
Stochastic Signals and Systems

Additional Solutions – Part 1

Problem Solutions : Yates and Goodman, 2.5.11 2.7.9 2.8.10 3.5.10 3.6.9 3.7.18 4.9.15
4.11.5 5.3.8 5.4.7 5.5.5 5.5.6 5.6.6 and 5.6.9

Problem 2.5.11 Solution

We write the sum as a double sum in the following way:

∞∑

i=0

P [X > i] =
∞∑

i=0

∞∑

j=i+1

PX (j) (1)

At this point, the key step is to reverse the order of summation. You may need to make a
sketch of the feasible values for i and j to see how this reversal occurs. In this case,

∞∑

i=0

P [X > i] =

∞∑

j=1

j−1
∑

i=0

PX (j) =

∞∑

j=1

jPX (j) = E [X] (2)

Problem 2.7.9 Solution

(a) There are
(46

6

)
equally likely winning combinations so that

q =
1
(46

6

) =
1

9,366,819
≈ 1.07 × 10−7 (1)

(b) Assuming each ticket is chosen randomly, each of the 2n− 1 other tickets is indepen-
dently a winner with probability q. The number of other winning tickets Kn has the
binomial PMF

PKn
(k) =

{ (2n−1
k

)
qk(1 − q)2n−1−k k = 0, 1, . . . , 2n − 1

0 otherwise
(2)

Since the pot has n + r dollars, the expected amount that you win on your ticket is

E [V ] = 0(1 − q) + qE

[
n + r

Kn + 1

]

= q(n + r)E

[
1

Kn + 1

]

(3)

Note that E[1/Kn + 1] was also evaluated in Problem 2.7.8. For completeness, we
repeat those steps here.

E

[
1

Kn + 1

]

=

2n−1∑

k=0

1

k + 1

(2n − 1)!

k!(2n − 1 − k)!
qk(1 − q)2n−1−k (4)

=
1

2n

2n−1∑

k=0

(2n)!

(k + 1)!(2n − (k + 1))!
qk(1 − q)2n−(k+1) (5)
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By factoring out 1/q, we obtain

E

[
1

Kn + 1

]

=
1

2nq

2n−1∑

k=0

(
2n

k + 1

)

qk+1(1 − q)2n−(k+1) (6)

=
1

2nq

2n∑

j=1

(
2n

j

)

qj(1 − q)2n−j

︸ ︷︷ ︸

A

(7)

We observe that the above sum labeled A is the sum of a binomial PMF for 2n
trials and success probability q over all possible values except j = 0. Thus A =
1 −

(2n
0

)
q0(1 − q)2n−0, which implies

E

[
1

Kn + 1

]

=
A

2nq
=

1 − (1 − q)2n

2nq
(8)

The expected value of your ticket is

E [V ] =
q(n + r)[1 − (1 − q)2n]

2nq
=

1

2

(

1 +
r

n

)

[1 − (1 − q)2n] (9)

Each ticket tends to be more valuable when the carryover pot r is large and the
number of new tickets sold, 2n, is small. For any fixed number n, corresponding to
2n tickets sold, a sufficiently large pot r will guarantee that E[V ] > 1. For example
if n = 107, (20 million tickets sold) then

E [V ] = 0.44
(

1 +
r

107

)

(10)

If the carryover pot r is 30 million dollars, then E[V ] = 1.76. This suggests that buying
a one dollar ticket is a good idea. This is an unusual situation because normally a
carryover pot of 30 million dollars will result in far more than 20 million tickets being
sold.

(c) So that we can use the results of the previous part, suppose there were 2n− 1 tickets
sold before you must make your decision. If you buy one of each possible ticket, you
are guaranteed to have one winning ticket. From the other 2n − 1 tickets, there will
be Kn winners. The total number of winning tickets will be Kn + 1. In the previous
part we found that

E

[
1

Kn + 1

]

=
1 − (1 − q)2n

2nq
(11)

Let R denote the expected return from buying one of each possible ticket. The pot
had r dollars beforehand. The 2n− 1 other tickets are sold add n− 1/2 dollars to the
pot. Furthermore, you must buy 1/q tickets, adding 1/(2q) dollars to the pot. Since
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the cost of the tickets is 1/q dollars, your expected profit

E [R] = E

[
r + n − 1/2 + 1/(2q)

Kn + 1

]

− 1

q
(12)

=
q(2r + 2n − 1) + 1

2q
E

[
1

Kn + 1

]

− 1

q
(13)

=
[q(2r + 2n − 1) + 1](1 − (1 − q)2n)

4nq2
− 1

q
(14)

For fixed n, sufficiently large r will make E[R] > 0. On the other hand, for fixed r,
limn→∞ E[R] = −1/(2q). That is, as n approaches infinity, your expected loss will be
quite large.

