(1,2)

1
(1,1)

3
(2,2)

¼

Writing the stationary probability equations for states 0, 2, and 3 and adding the con-
straint

∑

j πj = 1 yields the following equations:

π0 = π2 (1)

π2 = (1/2)π0 + (1/2)π1 (2)

π3 = (1/4)π0 + (1/4)π1 (3)

1 = π0 + π1 + π2 + π3 (4)

Substituting π2 = π0 in the second equation yields π1 = π0. Substituting that result in the
third equation yields π3 = π0/2. Making sure the probabilities add up to 1 yields

π =
[

π0 π1 π2 π3

]

′

=
[

2/7 2/7 2/7 1/7
]

′

. (5)

Both tellers are busy unless the system is in state 0. The stationary probability both tellers
are busy is 1 − π0 = 5/7.

Problem 12.5.9 Solution

Under construction.

Problem 12.10.7 Solution

Since both types of calls have exponential holding times, the number of calls in the system
can be used as the system state. The corresponding Markov chain is

c-1 cc-r0

l+h l+h l l l

1 c-r c-r+1 c-1 c

When the number of calls, n, is less than c−r, we admit either type of call and qn,n+1 = λ+h.
When n ≥ c− r, we block the new calls and we admit only handoff calls so that qn,n+1 = h.
Since the service times are exponential with an average time of 1 minute, the call departure
rate in state n is n calls per minute. Theorem 12.24 says that the stationary probabilities
pn satisfy

pn =











λ + h

n
pn−1 n = 1, 2, . . . , c − r

λ

n
pn−1 n = c − r + 1, c − r + 2, . . . , c

(1)
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This implies

pn =











(λ + h)n

n!
p0 n = 1, 2, . . . , c − r

(λ + h)c−rλn−(c−r)

n!
p0 n = c − r + 1, c − r + 2, . . . , c

(2)

The requirement that
∑c

n=1 pn = 1 yields

p0

[

c−r
∑

n=0

(λ + h)n

n!
+ (λ + h)c−r

c
∑

n=c−r+1

λn−(c−r)

n!

]

= 1 (3)

Finally, a handoff call is dropped if and only if a new call finds the system with c calls in
progress. The probability that a handoff call is dropped is

P [H] = pc =
(λ + h)c−rλr

c!
p0 =

(λ + h)c−rλr/c!
∑c−r

n=0
(λ+h)n

n! +
(

λ+h
λ

)c−r ∑c
n=c−r+1

λn

n!

(4)

Problem 12.11.2 Solution

In this problem, we model the system as a continuous time Markov chain. The clerk and
the manager each represent a “server.” The state describes the number of customers in
the queue and the number of active servers. The Markov chain issomewhat complicated
because when the number of customers in the store is 2, 3, or 4, the number of servers may
be 1 or may be 2, depending on whether the manager became an active server.

When just the clerk is serving, the service rate is 1 customer per minute. When the
manager and clerk are both serving, the rate is 2 customers per minute. Here is the Markov
chain:

1 4c

4m

2c

2m

5 6

1 1

2

1

2
2

1

2

2 2

0 3c

3m

l l

l

l l

l

l

l

l l

In states 2c, 3c and 4c, only the clerk is working. In states 2m, 3m and 4m, the manager
is also working. The state space {0, 1, 2c, 3c, 4c, 2m, 3m, 4m, 5, 6, . . .} is countably infinite.
Finding the state probabilities is a little bit complicated because the are enough states
that we would like to use Matlab; however, Matlab can only handle a finite state space.
Fortunately, we can use Matlab because the state space for states n ≥ 5 has a simple
structure.

We observe for n ≥ 5 that the average rate of transitions from state n to state n + 1
must equal the average rate of transitions from state n + 1 to state n, implying

λpn = 2pn+1, n = 5, 6, . . . (1)
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It follows that pn+1 = (λ/2)pn and that

pn = αn−5p5, n = 5, 6, . . . , (2)

where α = λ < 2 < 1. The requirement that the stationary probabilities sum to 1 implies

1 = p0 + p1 +

4
∑

j=2

(pjc + pjm) +

∞
∑

n=5

pn (3)

= p0 + p1 +

4
∑

j=2

(pjc + pjm) + p5

∞
∑

n=5

αn−5 (4)

= p0 + p1 +

4
∑

j=2

(pjc + pjm) +
p5

1 − α
(5)

This is convenient because for each state j < 5, we can solve for the staitonary probabilities.
In particular, we use Theorem 12.23 to write

∑∑

i rijpi = 0. This leads to a set of matrix
equations for the state probability vector

p =
[

p0 p1 p2c p3c p3c p4c p2m p3m p4m p5

]

′

(6)

The rate transition matrix associated with p is

Q =

































p0 p1 p2c p3c p4c p2m p3m p4m p5

0 λ 0 0 0 0 0 0 0
1 0 λ 0 0 0 0 0 0
0 1 0 λ 0 0 0 0 0
0 0 1 0 λ 0 0 0 0
0 0 0 1 0 0 0 0 λ
0 2 0 0 0 0 λ 0 0
0 0 0 0 0 2 0 λ 0
0 0 0 0 0 0 2 0 λ
0 0 0 0 0 0 0 2 0

































, (7)

where the first row just shows the correspondence of the state probabilities and the matrix
columns. For each state i, excepting state 5, the departure rate νi from that state equals
the sum of entries of the corresponding row of Q. To find the stationary probabilities, our
normal procedure is to use Theorem 12.23 and solve p′R = 0 and p′1 = 1, where R is
the same as Q except the zero diagonal entries are replaced by −νi. The equation p′1 = 1
replaces one column of the set of matrix equations. This is the approach of cmcstatprob.m.

