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Abstract—We propose a rate scheduling algorithm to maximize
the network throughput of avariabledatarate CDMA system and
prove its optimality. The system uses OV SF (orthogonal variable
spreading factor) codes and the algorithm findsthe optimum rate
assignments on the binary code tree under constraints on the to-
tal transmit power and minimum QoS (rate) requirement of each
user. The algorithm is optimal in the sense that it maximizes the
total network throughput within the constraints and achievesthis
with minimum possible power. The algorithm worksin a greedy
fashion and has a polynomial time complexity of O(N), where N
isthe number of users.

We also extend our resultsto a more general set of combinato-
rial optimization problemswheretheuser ratescan beany integer
multiples of a basic rate (such as Multi-Code CDMA), not neces-
sarily the set of rates on thebinary tree structure, but the optimal
solutions are still greedy achievable.

|. INTRODUCTION

Unlike voice-based second generation cellular networks,
third and fourth generation mobile networks will provide mul-
timedia services with variable data rates and different service
classesin addition to classical voice service. In thethird gener-
ation W-CDMA standard, variable datarate service is provided
by assigning each user a single spreading code with variable
length [1]. The set of spreading codes used in such a scheme
is obtained from a binary tree structure (Figure 1) and called
Orthogonal Variable Spreading Factor (OVSF) codes [2]. On
the other hand, in Multi-Code CDMA systems, each user can
be provided with multiple spreading codes of fixed length, de-
pending on the users' rate requests.

Recent studies on variable datarate CDMA systemsfocuson
efficiency of dynamic spreading code assignment schemes, es-
pecialy for the systems employing OV SF codes [3], [4], [5],
[6]. The basic question these studies attempt to answer is how
to accomodate an incoming user’s rate request on the OV SF
code tree. For a Multi-Code CDMA system it is easy to han-
dle an incoming user’s request, if the requested rate is achiev-
able within available network bandwidth, as many as the num-
ber of spreading codes corresponding to the requested amount is
assigned to the incoming user. Since all fixed length spreading
codes are mutually orthogonal in Multi-Code systems, assign-
ing an unused spreading code to a new user does not affect the
existing users. On the other hand inherent binary tree structure
of OV SF codes in variable spreading CDMA systems compli-
cates the code management issue. As an examplein Figure 1,

assumethere are 2 existing usersin the system and their spread-
ing codes are located at C> ; and C 3 on the binary code tree.
Thusthetotal used system bandwidthis R/2 and half of thethe
total bandwidth is still unused. In this case, if a new user re-
quests R/2, the system bandwidth is available for this request
however the system cannot locate a spreading code for the new
user since C4 ; (C1 2) isnot orthogonal to theexisting code Cs 3
(C2,1). Thisphenomenais known as code blocking [3].

In[3],[5] and [6], dynamic code assignment schemesare pro-
posed to minimize the code blocking probability and to mini-
mize the number of existing spreading codes relocated in case
of an incoming user. In [4], the authors propose a protocol
which uses a credit-based reservaton scheme to prioritize users
and attempts to provide fairness to each user while providing
per-connection bandwidth gurantee to bursty data applications.
However noneof the above studies question throughput limiting
system resources other than the total available bandwidth, such
asthe total transmit power.

In this study we question variable data rate CDMA system
from a radio resource management point of view. For both
Multi-Code and variable spreading CDMA systems, our objec-
tive is to identify the maximum achievable network through-
put given available network resources (both power and band-
width), and to find acomputationally ssmple (polynomial timeif
possible) rate assignment algorithm resulting in the set of rates
achieving the maximum throughput. In addition for variable
spreading systems, we show that the set of optimum rates con-
cluded by our algorithmare alwaysrealizable on the binary code
tree as a result of the Kraft Inequality (mentioned later in the
paper), the way the spreading code replacements or shifts occur
during each step of our algorithmis a subject of [3], [5] and [6]
and not adressed in this paper.