Problem 2.8.10 Solution

We wish to minimize the function

e(x̂) = E
[
(X − x̂)2

]
(1)

with respect to x̂. We can expand the square and take the expectation while treating x̂ as
a constant. This yields

e(x̂) = E
[
X2 − 2x̂X + x̂2

]
= E

[
X2
]
− 2x̂E [X] + x̂2 (2)

Solving for the value of x̂ that makes the derivative de(x̂)/dx̂ equal to zero results in the
value of x̂ that minimizes e(x̂). Note that when we take the derivative with respect to x̂,
both E[X2] and E[X] are simply constants.

d

dx̂

(
E
[
X2
]
− 2x̂E [X] + x̂2

)
= 2E [X] − 2x̂ = 0 (3)

Hence we see that x̂ = E[X]. In the sense of mean squared error, the best guess for a
random variable is the mean value. In Chapter 9 this idea is extended to develop minimum
mean squared error estimation.

Problem 3.5.10 Solution

This problem is mostly calculus and only a little probability. From the problem statement,
the SNR Y is an exponential (1/γ) random variable with PDF

fY (y) =

{
(1/γ)e−y/γ y ≥ 0,
0 otherwise.

(1)

Thus, from the problem statement, the BER is

P e = E [Pe(Y )] =

∫ ∞

−∞
Q(
√

2y)fY (y) dy =

∫ ∞

0
Q(
√

2y)
y

γ
e−y/γ dy (2)

Like most integrals with exponential factors, its a good idea to try integration by parts.
Before doing so, we recall that if X is a Gaussian (0, 1) random variable with CDF FX(x),
then

Q(x) = 1 − FX (x) . (3)
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It follows that Q(x) has derivative

Q′(x) =
dQ(x)

dx
= −dFX (x)

dx
= −fX (x) = − 1√

2π
e−x2/2 (4)

To solve the integral, we use the integration by parts formula
∫ b
a u dv = uv|ba −

∫ b
a v du,

where

u = Q(
√

2y) dv =
1

γ
e−y/γ dy (5)

du = Q′(
√

2y)
1√
2y

= − e−y

2
√

πy
v = −e−y/γ (6)

From integration by parts, it follows that

P e = uv|∞0 −
∫ ∞

0
v du = −Q(

√

2y)e−y/γ
∣
∣
∣

∞

0
−
∫ ∞

0

1√
y
e−y[1+(1/γ)] dy (7)

= 0 + Q(0)e−0 − 1

2
√

π

∫ ∞

0
y−1/2e−y/γ̄ dy (8)

where γ̄ = γ/(1+γ). Next, recalling that Q(0) = 1/2 and making the substitution t = y/γ̄,
we obtain

P e =
1

2
− 1

2

√

γ̄

π

∫ ∞

0
t−1/2e−t dt (9)

From Math Fact B.11, we see that the remaining integral is the Γ(z) function evaluated
z = 1/2. Since Γ(1/2) =

√
π,

P e =
1

2
− 1

2

√

γ̄

π
Γ(1/2) =

1

2

[
1 −√

γ̄
]

=
1

2

[

1 −
√

γ

1 + γ

]

(10)

Problem 3.6.9 Solution

The professor is on time and lectures the full 80 minutes with probability 0.7. In terms of
math,

P [T = 80] = 0.7. (1)

Likewise when the professor is more than 5 minutes late, the students leave and a 0 minute
lecture is observed. Since he is late 30% of the time and given that he is late, his arrival is
uniformly distributed between 0 and 10 minutes, the probability that there is no lecture is

P [T = 0] = (0.3)(0.5) = 0.15 (2)

