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Abstract— Systems supporting broadband mobile services
over wireless channels suffer from dispersion along time
and frequency. Hence transmission by spreading information
along both these dimensions leads to diversity gain in each
dimension. Motivated by this principle, we propose a gener-
alized two dimensional spreading scheme, in which a symbol
is transmitted across several subcarriers with a total power
constraint and along each subcarrier it is spread with CDMA
codewords. The information theoretic bounds on capacity for
this scheme are derived under different assumptions about the
channel state information (CSI) available at the transmitter.
These are perfect CSI, partial CSI characterized by one bit of
channel information per subcarrier and no CSI. The receiver
is assumed to have perfect CSI. The optimal codeword and
power allocation strategies to achieve these bounds are derived
for the single user point to point transmission. The solutions
also apply to the cases of synchronous multi-user uplink
transmission, or when the receiver schedules transmissions
of multiple users. For asynchronous uplink communications,
we show that the problem of optimal resource allocation is
analytically intractable and instead suggest a heuristic solution
which can be implemented in a distributed manner.

I. INTRODUCTION

Wireless channels are dispersive due to multipath fading
and this can be effectively combated by transmission
along multiple dimensions [2]. If the CSI is known at
the transmitter, then availability of multiple dimensions,
allows it to transmit along the eigenmodes of the channel,
thus enhancing the achievable rates. Examples are wa-
terfilling over parallel subcarriers in OFDM and transmit
beamforming in MIMO. If the CSI is not known at trans-
mitter, then signaling along multiple dimensions allows for
diversity which improves error performance. In this paper
we focus on multicarrier systems and hence by multiple
dimensions we refer to time and frequency subcarriers.
Systems like single carrier CDMA and MC-DS-CDMA
system [12] achieve diversity by time domain spreading of
data along a frequency subcarrier. In contrast MC-CDMA
systems spread the same data along adjacent frequency
subcarriers [16]. Recently multicarrier systems that use
both time and frequency spreading have been proposed.
Prominent examples are Multicarrier DS/CDMA [16] and
VSF-OFCDM [7], which essentially spread a data symbol
along time by conventional CDMA codewords and also
along frequency by replicating the symbol along multiple
subcarriers. This phenomenon is denoted by two dimen-
sional spreading. Depending upon the channel conditions,

the spread factors SFTime (length of CDMA code in time)
and SFFreq (number of subcarriers on which the symbol is
replicated) are adaptively controlled. Most of the available
literature about these schemes, pertain to simulation stud-
ies [7], [16]. In this work we aim to study two dimensional
spreading from an information-theoretic framework. We
propose a generalized two-dimensional spreading model in
which a symbol is transmitted across several subcarriers
with a total power constraint and along each subcarrier
it is spread with CDMA codewords. Note that all the
aforementioned spreading models are special cases of this
scheme. In the presence of channel state information at
the transmitter, multiple subcarriers are used to transmit
along the optimal direction and in its absence they are used
for diversity. We study optimal power allocation policies
along subcarriers and achievable rates using this two-
dimensional spreading scheme. Accordingly the rest of the
paper is organized as follows: in Section II the channel
model is described. In Section III, the two dimensional
spreading system and the notations are described. Sec-
tion IV discusses the single user case, the results of which
are applicable to synchronous multiuser communications.
Section V similarly analyzes the asynchronous multiuser
case and we then conclude in Section VI.

II. THE CHANNEL MODEL

A block fading parallel channel model is assumed,
i.e the subcarriers have i.i.d. channel gains, and along a
subcarrier the value of its channel gain stays constant for
the duration of the CDMA codeword. Such a model is an
useful abstraction for a wide class of practical channels
including the next generation cellular data channels [7].
Also recent advances in orthogonal basis function designs
for wireless channels [6], promise to make even the most
general doubly-dispersive channel assume a block fading
baseband representation.