Figure 1 shows how OV SF codes are obtained from abinary
treestructure. Noteinthefigurethat C; ; represents jth nodeon
layer ¢ on the binary tree and it corresponds to a unique signa-
ture sequence of length 2¢ and rate R, /2! where R, is the root
rate corresponding to the node Cj 1, also note that all the nodes
on the same layer have the same spreading factor. Moreover,
orthogonality of the assigned signature sequencesis guaranteed
by the fact that none of the parent-child nodepairsisassigned to
different users at the sametime. As an example, the nodesC'; o
and Cs 4 infigure 1 cannot bein use at the sametimesince C'y o
is a prefix of Cy 4. Accordingly, the resulting set of assigned
signature sequences must have the prefix-free property.
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Fig. 1. OVSF Code Tree. C; ; represents node j on layer ¢ and has alength of
SF=2!

Accordingly the prefix-free conditionimposesaconstraint on
the set of spreading codes that can be assigned to active users
in variable spreading CDMA systems. It is a well-known fact
that the Kraft inequality determines whether a set of codeswith
specified lengths can be placed on the binary treeasa prefix-free
set. Denoting the length of the branch from the root node (Cy ;
in figure 1) to the uth user’s node by («) and number of users
by N, the Kraft Inequality

PP RS €N

must be satisfied to obtain a prefix-free set.

Inthecontext of CDMA spreading codes, the Kraft inequality
can be interpreted as a bandwidth constraint. Since R denotes
the root rate and represents the maximum achiavable total rate
or the bandwidth of the system, it followsthat the rate of user u
is

j— RO
Ru = 2U(u)
Multiplying both sides of (1) by Ry, the Kraft inequality be-
comes

N
u=1

which states that Ry is an upperbound on the total data rate of
al usersin variable spreading CDMA case. Itistrivial to gen-
eralize congtraint in (2) to the Multi-Code CDMA case and Ry
represents the system bandwidth in this case.

In this paper, we consider the downlink of a single cell
CDMA system. We first work on variable spreading CDMA
system. We assume that we know the link gain between each
user and the base station. Given the minimum rate requirements

of each user and the constraint on the total BS power, our prob-
lemisto assign each user « one of the OV SF codes correspond-
ing to a datarate R,, such that the Kraft inequality, individual
datarate (R, m:,) and total BS power (P) requirementsare sat-
isfied and the total data rate of all users (network throughput)
is maximized. The problem in the Multi-Code CDMA case is
similar, given the minimum rate requirements of each user and
the constraint on the total BS power, we determine the number
of spreading codes that will be assigned to each user such that
individual data rate (R, i) and total BS power (P) require-
ments are satisfied and the network throughput is maximized.

Thefollowing section givesthe formal definition of the prob-
lems, in section 3 we propose the algorithm, and in the last sec-
tion proveits optimality.

Il. PROBLEM STATEMENTS

Problem A:

The problem formulation for variable spreading CDMA sys-
temsisasfollows. Let N denotethe number of usersinthe sys-
tem, P denotethetotal BS power, E}, denotethereceived energy
per bit, which isassumed to be samefor all users, R, denotethe
root rate, R,, denote the assigned rate for user u, h,, denote the
link gain between user « and the BS, [(u) denote the length of
the branch from the root node (Cy; infigure 1) to theuth user’s
nodeand R, .:» denotethe minimum QoSrequirement for user
u, thenthe problemiis:

max Yaci Ru )
subject to S, BB < p (4)
Yo, 27 < )

Ry > Rumin, U=1.N (6)

Ry € Ryt = {Ro, B2, o Rymin} (7)

In the above problem formulation E, R, /h,, is the transmit
power required by user u and (4) represents the total transmit
power constraint. Note that the received energy per bit E} is
assumed to be the same for all users, thus implying that the
same coding/modulation scheme is assumed for al users. On
the other hand (5) represents the bandwidth constraint, as ex-
plainedintheprevioussection. Therefore, we consider through-
put maximization under both power and bandwidth constraints.