The only other possible lecture durations are uniformly distributed between 75 and 80
minutes, because the students will not wait longer then 5 minutes, and that probability
must add to a total of 1 − 0.7 − 0.15 = 0.15. So the PDF of T can be written as

fT (t) =







0.15δ(t) t = 0
0.03 75 ≤ 7 < 80
0.7δ(t − 80) t = 80
0 otherwise

(3)
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Problem 3.7.18 Solution

(a) Given FX(x) is a continuous function, there exists x0 such that FX(x0) = u. For
each value of u, the corresponding x0 is unique. To see this, suppose there were also
x1 such that FX(x1) = u. Without loss of generality, we can assume x1 > x0 since
otherwise we could exchange the points x0 and x1. Since FX(x0) = FX(x1) = u, the
fact that FX(x) is nondecreasing implies FX(x) = u for all x ∈ [x0, x1], i.e., FX(x)
is flat over the interval [x0, x1], which contradicts the assumption that FX(x) has no
flat intervals. Thus, for any u ∈ (0, 1), there is a unique x0 such that FX(x) = u.
Moreiver, the same x0 is the minimum of all x′ such that FX(x′) ≥ u. The uniqueness
of x0 such that FX(x)x0 = u permits us to define F̃ (u) = x0 = F−1

X (u).

(b) In this part, we are given that FX(x) has a jump discontinuity at x0. That is, there
exists u−

0 = FX(x−
0 ) and u+

0 = FX(x+
0 ) with u−

0 < u+
0 . Consider any u in the interval

[u−
0 , u+

0 ]. Since FX(x0) = FX(x+
0 ) and FX(x) is nondecreasing,

FX (x) ≥ FX (x0) = u+
0 , x ≥ x0. (1)

Moreover,
FX (x) < FX

(
x−

0

)
= u−

0 , x < x0. (2)

Thus for any u satisfying u−
o ≤ u ≤ u+

0 , FX(x) < u for x < x0 and FX(x) ≥ u for
x ≥ x0. Thus, F̃ (u) = min{x|FX(x) ≥ u} = x0.

(c) We note that the first two parts of this problem were just designed to show the
properties of F̃ (u). First, we observe that

P
[

X̂ ≤ x
]

= P
[

F̃ (U) ≤ x
]

= P
[
min

{
x′|FX

(
x′) ≥ U

}
≤ x

]
. (3)

To prove the claim, we define, for any x, the events

A : min
{
x′|FX

(
x′) ≥ U

}
≤ x, (4)

B : U ≤ FX (x) . (5)

Note that P [A] = P [X̂ ≤ x]. In addition, P [B] = P [U ≤ FX(x)] = FX(x) since
P [U ≤ u] = u for any u ∈ [0, 1].

We will show that the events A and B are the same. This fact implies

P
[

X̂ ≤ x
]

= P [A] = P [B] = P [U ≤ FX (x)] = FX (x) . (6)

All that remains is to show A and B are the same. As always, we need to show that
A ⊂ B and that B ⊂ A.

• To show A ⊂ B, suppose A is true and min{x′|FX(x′) ≥ U} ≤ x. This implies
there exists x0 ≤ x such that FX(x0) ≥ U . Since x0 ≤ x, it follows from FX(x)
being nondecreasing that FX(x0) ≤ FX(x). We can thus conclude that

U ≤ FX (x0) ≤ FX (x) . (7)

That is, event B is true.
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• To show B ⊂ A, we suppose event B is true so that U ≤ FX(x). We define the
set

L =
{
x′|FX

(
x′) ≥ U

}
. (8)

We note x ∈ L. It follows that the minimum element min{x′|x′ ∈ L} ≤ x. That
is,

min
{
x′|FX

(
x′) ≥ U

}
≤ x, (9)

which is simply event A.