III. SYSTEM MODEL AND NOTATIONS

In the two-dimensional spreading scheme, each symbol
is replicated over nf subcarriers, with certain power and
along each subcarrier they are spread by a unit norm
CDMA code of length nt chips. There is a total power
constraint on the powers allocated in the nf subcarriers.

A. Notation

Throughout this paper we use uppercase boldface letters
to denote matrices, lowercase boldface letters to denote



Fig. 1. Transmitter Block Diagram

vectors and lowercase letters to denote scalars. In par-
ticular we adopt the following notations: the subscript i
denotes parameters of user i, the subscript j denotes the
index of the jth subcarrier and the subscript k denotes
the time slot index along a subcarrier. Each time slot is
occupied by a CDMA chip.

The symbol bi denotes the ith user’s data symbol. We
use Mi = {mijk} , 1 ≤ j ≤ nf , 1 ≤ k ≤ nt to
denote the nf × nt spreading code matrix for the ith

user and mij to denote the ith user’s spreading code
along the jth subcarrier. The matrices Pi and Hi are
the nf × nf diagonal matrices of powers and channel
gains respectively for user i, i.e. Pi = diag{pi}, where
pi =

[
pi1, pi2, · · · , pinf

]
and Hi = diag{hi}, where

hi =
[
hi1, hi2, · · · , hinf

]
. If x = [x1, · · · , xn], then x

1

2

denotes the vector [
√
x1, · · · ,

√
xn] and a similar notation

is valid for diagonal matrices.

IV. SINGLE USER/MULTIUSER SYNCHRONOUS

TRANSMISSION

We consider the case of a single transmitter using
two dimensional spreading to communicate to a receiver.
Though a simplified system, single user transmission
gives important analytical insights about the nature of
two dimensional spreading. Also this models two im-
portant multi-user scenarios – firstly the multiuser MAC
channel, when each transmitter has a set of orthogonal
CDMA codes and synchronous reception at the receiver
is assumed. The second scenario occurs when the central
receiver schedules the transmission of various users and
hence at a time only one user is active.

For the single user analysis, we drop the user index i
for notational simplicity. The received signal matrix Y is
given by,

Y = H
1

2 P
1

2 Mb+ Z. (1)

Given a particular fading distribution, we try to evaluate
the optimal power allocation and codeword assignment
policies to maximize the achievable rates.

A. Perfect CSI at Transmitter

In this section we assume that transmitter and receiver
are both equipped with instantaneous values of CSI, for a
block of nfnt transmitted symbols. If the channel realiza-
tion changes from block to block, the ergodic capacity is
defined as the average of the achievable rates for each
channel realization [13]. For the single subcarrier case
with no spreading, Caire et al [3] gave an expression for
ergodic capacity and a fixed rate coding scheme to achieve
this capacity. Assuming that the CDMA codes along each
subcarrier are orthonormal, the ergodic capacity maxi-
mization problem can be formulated along the lines of [3]
as,

CPCSI = max
p(h)

∫

· · ·
∫

R (h) f (h) dh (2)

s.t.
nf∑

j=1

∫

· · ·
∫

pj (h) f (h) dh = P , pj (h) ≥ 0,

(3)

where

R (h) =
1

2
log



1 +
1

σ2

nf∑

j=1

hjpj(h)



 , (4)

is termed as the maximum mutual information (MMI) for
a given CSI h. For every block, when the CSI is revealed
to the transmitter and receiver, the optimal solution to
(2) is to transmit only in that subcarrier which has the
highest channel gain (henceforth referred to as the best
subcarrier), i.e. in subcarrier i∗ = arg max

i
hi. We denote

the random variable hi∗ by h∗n, where n is the number of
random variables over which the maximization operation
has been performed. In this case n = nf , the number
of subcarriers. The power, p (h∗n) allocated to the best
subcarrier is obtained by waterfilling over the distribution
of h∗n, as

p (h∗n) =

(
1

λ
− σ2

h∗n

)+

, (5)

where λ, is found by substituting for p (h∗n) in Equa-
tion (3), as

∫ (
1

λ
− σ2

γ

)+

fh∗n
(γ) dγ = P . (6)

The water-filling level is given by 1/λ. Similar results
were reported in [5], where the problem was to maximize
sum capacity for multiuser scalar MAC channel. The solu-
tion was to let only the user with the highest channel gain
transmit. The transmitted powers were obtained by water-
filling over the distribution of the channel gain of this
user. We obtain similar results here for a different physical
situation, as both have similar signal space models.

