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Abstract—We propose a rate scheduling algorithm to maximize
the network throughput of a variable data rate CDMA system and
prove its optimality. The system uses OVSF (orthogonal variable
spreading factor) codes and the algorithm finds the optimum rate
assignments on the binary code tree under constraints on the to-
tal transmit power and minimum QoS (rate) requirement of each
user. The algorithm is optimal in the sense that it maximizes the
total network throughput within the constraints and achieves this
with minimum possible power. The algorithm works in a greedy
fashion and has a polynomial time complexity of O(N), where N
is the number of users.

We also extend our results to a more general set of combinato-
rial optimization problems where the user rates can be any integer
multiples of a basic rate (such as Multi-Code CDMA), not neces-
sarily the set of rates on the binary tree structure, but the optimal
solutions are still greedy achievable.

I. INTRODUCTION

Unlike voice-based second generation cellular networks,
third and fourth generation mobile networks will provide mul-
timedia services with variable data rates and different service
classes in addition to classical voice service. In the third gener-
ation W-CDMA standard, variable data rate service is provided
by assigning each user a single spreading code with variable
length [1]. The set of spreading codes used in such a scheme
is obtained from a binary tree structure (Figure 1) and called
Orthogonal Variable Spreading Factor (OVSF) codes [2]. On
the other hand, in Multi-Code CDMA systems, each user can
be provided with multiple spreading codes of fixed length, de-
pending on the users’ rate requests.

Recent studies on variable data rate CDMA systems focus on
efficiency of dynamic spreading code assignment schemes, es-
pecially for the systems employing OVSF codes [3], [4], [5],
[6]. The basic question these studies attempt to answer is how
to accomodate an incoming user’s rate request on the OVSF
code tree. For a Multi-Code CDMA system it is easy to han-
dle an incoming user’s request, if the requested rate is achiev-
able within available network bandwidth, as many as the num-
ber of spreading codes corresponding to the requested amount is
assigned to the incoming user. Since all fixed length spreading
codes are mutually orthogonal in Multi-Code systems, assign-
ing an unused spreading code to a new user does not affect the
existing users. On the other hand inherent binary tree structure
of OVSF codes in variable spreading CDMA systems compli-
cates the code management issue. As an example in Figure 1,

assume there are 2 existing users in the system and their spread-
ing codes are located at C2,1 and C2,3 on the binary code tree.
Thus the total used system bandwidth is R/2 and half of the the
total bandwidth is still unused. In this case, if a new user re-
quests R/2, the system bandwidth is available for this request
however the system cannot locate a spreading code for the new
user sinceC1,1 (C1,2) is not orthogonal to the existing codeC2,3

(C2,1). This phenomena is known as code blocking [3].
In [3], [5] and [6], dynamic code assignment schemes are pro-

posed to minimize the code blocking probability and to mini-
mize the number of existing spreading codes relocated in case
of an incoming user. In [4], the authors propose a protocol
which uses a credit-based reservaton scheme to prioritize users
and attempts to provide fairness to each user while providing
per-connection bandwidth gurantee to bursty data applications.
However none of the above studies question throughput limiting
system resources other than the total available bandwidth, such
as the total transmit power.

In this study we question variable data rate CDMA system
from a radio resource management point of view. For both
Multi-Code and variable spreading CDMA systems, our objec-
tive is to identify the maximum achievable network through-
put given available network resources (both power and band-
width), and to find a computationally simple (polynomial time if
possible) rate assignment algorithm resulting in the set of rates
achieving the maximum throughput. In addition for variable
spreading systems, we show that the set of optimum rates con-
cluded by our algorithm are always realizable on the binary code
tree as a result of the Kraft Inequality (mentioned later in the
paper), the way the spreading code replacements or shifts occur
during each step of our algorithm is a subject of [3], [5] and [6]
and not adressed in this paper.