Problem 4.9.15 Solution

If you construct a tree describing what type of call (if any) that arrived in any 1 millisecond
period, it will be apparent that a fax call arrives with probability α = pqr or no fax
arrives with probability 1− α. That is, whether a fax message arrives each millisecond is a
Bernoulli trial with success probability α. Thus, the time required for the first success has
the geometric PMF

PT (t) =

{
(1 − α)t−1α t = 1, 2, . . .
0 otherwise

(1)

Note that N is the number of trials required to observe 100 successes. Moreover, the number
of trials needed to observe 100 successes is N = T + N ′ where N ′ is the number of trials
needed to observe successes 2 through 100. Since N ′ is just the number of trials needed to
observe 99 successes, it has the Pascal (k = 99, p) PMF

PN ′ (n) =

(
n − 1

98

)

α99(1 − α)n−99. (2)

Since the trials needed to generate successes 2 though 100 are independent of the trials that
yield the first success, N ′ and T are independent. Hence

PN |T (n|t) = PN ′|T (n − t|t) = PN ′ (n − t) . (3)

Applying the PMF of N ′ found above, we have

PN |T (n|t) =

(
n − t − 1

98

)

α99(1 − α)n−t−99. (4)

Finally the joint PMF of N and T is

PN,T (n, t) = PN |T (n|t)PT (t) (5)

=

{ (n−t−1
98

)
α100(1 − α)n−100 t = 1, 2, . . . ;n = 99 + t, 100 + t, . . .

0 otherwise
(6)

This solution can also be found a consideration of the sample sequence of Bernoulli trials
in which we either observe or do not observe a fax message.

To find the conditional PMF PT |N (t|n), we first must recognize that N is simply the
number of trials needed to observe 100 successes and thus has the Pascal PMF

PN (n) =

(
n − 1

99

)

α100(1 − α)n−100 (7)
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Hence for any integer n ≥ 100, the conditional PMF is

PT |N (t|n) =
PN,T (n, t)

PN (n)
=







(n−t−1

98
)

(n−1

99
)

t = 1, 2, . . . , n − 99

0 otherwise.
(8)

Problem 4.11.5 Solution

(a) The person’s temperature is high with probability

p = P [T > 38] = P [T − 37 > 38 − 37] = 1 − Φ(1) = 0.159. (1)

Given that the temperature is high, then W is measured. Since ρ = 0, W and T are
independent and

q = P [W > 10] = P

[
W − 7

2
>

10 − 7

2

]

= 1 − Φ(1.5) = 0.067. (2)

The tree for this experiment is

�
�

�
�

�
�

�
��T>38p

T≤38
1−p

�
�

�
�

�
�

�
��W>10q

W≤10
1−q

The probability the person is ill is

P [I] = P [T > 38,W > 10] = P [T > 38] P [W > 10] = pq = 0.0107. (3)

(b) The general form of the bivariate Gaussian PDF is

fW,T (w, t) =

exp




−

(
w−µ1

σ1

)2
− 2ρ(w−µ1)(t−µ2)

σ1σ2
+
(

t−µ2

σ2

)2

2(1 − ρ2)






2πσ1σ2

√

1 − ρ2
(4)

With µ1 = E[W ] = 7, σ1 = σW = 2, µ2 = E[T ] = 37 and σ2 = σT = 1 and ρ = 1/
√

2,
we have

fW,T (w, t) =
1

2π
√

2
exp

[

−(w − 7)2

4
−

√
2(w − 7)(t − 37)

2
+ (t − 37)2

]

(5)
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To find the conditional probability P [I|T = t], we need to find the conditional PDF
of W given T = t. The direct way is simply to use algebra to find

fW |T (w|t) =
fW,T (w, t)

fT (t)
(6)

The required algebra is essentially the same as that needed to prove Theorem 4.29.
Its easier just to apply Theorem 4.29 which says that given T = t, the conditional
distribution of W is Gaussian with

E [W |T = t] = E [W ] + ρ
σW

σT
(t − E [T ]) (7)

Var[W |T = t] = σ2
W (1 − ρ2) (8)

Plugging in the various parameters gives

E [W |T = t] = 7 +
√

2(t − 37) and Var [W |T = t] = 2 (9)

Using this conditional mean and variance, we obtain the conditional Gaussian PDF

fW |T (w|t) =
1√
4π

e−(w−(7+
√

2(t−37)))
2
/4. (10)

Given T = t, the conditional probability the person is declared ill is

P [I|T = t] = P [W > 10|T = t] (11)

= P

[

W − (7 +
√

2(t − 37))√
2

>
10 − (7 +

√
2(t − 37))√
2

]

(12)

= P

[

Z >
3 −

√
2(t − 37)√

2

]

= Q

(

3
√

2

2
− (t − 37)

)

. (13)

Problem 5.3.8 Solution

In Problem 5.3.2, we found that the joint PMF of K =
[
K1 K2 K3

]′
is

PK (k) =

{
p3(1 − p)k3−3 k1 < k2 < k3

0 otherwise
(1)

In this problem, we generalize the result to n messages.