Problem B:

The problem formulation for Multi-Code CDMA is the same
except the constraints in (5) and (7). Denoting the rate corre-
sponding to asingle spreading code by Ry, .. and the spreading
bandwidth of the system by Ry, the problem formulationin the
Multi-Code case is as follows:

max Z]uvzl R, (8)
subject to Sy B < P (9)
SN R, <R (10)

Ru > Ru,mina u=1..N (11)
Ru S Rset = {Rbasea 2Rbasea 3‘Rbasea ceey RO}]-Z)



I1l. THE ALGORITHMS

Before introducing the agorihtms, we first show that if
the minimum required rates of users are feasible (achievable
within the constraints), then the user rates in the maximum
throughput-minimum power solution, among all feasible set of
rates, are ordered by link gains.

Lemmal: Given N userswithlinkgains h = [hy, ha, .., hn],
the optimal rate assignment vector R, = [Ri0, R20, -, Rno)
achieving maximum throughput with minimum possible power
must have the following property: the assigned rate of user i is
always larger than or equal to therate of user j, R, > Rjo, if
h; > h7

Proof: The proof is straightforward, if R;, < Rj, and
hi > h;, then we can aways swap the rates of user ¢ and
4 without changing the total sum of rates and this exchange
aways leads to a smaller amount of total power consumption.
Denoting the initial rate assignments of R;, and R;, by r and
R, and the total power required for users ¢ and j before and
after swapping by P and P? respectively, it follows that

s Eyr  EyR EyvR  Epr
Pop = (T - (T @
— By(R-7)[r — ] (14)
h; i
> 0 (15)

(15) followsfrom the fact that h; > h; and R —r > 0. O

Algorithm A: The Greedy Algorithm for Variable Spreading
CDMA

In this section we introduce the greedy algorithm as a solu-
tion to the rate assignment problem, (3)-(7), in variable spread-
ing CDMA systems. Thealgorithminitially attemptsto provide
the minimum QoS requirement of each user. If the minimum
required rates are feasible, each user is assigned its correspond-
ing minimum rate as the initial rate vector. The rest of the al-
gorithm is greedy in nature, and the objectiveis to increase (to
double in the binary tree case) the rate of the user who spends
minimum power per bit. Since the power per bit ratio for user
u (P,/R., = Ey/hy) isinversely proportiona to the link gains
h., the rate of the user with the highest link gain is increased
first. At each greedy step, the algorithm attempts to maximize
therate of auser (usersare ordered by the link gains) within the
total transmit power (4) and the bandwidth constraints (5). In
other words, each rate assignment isaresult of alocal optimum
decision. In the next section we will show that the local opti-
mum decisions lead to aglobal optimum solution.

We summarize the algorithm below and show how the algo-
rithm works on the binary code tree for a sample case of 5 users
infigure 2.

Optimal Greedy Scheduling Algorithm for Variable
Spreading CDMA

Input: Ey, Ry (root rate), P, h = [h1,..hn], h1 > hy > .. >
hN! Rzmln

5 users, each requires at |east R(0)/16
Link gains satisfy: h1>h2>h3>h4>h

Root: R(0)

{C(1.2)isthe optimal node fc
RN user 1, if power const.
iss satisfied)

largest available branch

~

{if C{1.2} isnot
achievable withi
power limit,

J/try these}

R2 R3 RiRs
Rl R2 R3 R4RS AN R

(repla;oe/ R5 to empty
alarger branch}

{opt. for user 2

RS R4

{Optimal node assignments of 5 users, note that at each step we should
check whether the power constraint is satisfied or not, if not
optimal node is one of the lower layer nodes just below}

Fig. 2. Optimal Rate Scheduling Algorithm for 5 users, each requiring at least
Ro/16

Output: R = [Ry, .., Ry]
Initialization: R=[R1 min;- - - BN min),
PtOt(ll:Z]’u,V:l EbR];:mm

Algorithm A

foru=1:N

Step 1: Find the smallest positive integer j satisfying

< (16)

277+ Y, 27 <1

R,
b(T]O _Rusenwtin)

E ’
st Ptotal + = Ptotal +P <P (17)

Puser
P’ : additional power required to step up user’s rate from
Ruser,min to R0/2j-

Step 2: R(u) = Ry /27

Step 3: Piotar = Protar + P’

end

Animportant factisthat theresulting rate assignment, R /27,
can be obtained by repeatedly doubling the user’sinitia rate as
long as the constraints (4) and (5) permit.