The optimization of codewords amounted to selecting
any set of unit norm, orthogonal codewords. The CDMA
spreading along subcarriers had no effect on the ergodic



10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

Total Power (dBm)

λ

n=2
n=10
n=100

Fig. 2. Rayleigh fading: water-filling parameter λ vs total power for
n subcarriers: n = 2, 10, 100

capacity as given by Equations (2) and (4). This is con-
sistent with the observation that CDMA doesn’t increase
capacity for single user transmission [14]. Also in the
multi-user case, CDMA capacity is upper bounded by the
capacity of the unspread transmission [15].

1) Numerical Results for Rayleigh Fading: Each sub-
carrier undergoes independent Rayleigh fading so the dis-
tribution of the hi are exponential. The mean of the fading
coefficient is assumed to be unity. Equation (6) relates λ
to P and has to be solved numerically. Figure (2) gives
the results of this numerical computation. The following
observations are readily made:

• For same n, a decrease in total power P , leads to
an increase in λ, which increases the threshold, λσ2

above which transmission takes place. This implies
that when P is low, the transmitter has to wait for
a really good channel to transmit. This suggests that
the fraction of time the transmitter is turned on is
less. Similar results are reported in [5].

• For the same total power, P , increasing n increases
λ, which raises the threshold. This is because having
more subcarriers raises the probability of encounter-
ing a higher channel gain h∗n.

2) Numerical Results for Uniform Fading: We first
consider that the uniform fading channel [3] i.e. the hi are
uniformly distributed in [0, 1]. Figure 3 plots the variations
in the MMI sequence for SNR = 1 dB, by increasing
n ≡ nf , number of subcarriers . The term SNR is used
to denote P/σ2, where P is defined in Equation (3). We
make the following observations:

• The MMI (and hence the ergodic capacity) increases
for more subcarriers as the higher values of h∗n
becomes more probable.

• The fluctuations in MMI decrease for more subcarri-
ers, as variance of h∗n decreases.

• In the regime of large n, the channel gain tends to
unity with probability one and hence the MMI tends
to a constant.
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Fig. 3. Uniform fading: MMI variations with time for SNR = 1 dB

Hence we conclude that frequency spreading, led to
higher achievable rates as the transmitter had the freedom
to transmit along better channels.

B. Imperfect CSI at Transmitter

In most practical systems CSI at transmitter is due to
receiver feedback, which can be erroneous [2]. In this
section, we thus assume that perfect CSI is not available
at the transmitter and investigate its effects upon ergodic
channel capacity. The receiver is still assumed to possess
perfect CSI. Quantitatively, let the true channel state be
h and the CSI at the transmitter be u. The optimal
solution depends on the correlation between u and h as
characterized by the conditional density f (h|u) [3]. The
ergodic capacity optimization problem can be written as

max
p(u)

∫

· · ·
∫

R(h,u)f (h|u) dh (7)

s.t.
nf∑

j=1

∫

· · ·
∫

pj (u) f (u) du = P , pj (u) ≥ 0, (8)

where R(h,u), the MMI is given by,

R(h,u) =
1

2
log



1 +
1

σ2

nf∑

j=1

hjpj (u)



 . (9)

Note that the transmit powers are a function of u. The
Lagrangian for the optimization problem is,

J =

∫

· · ·
∫

R(h,u)f (h|u) f (u) dh du

− λ

nf∑

j=1

∫

· · ·
∫

pj (u) f (u) du.
(10)

Differentiating with respect to pj (u) we obtain

∂J

∂pj(u)
= sj(u)− λ, (11)

where

sj(u) =
1

2

∫

· · ·
∫ (

hj

σ2 +
∑nf

k=1 hkpk (u)

)

f (h|u) dh.