(a) For k1 < k2 < · · · < kn, the joint event

{K1 = k1,K2 = k2, · · · ,Kn = kn} (2)

occurs if and only if all of the following events occur

A1 k1 − 1 failures, followed by a successful transmission
A2 (k2 − 1) − k1 failures followed by a successful transmission
A3 (k3 − 1) − k2 failures followed by a successful transmission
...
An (kn − 1) − kn−1 failures followed by a successful transmission
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Note that the events A1, A2, . . . , An are independent and

P [Aj] = (1 − p)kj−kj−1−1p. (3)

Thus

PK1,...,Kn
(k1, . . . , kn) = P [A1]P [A2] · · ·P [An] (4)

= pn(1 − p)(k1−1)+(k2−k1−1)+(k3−k2−1)+···+(kn−kn−1−1) (5)

= pn(1 − p)kn−n (6)

To clarify subsequent results, it is better to rename K as Kn =
[
K1 K2 · · · Kn

]′
.

We see that

PKn
(kn) =

{
pn(1 − p)kn−n 1 ≤ k1 < k2 < · · · < kn,
0 otherwise.

(7)

(b) For j < n,
PK1,K2,...,Kj

(k1, k2, . . . , kj) = PKj
(kj) . (8)

Since Kj is just Kn with n = j, we have

PKj
(kj) =

{
pj(1 − p)kj−j 1 ≤ k1 < k2 < · · · < kj ,
0 otherwise.

(9)

(c) Rather than try to deduce PKi
(ki) from the joint PMF PKn

(kn), it is simpler to return
to first principles. In particular, Ki is the number of trials up to and including the
ith success and has the Pascal (i, p) PMF

PKi
(ki) =

(
ki − 1

i − 1

)

pi(1 − p)ki−i. (10)

Problem 5.4.7 Solution

Since U1, . . . , Un are iid uniform (0, 1) random variables,

fU1,...,Un
(u1, . . . , un) =

{
1/T n 0 ≤ ui ≤ 1; i = 1, 2, . . . , n
0 otherwise

(1)

Since U1, . . . , Un are continuous, P [Ui = Uj] = 0 for all i 6= j. For the same reason,
P [Xi = Xj ] = 0 for i 6= j. Thus we need only to consider the case when x1 < x2 < · · · < xn.

To understand the claim, it is instructive to start with the n = 2 case. In this case,
(X1, X2) = (x1, x2) (with x1 < x2) if either (U1, U2) = (x1, x2) or (U1, U2) = (x2, x1). For
infinitesimal ∆,

fX1,X2
(x1, x2) ∆2 = P [x1 < X1 ≤ x1 + ∆, x2 < X2 ≤ x2 + ∆] (2)

= P [x1 < U1 ≤ x1 + ∆, x2 < U2 ≤ x2 + ∆]

+ P [x2 < U1 ≤ x2 + ∆, x1 < U2 ≤ x1 + ∆] (3)

= fU1,U2
(x1, x2)∆2 + fU1,U2

(x2, x1) ∆2 (4)
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We see that for 0 ≤ x1 < x2 ≤ 1 that

fX1,X2
(x1, x2) = 2/T n. (5)

For the general case of n uniform random variables, we define π =
[
π(1) . . . π(n)

]′
as a

permutation vector of the integers 1, 2, . . . , n and Π as the set of n! possible permutation
vectors. In this case, the event {X1 = x1, X2 = x2, . . . , Xn = xn} occurs if

U1 = xπ(1), U2 = xπ(2), . . . , Un = xπ(n) (6)

for any permutation π ∈ Π. Thus, for 0 ≤ x1 < x2 < · · · < xn ≤ 1,

fX1,...,Xn
(x1, . . . , xn)∆n =

∑

π∈Π

fU1,...,Un

(
xπ(1), . . . , xπ(n)

)
∆n. (7)

Since there are n! permutations and fU1,...,Un
(xπ(1), . . . , xπ(n)) = 1/T n for each permutation

π, we can conclude that
fX1,...,Xn

(x1, . . . , xn) = n!/T n. (8)

Since the order statistics are necessarily ordered, fX1,...,Xn
(x1, . . . , xn) = 0 unless x1 < · · · <

xn.