Noticethat Step 1 of Algorithm A determinesthelayer num-
ber j of user u on the binary code tree which uniquely de-
termines the optimum rate assignment for that user R(u) =
Ro/27. However Step 1 does not tell about to which of the
nodes on layer j the user spreading code should be placed. On
the other hand, satisfying the Kraft Inequality (16) guarantees
thefact thereisat least aset of IV spreading codes on the binary
code tree such that uth user’s spreading code is placed on layer
j, therates of al other users are not affected by this placement
(although spreading codes might shift on the same layers) and
the set of spreading codes satisfies the prefix free property.

As an examplein Figure 2, it is necessary to shift R5 to the
leftmost node in order to step up R, to its optimal node as-
signment (found by Step 1 of the algorithm) which is shown
in the bottom left figure. The shifts or replacements of spread-
ing codes on the same layer on the binary codetreeis animple-



mentational issue and such shifts do not affect the assigned rate
of auser. In this paper we are only interested in the maximum
achievablenetwork throughput and the set of ratesachieving the
maximum throughput. However we show that the set of opti-
mum rates concluded by our algorithm are always realizable on
the binary code tree as aresult of the Kraft Inequality.

Algorithm B: The Greedy Algorithm for Multi-Code CDMA

Similar to variable spreading CDMA case, the greedy approach
solvesthe optimal rate and spreading code assignment problem,
(8)-(12), in Multi-Code CDMA systems. However, in this case
the greedy rate assignment only favors the best link gain user.
Namely, after the algorithm assigns the minimum required rates
and allocates the correspoding spreading codes to each of the
users, only the rate of the user with the best link gain is maxi-
mized using the remaining power budget.

In casethereisaso amaximum rate constraint on some of the
users rates, the greedy steps are executed for all users ordered
by link gains.

We summarize the algorithm below.

Optimal Greedy Scheduling Algorithm for Multi-Code
CDMA

Input: Ej,, X, (total number of spreading codes), P, R; min,
h = [h1,., hx]

Output: R=[R;,. .. ,Ry] OFr Z=[x1,. .. ,zN]

x;: number of spreading codes assigned to user i

Rypase: therate of asingle spreading code, R; = x; Rpase
Algorithm B

Initialization: R=[ Ry min. - -
Ptotal ZN M

for the best I|nk gam user u
Step 1. Find the largest possible positive integer =, satisfying

lRN,min] ’

(18)
(19)

N
Ty + Zu’;ﬁu Ty min < XO
E ase(Tu—1
St Piotal + bRbTL(Z) <P

end

IV. CORRECTNESS AND PROOF OF THE ALGORITHMS

Inthissection wewill provethe optimality of AlgorithmB for
Multi-Code CDMA systems and the optimality of Algorithm A
for Variable Spreading CDMA systems. The definition of op-
timality contains both maximizing the total network throughput
within the constraintsand al so achieving the optimal throughput
with minimum possible power.

The proof of the AlgorithmB is as follows:

Proposition 1: Algorithm B solves any instance of the
combinatorial optimization problem associated with (8)-
(12). Moreover, if there is more than one optimal solution
R = [R1, Ra, .., Ry] leading to the same optimal total network
throughput, the proposed greedy scheduling algorithm yields
the minimum power solution.