In this problem, we follow almost the same procedure. We form the matrix R by
replacing the diagonal entries of Q. However, instead of replacing an arbitrary column with
the equation p′1 = 1, we replace the column corresponding to p5 with the equation

p0 + p1 + p2c + p3c + p4c + p2m + p3m + p4m +
p5

1 − α
= 1. (8)

That is, we solve
p′R =

[

0 0 0 0 0 0 0 0 0 1
]

′

. (9)
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where

R =





























−λ λ 0 0 0 0 0 0 1
1 −1 − λ λ 0 0 0 0 0 1
0 1 −1 − λ λ 0 0 0 0 1
0 0 1 −1 − λ λ 0 0 0 1
0 0 0 1 −1 − λ 0 0 0 1
0 2 0 0 0 −2 − λ λ 0 1
0 0 0 0 0 2 −2 − λ λ 1
0 0 0 0 0 0 2 −2 − λ 1
0 0 0 0 0 0 0 2 1

1−α





























(10)

Given the stationary distribution, we can now find E[N ] and P [W ].
Recall that N is the number of customers in the system at a time in the distant future.

Defining
pn = pnc + pnm, n = 2, 3, 4, (11)

we can write

E [N ] =
∞
∑

n=0

npn =
4

∑

n=0

npn +
∞
∑

n=5

np5α
n−5 (12)

The substitution k = n − 5 yields

E [N ] =

4
∑

n=0

npn + p5

∞
∑

k=0

(k + 5)αk (13)

=

4
∑

n=0

npn + p5
5

1 − α
+ p5

∞
∑

k=0

kαk (14)

From Math Fact B.7, we conclude that

E [N ] =

4
∑

n=0

npn + p5

(

5

1 − α
+

α

(1 − α)2

)

(15)

=

4
∑

n=0

npn + p5
5 − 4α

(1 − α)2
(16)

Furthermore, the manager is working unless the system is in state 0, 1, 2c, 3c, or 4c.
Thus

P [W ] = 1 − (p0 + p1 + p2c + p3c + p4c). (17)

We implement these equations in the following program, alongside the corresponding out-
put.

7



function [EN,PW]=clerks(lam);

Q=diag(lam*[1 1 1 1 0 1 1 1],1);

Q=Q+diag([1 1 1 1 0 2 2 2],-1);

Q(6,2)=2; Q(5,9)=lam;

R=Q-diag(sum(Q,2));

n=size(Q,1);

a=lam/2;

R(:,n)=[ones(1,n-1) 1/(1-a)]’;

pv=([zeros(1,n-1) 1]*R^(-1));

EN=pv*[0;1;2;3;4;2;3;4; ...

(5-4*a)/(1-a)^2];

PW=1-sum(pv(1:5));

>> [en05,pw05]=clerks(0.5)

en05 =

0.8217

pw05 =

0.0233

>> [en10,pw10]=clerks(1.0)

en10 =

2.1111

pw10 =

0.2222

>> [en15,pw15]=clerks(1.5)

en15 =

4.5036

pw15 =

0.5772

>>

We see that in going from an arrival rate of 0.5 customers per minute to 1.5 customers
per minute, the average number of customers goes from 0.82 to 4.5 customers. Similarly,
the probability the manager is working rises from 0.02 to 0.57.

Problem 12.11.4 Solution

This problem is actually very easy. The state of the system is given by X, the number of
cars in the system.When X = 0, both tellers are idle. When X = 1, one teller is busy,
however, we do not need to keep track of which teller is busy. When X = n ≥ 2, both
tellers are busy and there are n − 2 cars waiting. Here is the Markov chain:

7 81 20

l l l l l

1 2 2 2 2

×××

Since this is a birth death process, we could easily solve this problem using analysis. How-
ever, as this problem is in the Matlab section of this chapter, we might as well construct
a Matlab solution:

function [p,en]=veryfast2(lambda);

c=2*[0,eye(1,8)]’;

r=lambda*[0,eye(1,8)];

Q=toeplitz(c,r);

Q(2,1)=1;

p=cmcstatprob(Q);

en=(0:8)*p;

The code solves the stationary distribution and
the expected number of cars in the system for
an arbitrary arrival rate λ.

Here is the output:
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>> [p,en]=veryfast2(0.75);

>> p’

ans =

0.4546 0.3410 0.1279 0.0480 0.0180 0.0067 0.0025 0.0009 0.0004

>> en

en =

0.8709

>>
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