Problem 5.5.5 Solution

Since 50 cents of each dollar ticket is added to the jackpot,

Ji−1 = Ji +
Ni

2
(1)

Given Ji = j, Ni has a Poisson distribution with mean j. It follows that E[Ni|Ji = j] = j
and that Var[Ni|Ji = j] = j. This implies

E
[
N2

i |Ji = j
]

= Var[Ni|Ji = j] + (E [Ni|Ji = j])2 = j + j2 (2)

In terms of the conditional expectations given Ji, these facts can be written as

E [Ni|Ji] = Ji E
[
N2

i |Ji

]
= Ji + J2

i (3)

This permits us to evaluate the moments of Ji−1 in terms of the moments of Ji. Specifically,

E [Ji−1|Ji] = E [Ji|Ji] +
1

2
E [Ni|Ji] = Ji +

Ji

2
=

3Ji

2
(4)

This implies

E [Ji−1] =
3

2
E [Ji] (5)

We can use this the calculate E[Ji] for all i. Since the jackpot starts at 1 million dollars,
J6 = 106 and E[J6] = 106. This implies

E [Ji] = (3/2)6−i106 (6)
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Now we will find the second moment E[J 2
i ]. Since J2

i−1 = J2
i + NiJi + N2

i /4, we have

E
[
J2

i−1|Ji

]
= E

[
J2

i |Ji

]
+ E [NiJi|Ji] + E

[
N2

i |Ji

]
/4 (7)

= J2
i + JiE [Ni|Ji] + (Ji + J2

i )/4 (8)

= (3/2)2J2
i + Ji/4 (9)

By taking the expectation over Ji we have

E
[
J2

i−1

]
= (3/2)2E

[
J2

i

]
+ E [Ji] /4 (10)

This recursion allows us to calculate E[J 2
i ] for i = 6, 5, . . . , 0. Since J6 = 106, E[J2

6 ] = 1012.
From the recursion, we obtain

E
[
J2

5

]
= (3/2)2E

[
J2

6

]
+ E [J6] /4 = (3/2)21012 +

1

4
106 (11)

E
[
J2

4

]
= (3/2)2E

[
J2

5

]
+ E [J5] /4 = (3/2)41012 +

1

4

[
(3/2)2 + (3/2)

]
106 (12)

E
[
J2

3

]
= (3/2)2E

[
J2

4

]
+ E [J4] /4 = (3/2)61012 +

1

4

[
(3/2)4 + (3/2)3 + (3/2)2

]
106 (13)

The same recursion will also allow us to show that

E
[
J2

2

]
= (3/2)81012 +

1

4

[
(3/2)6 + (3/2)5 + (3/2)4 + (3/2)3

]
106 (14)

E
[
J2

1

]
= (3/2)101012 +

1

4

[
(3/2)8 + (3/2)7 + (3/2)6 + (3/2)5 + (3/2)4

]
106 (15)

E
[
J2

0

]
= (3/2)121012 +

1

4

[
(3/2)10 + (3/2)9 + · · · + (3/2)5

]
106 (16)

Finally, day 0 is the same as any other day in that J = J0 + N0/2 where N0 is a Poisson
random variable with mean J0. By the same argument that we used to develop recursions
for E[Ji] and E[J2

i ], we can show

E [J ] = (3/2)E [J0] = (3/2)7106 ≈ 17 × 106 (17)

and

E
[
J2
]

= (3/2)2E
[
J2

0

]
+ E [J0] /4 (18)

= (3/2)141012 +
1

4

[
(3/2)12 + (3/2)11 + · · · + (3/2)6

]
106 (19)

= (3/2)141012 +
106

2
(3/2)6[(3/2)7 − 1] (20)

Finally, the variance of J is

Var[J ] = E
[
J2
]
− (E [J ])2 =

106

2
(3/2)6[(3/2)7 − 1] (21)

Since the variance is hard to interpret, we note that the standard deviation of J is σJ ≈ 9572.
Although the expected jackpot grows rapidly, the standard deviation of the jackpot is fairly
small.
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Problem 5.5.6 Solution
Let A denote the event Xn = max(X1, . . . , Xn). We can find P [A] by conditioning on the
value of Xn.