(12)



The Kuhn-Tucker conditions state ∂J/∂pj(u) = 0 if
pj(u) 6= 0 and ∂J/∂pj(u) ≤ 0 if pj(u) = 0 for all j.

The maximum value of sj(u) occur when pj (u) = 0
for all j. This value is

1

2σ2

∫

· · ·
∫

hjf (h|u) dh =
1

2σ2
E [hj |uj ] . (13)

Lets denote this maximum value by s∗j (uj). Note that the
conditional fading distribution of hj given uj is i.i.d. in
subcarriers j = p and j = q if up = uq = u. Hence
s∗p(up) = s∗q(uq). Transmission takes place in the jth

subcarrier only if s∗j (uj) > λ. Hence s∗j (uj) gives the
threshold for transmission in the jth subcarrier. Note that
λ depends on P , the total average power and thus these
threshold inequalities can also be expressed in terms of P .
Let us apply these results for an example system in which
uk is the one bit quantized information about the channel
state at subcarrier k [3], i.e.

uk =

{

0 hk < hTh,

1 hk ≥ hTh.
(14)

Two cases arise from this feedback structure:
1) At least one subcarrier receives u = 1: Let m

subcarriers receive unity feedback, where 1 ≤ m ≤ nf .
Since the conditional densities f (hj |uj) are same for all
these m subcarriers, the optimal solution is a symmetric
policy that allocates equal power to all these m subcarriers.
Let us denote this power by π(m). It can be further shown
that no power should be transmitted in the remaining nf−
m subcarriers [1]. Without loss of generality we assume
that uj = 1 for 1 ≤ j ≤ m and define um = [1, · · · , 1

︸ ︷︷ ︸

m

]

and hm = [h1, · · · , hm]. The value of π(m) is determined
by solving any one of the m equations, ∂J/∂pj(um) = 0,
s.t. uj = 1. Solving the first equation we obtain,

1

2

∫

· · ·
∫ (

h1

σ2 + π(m)
∑m

k=1 hk

)

f (hm|um) dhm = λ.

(15)
From Equation (13) the value π(m) is non-zero if

s∗j (uj = 1) ≥ λ, (16)

where s∗j (uj = 1) is same for all j, 1 ≤ j ≤ m.
2) All nf subcarriers receive u = 0: The solution,

obtained along lines of the previous case, is to let all users
transmit at the same power π(0) which is given by,

1

2

∫

· · ·
∫ (

h1

σ2 + π(0)
∑nf

k=1 hk

)

f (h|u) dh = λ,

(17)
where all components of u are 0. The power, π(0) is non-
zero if

s∗j (uj = 0) ≥ λ. (18)

It can be shown that the threshold s∗j (u = 1) is higher
than s∗j (u = 0) as in the former case all subcarriers have
better values of conditional channel gains.
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Note that similar results were reported in [8], for the
related problem of multi-user, single carrier transmission.

Let us consider nf = 2 and plot the powers π(0), π(1)
and π(2) vs the total power P , in Figure 4. We consider
Rayleigh fading and the threshold hTh of Equation (14) is
0.5. It is seen that for low P , no power is allocated to the
all zero feedback case. Another observation is that π(1) ∼
2π(2). An intuitive explanation is that the same power gets
allocated to one subcarrier, as π(1) and is divided into
two subcarriers as π(2) in each. Assuming π(1) = 2π(2),
we plot the average achievable rate r2 corresponding to
power π(2) and rate r1 corresponding to power π(1), for
hTh = 0.1 in Figure 5. The upper bound to these rates,
rup is also plotted. It is seen that there r2 is slightly higher
than r1, which can be attributed to the diversity gain in
transmitting in two subcarriers.