Proof : Let Ry.se denote the rate corresponding to a sin-
gle spreading code, z; denotes the number of spreading codes
assigned to user i, R; denotes the rate assigned to user ¢ and
R; = xz;Rpese. Therefore we scale dl rate assignments by
Rpase and prove the optimality of the vector z = [z1, .., z n].
Assumethe users are ordered by their link gainsand user 1 is
the best link gain user. Consider an optimal vector z,,; achiev-
ing the maximum total network throughput
Topt = [xloa(EQoa--wTNo] (20)
and let x 4,4, denotethe vector of number of spreading codes
assigned to each user after the greedy step, meaning that each
user is assigned the minimum required rates and the rate of the
first user isincreased greedily to z; 4
Lgreedy = [ml,g; T2 minsy «+» szzn] (21)
We now rearrangethe user ratesin z,,; (20) to obtain another

set of rates xopt achieving the same network throughput as «

Topt = [x/lo,méo,...,m;\,o] (22)
x;o = Timin, 1I=2, ... ,N (23)
I;o =T+ 21122 (Tio — Ti,min) (24)

From x,,; tO m;pt, all user rates except the first one are re-
duced to the minimum required levels and the total rate reduc-
tionisassigned to the first user.

Itis easy to show that xopt requi res less power than the opti-

mal z,p;. TO show thislet P,,: and P, Opt denote the power spent
by xopt and xopt respectively, then
’ EbRbase ('T/ o 'rlo)
Popt - POPt = hll
N ’
EbRbase ('T - -ruo)
uo 25
+ 2232 e (25)
EbRbase ’
T (%1, — T10)
N
+ 3 Ty — Tuo)] <0 (26)
u=2

(26) is due to the fact that 1 isthe largest link gain and re-
placing h,, by h; in the second expression on the right side of
(25) upperbounds P, , — Py Also notethat z,,, — x40 < 0
(wu=2,...,N)and[(z], — 210) + 2522(33;0 —Zyo)] = 0due
to (23) and (24)

Comparing :copt and z4yecqy, they agree on al rate assign-
ments except the first one, (21) and (23). On the other hand
for user 1, x10 > 1,4 €an not be true since the greedy step
maximizes the rate of the first user while al other users are
assumed to obtain the minimum requirel levels. Moreover if
5510 < x14, then xgpccq, Offerslarger throughput than wopt,
which achieves the same throughput as z,,.. This can not be
the case since z,,; is optimal by assumption and therefore it



must offer the maximum network throughput. Thusz;, = 1,
and therefore x;pt = Tgreedy- ASaresult the greedy rate as-
signment achievesthe maximum network throughput offered by
Zopt, With asmaller amount of total power consuption (26).

This concludes the proof that starting from any optimal
Vector x,, of (20), we can obtain the same network throughput
by the greedy choice x grccqy Of (21) with a smaller amount of
total power consuption. The last statement also means that if
thereis only one optimal solution, then that is what the greedy
algorithm concludes.CI

Proposition 2: Algorithm A solves any instance of the
combinatorial optimization problem associated with (3)-
(7). Moreover, if there is more than one optimal solution
R = [Ry, Ry, .., Ry| leading to the same optimal total network
throughput, the proposed greedy scheduling algorithm yields
the minimum power solution.

Proof: We first start with 2 user case and prove the opti-
mality of Algorithm A in this case. We next generalize the
proof of optimality to any number of users.

Step 1: The optimality for 2 user case

A general form of the problem is asfollows

max Yt Ru (7)
subject to o Bl < pf (28)
Yo 27w <p (29)

Ry > Ry min,U=1,2 (30)

Ry € Ryt = {Ro, 22, B2 Rymin} (31)

2

forany0 < P’ < Pand0 < p<1.

Following the notation used before, let R,,: and Rgyeeqy de-
note the vectors of the optimal and the greedy rate assignments
respectively.