Figure 1 shows how OVSF codes are obtained from a binary
tree structure. Note in the figure thatCi,j represents jth node on
layer i on the binary tree and it corresponds to a unique signa-
ture sequence of length 2i and rate R0/2

i where R0 is the root
rate corresponding to the node C0,1, also note that all the nodes
on the same layer have the same spreading factor. Moreover,
orthogonality of the assigned signature sequences is guaranteed
by the fact that none of the parent-child node pairs is assigned to
different users at the same time. As an example, the nodesC1,2

andC2,4 in figure 1 cannot be in use at the same time sinceC1,2

is a prefix of C2,4. Accordingly, the resulting set of assigned
signature sequences must have the prefix-free property.
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Fig. 1. OVSF Code Tree. Ci,j represents node j on layer i and has a length of
SF=2i

Accordingly the prefix-free condition imposes a constraint on
the set of spreading codes that can be assigned to active users
in variable spreading CDMA systems. It is a well-known fact
that the Kraft inequality determines whether a set of codes with
specified lengths can be placed on the binary tree as a prefix-free
set. Denoting the length of the branch from the root node (C0,1

in figure 1) to the uth user’s node by l(u) and number of users
by N , the Kraft Inequality

N∑

u=1

2−l(u) ≤ 1 (1)

must be satisfied to obtain a prefix-free set.
In the context of CDMA spreading codes, the Kraft inequality

can be interpreted as a bandwidth constraint. Since R0 denotes
the root rate and represents the maximum achiavable total rate
or the bandwidth of the system, it follows that the rate of user u
is

Ru =
R0

2l(u)

Multiplying both sides of (1) by R0, the Kraft inequality be-
comes

N∑

u=1

Ru ≤ R0 (2)

which states that R0 is an upperbound on the total data rate of
all users in variable spreading CDMA case. It is trivial to gen-
eralize constraint in (2) to the Multi-Code CDMA case and R0

represents the system bandwidth in this case.
In this paper, we consider the downlink of a single cell

CDMA system. We first work on variable spreading CDMA
system. We assume that we know the link gain between each
user and the base station. Given the minimum rate requirements

of each user and the constraint on the total BS power, our prob-
lem is to assign each user u one of the OVSF codes correspond-
ing to a data rate Ru such that the Kraft inequality, individual
data rate (Ru,min) and total BS power (P ) requirements are sat-
isfied and the total data rate of all users (network throughput)
is maximized. The problem in the Multi-Code CDMA case is
similar, given the minimum rate requirements of each user and
the constraint on the total BS power, we determine the number
of spreading codes that will be assigned to each user such that
individual data rate (Ru,min) and total BS power (P ) require-
ments are satisfied and the network throughput is maximized.

The following section gives the formal definition of the prob-
lems, in section 3 we propose the algorithm, and in the last sec-
tion prove its optimality.

II. PROBLEM STATEMENTS

Problem A:
The problem formulation for variable spreading CDMA sys-
tems is as follows. LetN denote the number of users in the sys-
tem,P denote the total BS power,Eb denote the received energy
per bit, which is assumed to be same for all users,R0 denote the
root rate, Ru denote the assigned rate for user u, hu denote the
link gain between user u and the BS, l(u) denote the length of
the branch from the root node (C0,1 in figure 1) to the uth user’s
node andRu,min denote the minimum QoS requirement for user
u, then the problem is:

max
∑N
u=1 Ru (3)

subject to
∑N
u=1

EbRu
hu
≤ P (4)

∑N
u=1 2−l(u) ≤ 1 (5)

Ru ≥ Ru,min, u=1..N (6)

Ru ∈ Rset = {R0,
R0

2 ,
R0

4 , ..., Ru,min} (7)

In the above problem formulation EbRu/hu is the transmit
power required by user u and (4) represents the total transmit
power constraint. Note that the received energy per bit Eb is
assumed to be the same for all users, thus implying that the
same coding/modulation scheme is assumed for all users. On
the other hand (5) represents the bandwidth constraint, as ex-
plained in the previous section. Therefore, we consider through-
put maximization under both power and bandwidth constraints.