We now consider the case when the transmitter has no
CSI. It can be shown that [10] the capacity maximizing
policy is constant power allocation across all subcarriers
i.e. pj (u) = P/nf . Thus the upper bound to achievable
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rates is,

CNCSI = Eh




1

2
log



1 +
1

σ2

nf∑

j=1

hj

(
P

nf

)






 (19)

≤ 1

2
log

(

1 +
hP

σ2

)

, (20)

by Jensen’s Inequality. Note that the MMI expression for
pj (u) = P/nf , is

RNCSI =
1

2
log



1 +
1

σ2

1

nf

nf∑

j=1

hjP



 . (21)

We observe that as nf −→∞,

RNCSI −→
1

2
log

(

1 +
hP

σ2

)

, (22)

by the law of large numbers. Note that for a single
subcarrier the corresponding expression for MMI with
uniform power allocation is log

(
1 + hP/σ2

)
/2, and there

is no way to actually achieve this bound. This can be
looked upon as the diversity advantage offered by multiple
subcarriers.

Note that in the two cases of imperfect CSI consid-
ered, two-dimensional spreading was useful as it lead to
diversity gains. Finally Figure 6 plots the MMI variations
with time for all the three types of CSI. We observe that
for nf = 2, the achievable rates with 1 bit per subcarrier
feedback is close to the perfect CSI case. This suggests
that the 1 bit per subcarrier scheme is a good practical
scheme for transmitter feedback. In some time instants
the MMI achieved for the perfect CSI is lower, because
the perfect CSI solution waits for the occurance of a good
channel state to allocate power.

V. MULTIUSER ASYNCHRONOUS TRANSMISSION

In this section, we consider asynchronous transmissions,
due to which users do not orthogonalize at the receiver.
Such a situation might also arise if there are more users
than orthogonal CDMA codewords. We assume that there

are N users in the system. The multi-user transmission
given by,

Y =
N∑

i=1

H
1

2

i P
1

2

i Mibi + Z. (23)

The problem of maximizing the ergodic sum capacity
E [I(Y;b)], where b = [b1, · · · , bN ] over choice of power
and spreading matrices Pi and Mi is not analytically
tractable. So we shall consider special cases of the most
general problem. In all the cases we assume that the
transmitter and receiver are aware of CSI.

A. Only Time Domain Spreading

In this case nf = 1. The matrix channel of Equa-
tion (23) with output matrix Y reduces to a vector
channel, with vector output y. The transmission model
thus becomes

y =
N∑

i=1

√

hipimibi + z. (24)

This problem has been solved in [4]. The optimal policy
is to allow only those users whose normalized channel
gains are above a threshold to transmit in orthogonal
channels. The number of such users can’t exceed either
nt, the length of the spreading code in time or N , the total
number of users in the system. The problem then reduces
to independent single user transmissions of [13] for which
the optimal solution for each user is to waterfill over the
channel fading distribution.

B. Only Frequency Domain Spreading

In this case there is no CDMA spreading (nt = 1)
and the users transmit their information along the nf

subcarriers. The matrix channel of Equation (23) with
output matrix Y again reduces to a vector channel, with
vector output y and the transmission model becomes

y =
N∑

i=1

H
1

2

i p
1

2

i bi + z, (25)

where p
1

2

i =
[√

pi1,
√
pi2, · · · ,√pinf

]
, the power vector

of the ith user. The corresponding maximum mutual
information (MMI), for given channel state matrices for
all the users, can be expressed as

R(h1, · · · ,hN ) = log

∣
∣
∣
∣
∣
I +

N∑

i=1

H
1

2

i p
1

2

i (hi)p
1

2

i (hi)
T (H

1

2

i )T

∣
∣
∣
∣
∣
,

(26)
where |X| denotes det X.