Ropt = [Rl,opt; R2,opt]
Rg'r‘eedy = [Rl.,g; R2,g]

(32)
(33)

Consider the following 2 cases about R o+ and Ry 4 :

(I) Rl,opt > Rl,g

The case can never occur since R, 4 isthe maximum rate that
can be assigned to user 1 while user 2 is supposed to receive its
minimum required datarate R ;ir, -

(II) Rlyg > Rl,opt

In this case R; ,,: Can be at most Ry ,/2 because of the ge-
ometric relationship between the rates on the binary code tree.
On the other hand, by Lemma 1, Ry ., is aways larger than or
equal to R op¢, thereforethesumof Ry ¢ and Ry ¢ Can never
exceed the sum of R, 4, and R, 4, since R, 4 iSnonzero

R2,opt < Rl,opt < Rl,g/Q - R2,0pt + Rl,opt < R1,9(34)
- R2,opt + Rl,opt < Rl,g + R279 (35)

Therefore case(ii) can never occur since R, should haveledto
the maximum network throughput. Asaresult, Ry opr = Ri,4.

Since R, 4 is the maximum rate that can be assigned to user 2
within the constraints and assuming the first user is assigned
R4, Ro ope Should also beequal to Ry g, R g = Ro opt. Itis
clear that the greedy rate assignment vector is a so the minimum
power solution. The argument behind this fact is similar to
the argument in the proof of Lemma 1: Among the set of rate
assignments R = [R;, R»| leading to the same maximum
network throughput, the one which assigns the highest possible
rate to the user with better link gain is the minimum power
solution, since that user consumes less power per bit.

Step 2: The optimality in general

Assume that there are N users in the system and the greedy
algorithm is the optimal way to assign the rates of those N
users. Assuming this, the next question is whether the greedy
algorithmisoptimal for N + 1 usersaswell, if it isassumed to
be optimal for IV users.

Let Ryreedy and R, denote the greedy rate assignments and
the optimal rate assignments respectively for V + 1 users. The
users are ordered such that (V' + 1)th user istheworst link gain
user and cannot receive a larger rate than any of the other N
usersby Lemma 1.

(36)
(37)

Rgreedy = [Rl,ga RZ,ga o0y RN,g7 RN—i—l,g]
Ropt = [Rl,opta R2,opta o0y RN,opta RN+1,0pt]

A preliminary fact that will be used throughout the proof is
that due to the N user optimality assumption of the greedy al-
gorithm, if we assume to fix the rate of the (N + 1)th user to
R +1,0p¢ @d determine the rest of IV rate assignments greed-
ily, theresulting set of rates must be optimal. In other wordsthe
first N rate assignments of R,,: can be obtained by the greedy
solution of the following problem:

max Zi\rzl Ry, (Rn+4+1 = Rn+1,0pt) (38)
subject to Yooy Bfte < p— Bpiicbon (39)
SN 27U <1 - Ryyyop/Ro  (40)

Ry > Ruymin, U=1.N (41)

Ru S Rset = {R07 Ro Ho

2040

Noticethat in Step 1, we proved the greedy optimality for NV =
2andforany 0 < P' < Pand0 < p < 1, (27)-(31).

Therest of the proof shows that either R, ccqy iS Optimal or
thereisno feasible R,,. To show thisfact we comparetherel-
ative powers spent by Ry;ceqy and R,,; denoted by P9 and P°
respectively.

Consider the rate assignments by (36) and (37). Notice that,
fromuser 1 touser N + 1, for the first user for which R g,cedy
and R, differ, the optimal assignment must be lower than the
greedy assignment. We name the index of thisuser aswuq (u; >
1), thus

Ri_’g = Ri,opt7 i:]., . ,u1-1
Ruyg > Buyopt

(43)
(44)

The reasoning behind (44) is that the greedy algorithm locally
maximizes the rate of a user at hand starting from the best link



gain user, therefore if Ry, opr > R, g Weretrue, then R, 4
would not be the locally maximum choicefor the uth user due
to (44).