P [A] = P [X1 ≤ Xn, X2 ≤ Xn, · · · , Xn1
≤ Xn] (1)

=

∫ ∞

−∞
P [X1 < Xn, X2 < Xn, · · · , Xn−1 < Xn|Xn = x] fXn

(x) dx (2)

=

∫ ∞

−∞
P [X1 < x,X2 < x, · · · , Xn−1 < x|Xn = x] fX (x) dx (3)

Since X1, . . . , Xn−1 are independent of Xn,

P [A] =

∫ ∞

−∞
P [X1 < x,X2 < x, · · · , Xn−1 < x] fX (x) dx. (4)

Since X1, . . . , Xn−1 are iid,

P [A] =

∫ ∞

−∞
P [X1 ≤ x] P [X2 ≤ x] · · ·P [Xn−1 ≤ x] fX (x) dx (5)

=

∫ ∞

−∞
[FX (x)]n−1 fX (x) dx =

1

n
[FX (x)]n

∣
∣
∣
∣

∞

−∞
=

1

n
(1 − 0) (6)

Not surprisingly, since the Xi are identical, symmetry would suggest that Xn is as likely as
any of the other Xi to be the largest. Hence P [A] = 1/n should not be surprising.

Problem 5.6.6 Solution

This problem is quite difficult unless one uses the observation that the vector K can be
expressed in terms of the vector J =

[
J1 J2 J3

]′
where Ji is the number of transmissions

of message i. Note that we can write

K = AJ =





1 0 0
1 1 0
1 1 1



J (1)

We also observe that since each transmission is an independent Bernoulli trial with success
probability p, the components of J are iid geometric (p) random variables. Thus E[Ji] = 1/p
and Var[Ji] = (1 − p)/p2. Thus J has expected value

E [J] = µJ =
[
E [J1] E [J2] E [J3]

]′
=
[
1/p 1/p 1/p

]′
. (2)

Since the components of J are independent, it has the diagonal covariance matrix

CJ =





Var[J1] 0 0
0 Var[J2] 0
0 0 Var[J3]



 =
1 − p

p2
I (3)

Given these properties of J, finding the same properties of K = AJ is simple.
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(a) The expected value of K is

E [K] = AµJ =





1 0 0
1 1 0
1 1 1









1/p
1/p
1/p



 =





1/p
2/p
3/p



 (4)

(b) From Theorem 5.13, the covariance matrix of K is

CK = ACJA
′ (5)

=
1 − p

p2
AIA

′ (6)

=
1 − p

p2





1 0 0
1 1 0
1 1 1









1 1 1
0 1 1
0 0 1



 =
1 − p

p2





1 1 1
1 2 2
1 2 3



 (7)

(c) Given the expected value vector µK and the covariance matrix CK , we can use The-
orem 5.12 to find the correlation matrix

RK = CK + µKµ
′
K (8)

=
1 − p

p2





1 1 1
1 2 2
1 2 3



+





1/p
2/p
3/p




[
1/p 2/p 3/p

]
(9)

=
1 − p

p2





1 1 1
1 2 2
1 2 3



+
1

p2





1 2 3
2 4 6
3 6 9



 (10)

=
1

p2





2 − p 3 − p 4 − p
3 − p 6 − 2p 8 − 2p
4 − p 8 − 2p 12 − 3p



 (11)

Problem 5.6.9 Solution

Given an arbitrary random vector X, we can define Y = X− µX so that

CX = E
[
(X− µX)(X − µX)′

]
= E

[
YY

′] = RY. (1)

It follows that the covariance matrix CX is positive semi-definite if and only if the correlation
matrix RY is positive semi-definite. Thus, it is sufficient to show that every correlation
matrix, whether it is denoted RY or RX, is positive semi-definite.

To show a correlation matrix RX is positive semi-definite, we write

a
′
RXa = a

′E
[
XX

′]
a = E

[
a
′
XX

′
a
]

= E
[
(a′

X)(X′
a)
]

= E
[
(a′

X)2
]
. (2)

We note that W = a
′
X is a random variable. Since E[W 2] ≥ 0 for any random variable W ,

a
′
RXa = E

[
W 2
]
≥ 0. (3)
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