For subsequent rate analysis we do not consider ergodic
capacity maximization. This is because we observed in
the single user case that ergodic capacity maximization
policies involves averaging over the distribution of channel
states, which leads to long delays. We expect higher
delays in the multi-user case. To avoid long delays, we
fix power P , to be allocated over the subcarriers for each



channel state realization hi for all the i users. Thus the
optimization of MMI for a given channel realization can
be stated as,

RSUM-CSI = max
p1,··· ,pN

R(h1, · · · ,hN ) (27)

p
1

2

i (hi)
Tp

1

2

i (hi) = P for all i, (28)

pij (hi) ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ nf . (29)

However this problem is non-convex in the power vectors
pi(hi) and an algorithmic solution doesn’t exist, unlike
other multi-user vector transmission problems in which
the rate objective is a convex function of the transmit
covariance matrices [17]. This non-convexity, stated in
a slightly different form, is also observed in [11]. The
reason is that transmitted signal xi =

√
pibi lies in an one-

dimensional space (rank(E[xix
T
i ]) = 1) and it can’t water-

fill over all the other dimensions, which is the solution for
the convex problems of [17].

C. Proposed Heuristic Solution

Since the optimal scheme is unknown, we propose a
heuristic solution, which is inspired from the iterative
water-filling algorithm of [17]. In this heuristic, each user
treats the signal of all other user’s as noise and chooses the
optimal power vectors, in an iterative way. For simplified
analysis we consider the problem of only frequency do-
main spreading as in Section V-B. The proposed heuristic
is thus,

1) Denote xj ≡ p
1

2

j (hj) for all j
Initialize xj = x0.

2) Repeat

for i = 1 to N , j 6= i,

Szzi = I +
∑

j

H
1

2

j xjx
T
j (H

1

2

j )T ,

xi = arg max
xi

log
∣
∣
∣Szzi + H

1

2

i xix
T
i (H

1

2

i )T
∣
∣
∣,

end

until the MMI converges.

It can be shown that the maximization problem in the
above algorithm, can be reduced to,

max
x

xT (H
1

2 )TSzz
−1H

1

2 x (30)

s.t. xTx = X, x > 0, (31)

where the user index i has been dropped for simplicity.
The solution is outlined in Appendix I. It is shown that
the optimal x lies in the space of the eigenvectors of all
the principal sub-matrices of A = (H

1

2 )TSzz
−1H

1

2 , with
zeros padded to these eigenvectors to produce the vector
x of length n.

Such a solution can be easily implemented in a
distributed fashion. The receiver, who has access to
all the received signals, can broadcast the total spec-

trum S(tot)
zz = I +

∑

H
1

2

j p
1

2

j (hj)p
1

2

j (hj)
T (H

1

2

j )T where
the summation is over all the users and user i, can subtract

his own spectrum from S
(tot)
zz to obtain Szzi of the iterative

algorithm. Such methods have been discussed in [11]

VI. CONCLUSION

This paper defines spreading along time and frequency
in a generalized form and provides a comprehensive
information theoretic analysis for the same. It develops
the transmission model for single user, and studies optimal
power allocation and transmission schemes, under three
different cases of channel state knowledge at the transmit-
ter. For perfect CSI at transmitter the optimal single user
policy is to transmit in the best subcarrier and the transmit
power is obtained by waterfilling over the distribution
of the best subcarrier. For no CSI, the optimal policy
is equal power allocation in all subcarriers. For one bit
per subcarrier feedback the optimal policy turned out to
be to transmit in all the subcarriers that are above the
threshold. The work also investigated the asynchronous
multi-user transmission and showed that most problems
are still open and hence proposed a heuristic solution,
which is implementable in a distributed way.