Similar to u1, we name the index of those other users, for
which the optimal assignment determines alower rate than the
greedy assignment, by us, ..., up (M < N). Thus

(45)
(46)

Rig > Riopt, i=u1,uz, ..., upn
Rj-,g = RJ}OPt or Rj-,g < Rj-,Optv j#FLISN

The difference in power spent by the optimal and the greedy
rate assignmentsfor usersuy, . .., ug — 1 isdenoted by Py;f¢.1,
similary the differencein sum of rates for the same usersis de-
noted by Raifra

uz—1
Raipra =222, (Riopt — Rig) (47)
Ey(Ruy,opt—Ruq g Uz — i,opt — 1%4
Pdiffl _ b ( 1hul 1 ) + Zz2u11+1 Eb(R’:i Ri g 8)

szff 1> Eb Z?ull( iopt — Ri,g) = Ebiiilff’l (49)

Thelast inequality follows from the fact that /,,, > h; for each
i in (48) and thereforereplacing h; by h,,, in (48) lowerbounds
Paigra-

An important observation on (47)-(49) isthat R f¢,1 isnon-
positive. Before explaining why it is so, remember that due to
N user optimality assumption of the greedy algorithm, the first
N rate assignments of R,,: can be obtained as the greedy so-
lution of (38)-(42) assuming (N + 1)th user’srate is fixed to
Rn+1,0pt: thusinfact Ry, op iSalocaly optimum decision if
theoriginal N + 1 user problemisreduced to an N user prob-
lem by the assumption on (IV + 1)th user’'s rate. Now con-
sider the case where Rg;57,1 is positive. Then Py;rfq IS aso
positive due to (49), which impliesthat R,,; remains feasible
if [Ruy opts-- - Bus—1,0pt) iSTEPlaced by [Ry, 4, -, Rus—1,4]
and the rest of user rates remain the samein R,. In this case
the locally maximum choice of a greedy algorithm at u;th step
(greedy assumes minimum ratesfor successive users) can not be
Ry, opt dueto (44). The contradiction leads usto the point that
Rgiff,1 isnot positive.

Similar to Rgirs1 and Pyirsq1, the difference in power
spent by the optimal and the greedy rate assignments for users
uj, ..., uj+1—lisdenotedby Py, ¢ ; andthedifferencein sum
of rates for the same users is denoted by Rg;¢r ;. The lower
bound on Py;r,1 and the nonpositivity of Rg;rf1 extend to
Rgiry,; and Py;ry,; aswell. Remember that there are M users,
among the first N users, for which the optimal assignnment is
lower than the greedy assignment (45).

Raipj = Yt ™ (Riopt — Rig) <0 (50)
Puippy > 2L j=1, . M-1 (51)
Rasppnr = iy, (Riopt — Riyg) <0 (52)
szffM>M7J M (53)

U\

Let P9 and P° denote the total power spent by Ryceq, and
Rope, R? and R° denote the total sum of rates of Ryccqy and
R respectively, using (50)-(53)

N+1

RO - Rq = Z (Ru,opt - Ru,g)
u=1
y (54)
Z def] RN+1 opt*RNqu g)
N+1
Eb(Ru opt — Ru )
PO _ Pq — s OP! 59
T
(55
= Z Paifr; + (RN+1 opt — BN+1,9)
M EyRairr; By
P°— P9 LY R opt — R
> ; . + hN+1( N+1,0pt — BN1,g)
(56)

Since hy 1 isthe smallest link gain, Rg;¢¢,; iS nonpositive
for each j dueto (50) and using (54), we can further lowerbound
(56) asfollows

_pos Z Edesz, K,
hnt1 hN+1

Ep
hN+1

(RN+1,opt - RN+1,g)

(R* - RY)

(57)

Eq (57) hasanice interpretation, among the set of rates|ead-
ing to the same optimal network throughput (R° — RY = 0), the
greedy one minimizesthe total power (P° — P9 > 0). We will
now show that if thereisany feasible R, then Rg;.ceqy always
achieves the maximum network througput offered by R,,, and
since it also minimizes the total power, it isin fact the optimal
one.