There are several directions of future research. The
outage behavior and delay aspects of the proposed model
have to be carefully investigated. On a more practical
note, since the transmission spans both time and frequency
dimensions, scheduling between various transmissions has
to be studied, in order to implement the best subcarrier
policies for any CSI. In conclusion we note that the
multi-user asynchronous problem, can also be addressed
by starting with a different objective other than sum
capacity. There has been recent works [9], where the
multi-user scenario has been modeled as a non cooperative
power control game, with the competitive optimality of the
users being the objective. These approaches may lead to
meaningful models for the physical situation which are at
the same time are analytically tractable.

APPENDIX I
MAXIMIZATION OF xTAx WITH xTx = 1 AND x ≥ 0

The optimization problem, we seek to solve is

max
xT x=1
x≥0

xTAx, (32)

where A ∈ Rn×n and x ∈ Rn. To solve the problem for
any arbitrary A, we write its Lagrangian as,

L = xTAx + λxTx + µ
Tx, (33)

µ ≥ 0 λ is unconstrained, (34)

where λ is a scalar and µ ∈ Rn. Taking the partial
derivative w.r.t. x yields,

∂L
∂x

= 2Ax + 2λx + µ = 0, (35)

µixi = 0, 1 ≤ i ≤ n, (36)

xTx = 1, x ≥ 0,µ ≥ 0. (37)



The number of zero components of the optimal x can
be from 0 to n − 1. Let all vectors having k zeros be
said to belong to the kth class. To solve, we consider
all the classes one by one and for each class, we solve
Equation (35) for x. We retain the vectors those satisfy
the original constraints and call them feasible. Ultimately
we check which feasible x maximizes the objective. These
are explained in detail below,

1) Class 1: x has no zero element: In this case the
constraints are:

xi > 0, 1 ≤ i ≤ n (38)

µi = 0, 1 ≤ i ≤ n, from Equation (36) (39)

For these constraints, Equation (35) yields,

Ax = −λx. (40)

Hence the stationary points of the Lagrangian are given
by the unit norm eigenvectors of the original matrix A.
The feasible vectors are those, for which constraints in
Equation (38) are satisfied.

2) Class 2: x has one zero element: The zero element
can occur in any of the n places. We consider all these
sub-classes one by one. Let us begin with x1 = 0. The
constraints become

xi > 0, 2 ≤ i ≤ n, (41)

µ1 > 0, (42)

x1 = 0 and µi = 0, 2 ≤ i ≤ n. (43)

For these parameters, Equation (35) can be expressed as

Ax + λx = −1

2
µ. (44)

This can be rewritten into an eigenvalue problem and a
linear equation as follows,

aT
1 x1 = −1

2
µ1, (45)

A1x1 = −λx1, (46)

where,

a1 = [a12, a13, · · · , a1n] , (47)

x1 = [x2, x3, · · · , xn] , (48)

A1 =






a22 · · · a2n

...
...

an2 · · · ann




 . (49)

Now solve Equation (46) and calculate the unit-norm
eigenvectors x1 of A1. Then check if,

1) All elements of x1 are positive. [ref. Equation (41)]
2) µ1 calculated from Equation (45) is positive. [ref.

Equation (42)]
If x1 satisfies both then form feasible x = [0,x1].

Now consider xk = 0, k 6= 1. Flip the first and the kth

rows of A and first and the kth elements of both x and µ.
The resulting system of equations has the same structure
as the x1 = 0 case, and can be solved.

3) Cases 3 − n: x has k zero elements, 2 ≤ k ≤
n: The procedure outlined in Section I-.2 can be easily
generalized to consider all the remaining cases. We omit
a complete proof for sake of brevity. It can be shown
that For any k, there are

(
n
k

)
ways in the k zeros can

be distributed. in x and for each sub-class solving Equa-
tion (35) reduces to an eigenvalue problem of the matrix
Ak ∈ R(n−k)×(n−k) and a system of k linear equations.

Note that this method solves the optimization problem
for any arbitrary matrix A. However the complexity of the
algorithm increases exponentially with n.
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