Consider (54), in order for R, to be optimal, it should have
the maximum sum of rates, thus

R — RY = Ry 1.0t — Bni19+ Y50y Raifrj > 0(58)

RN+1,0pt - RN-i—l,g > 0 (59)

(59) follows from the fact that R4z, ; is nonpositive for each
j due to (50). By Lemma 1 the user rates are ordered by the
link gains, using thisfact and (59), it followsthat R 1 4 isthe
smallest rate assignment of al R, 4 and R, op:. Therefore, us-
ing the geometric relationship between the rates on the binary
codetree, all rate assignmentsby Ry, ceqy and R, are express-
ible in terms of integer multiplesof Ry 41,4

Ru,opt, Ru,g = aRN+1,gv a = 2k, k Z O (60)

In this case the differencein throughput offered by R 4,¢cq, and
R,y can aso be expressed as an integer multiple of Ry 41,4

N+1
R°—RI = Z (Ru,opt - Ru,q) = jRN+1,ga .7 > 0 (61)

u=1



Consider Ry ceqy (36). At (IV + 1)th greedy step, the maxi-
mum ratethat can be assignedto the (N +1)th user within avail -
able resources is Ry 41,4. At this point 2 case might have oc-
cured: Case-1) thesystemispower limited and althoughthereis
availablebandwidth, (N +1)thuser cannot receive2R v 11, , be-
cause of the power constraint. Case-2) the system isbandwidth-
limited and although there is available power, (N + 1)th user
cannot receive 2R v 11,4 because most of the bandwidth has al-
ready been used.

For Case-1, the power required to assign an additional
Ry 41,4 tothe (IV + 1)th user islessthan the residual power of
Rgreedy. Denoting the total available power by P and rewriting
the lowebound (57) as an equality

P—PI< %ﬂ” (62)

P°o— P9 = %(RO — R9) + ¢, for an arbitrary e > (63)
Combining (62) and (63) we obtain a relationship between the
total power spent by the optimal assignments P° and the total
available power P, then using (61) we come up with the final

inequality (65)

0 EyR .9 E o
P-P <%7Wil(R ng)fe (64)
o ~\ EyR
P—-P <(17j)ZTJL“fe (65)

for areal arbitrary e > 0 and for an integer j > 0. In order for
R,y to befeasible, it should satisfy the following inequality

P—P°>0 (66)

Thus according to (65), R, isfeasible only if j = 0. Inthis
case, from (61), the optimal and the greedy rate assignments of -
fer the same total network throughput

R°=RY (67)

For Case-2, denoting thetotal available bandwidthby R, the
total sum of rates of Ry eeqy Dy RY, the remaining bandwidth
out of RY islessthan Ry 1,4 SOthat (/N +1)thuser canonly get

Rn41,4 instead of 2R x4 dthough there is available power.
Using (61)

Ro — RI < RN+179 (68)
RO = R9 = jRyi1,, j > 0 (69)
RO — R° < RN+1,g — jRN—i-l,g (70)

The total sum of rates offered by R,,: can not exceed the total
available bandwidth Ry — R° > 0. Inthiscase, R, isonly
achievableif j = 0. Inthis case, from (61), the optimal and the
greedy rate assignments offer the sametotal network throughput
(67).

To sum up, we started with the assumption that the greedy al-
gorithm is the optimal way to assign the rates of N users. Us-
ing this assumption, we have shown that the greedy algorithm
achieves the maximum network throughput for N + 1 user as
well. Moreover (57) implied that among the set of rates lead-
ing to the same optimal network throughput (R° — RY = 0),
the greedy one minimizes the total power (P° — P9 > 0), thus
provingthat the greedy rateassignment isin fact the optimal one
for N + 1 user. The proof of optimality of the greedy algorithm
for 2 user case is therefore generalized to any number of users
by induction.O

(1]

(2

(3]

(4

(9]

(6]

V. CONCLUSION
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