Problem B:
The problem formulation for Multi-Code CDMA is the same
except the constraints in (5) and (7). Denoting the rate corre-
sponding to a single spreading code byRbase and the spreading
bandwidth of the system by R0, the problem formulation in the
Multi-Code case is as follows:

max
∑N
u=1 Ru (8)

subject to
∑N
u=1

EbRu
hu
≤ P (9)

∑N
u=1Ru ≤ R0 (10)

Ru ≥ Ru,min, u=1..N (11)

Ru ∈ Rset = {Rbase, 2Rbase, 3Rbase, ..., R0}(12)
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III. THE ALGORITHMS

Before introducing the algorihtms, we first show that if
the minimum required rates of users are feasible (achievable
within the constraints), then the user rates in the maximum
throughput-minimum power solution, among all feasible set of
rates, are ordered by link gains.

Lemma 1: Given N users with link gains h̄ = [h1, h2, .., hN ],
the optimal rate assignment vector Ropt = [R1o, R2o, .., RNo]
achieving maximum throughput with minimum possible power
must have the following property: the assigned rate of user i is
always larger than or equal to the rate of user j, Rio ≥ Rjo, if
hi > hj .

Proof: The proof is straightforward, if Rio < Rjo and
hi > hj , then we can always swap the rates of user i and
j without changing the total sum of rates and this exchange
always leads to a smaller amount of total power consumption.
Denoting the initial rate assignments of Rio and Rjo by r and
R, and the total power required for users i and j before and
after swapping by P and P s respectively, it follows that

P − P s = (
Ebr

hi
+
EbR

hj
)− (

EbR

hi
+
Ebr

hj
) (13)

= Eb(R− r)[
1

hj
− 1

hi
] (14)

> 0 (15)

(15) follows from the fact that hi > hj and R− r > 0.
�

Algorithm A: The Greedy Algorithm for Variable Spreading
CDMA

In this section we introduce the greedy algorithm as a solu-
tion to the rate assignment problem, (3)-(7), in variable spread-
ing CDMA systems. The algorithm initially attempts to provide
the minimum QoS requirement of each user. If the minimum
required rates are feasible, each user is assigned its correspond-
ing minimum rate as the initial rate vector. The rest of the al-
gorithm is greedy in nature, and the objective is to increase (to
double in the binary tree case) the rate of the user who spends
minimum power per bit. Since the power per bit ratio for user
u (Pu/Ru = Eb/hu) is inversely proportional to the link gains
hu, the rate of the user with the highest link gain is increased
first. At each greedy step, the algorithm attempts to maximize
the rate of a user (users are ordered by the link gains) within the
total transmit power (4) and the bandwidth constraints (5). In
other words, each rate assignment is a result of a local optimum
decision. In the next section we will show that the local opti-
mum decisions lead to a global optimum solution.

We summarize the algorithm below and show how the algo-
rithm works on the binary code tree for a sample case of 5 users
in figure 2.

Optimal Greedy Scheduling Algorithm for Variable
Spreading CDMA

Input: Eb, R0 (root rate), P , h̄ = [h1,..,hN ], h1 > h2 > .. >
hN , Ri,min

a larger branch}
{replace R5 to empty 

largest available branch

R1 R2 R3 R4 R5
■ ■ ■ ■■

Root: R(0) 

■

■

■ ■ ■

R1

R2

R5 R3 R4

{opt. for user 2
if power satisfied}

■

■ ■ ■■
R2 R3 R4R5

R1

largest
empty branch

{C(1,2) is the optimal node for ,

 
is satisfied}

{if C{1,2} is not
achievable within

power limit,
try these}

■

■

■

■ ■

R1

R2

R3

R5 R4

user 1, if power const.

5 users, each requires at least R(0)/16

Link gains satisfy: h1>h2>h3>h4>h5

}

{Optimal node assignments of 5 users, note that at each step we should

check whether the power constraint is satisfied or not, if not 

    optimal node is one of the lower layer nodes just below

Fig. 2. Optimal Rate Scheduling Algorithm for 5 users, each requiring at least
R0/16

Output: R̄ = [R1, .., RN ]
Initialization:R̄=[R1,min,. . . ,RN,min],
Ptotal=

∑N
u=1

EbRu,min
hu

Algorithm A
for u=1 : N
Step 1: Find the smallest positive integer j satisfying

2−j +
∑N
u′ 6=u 2−l(u

′) ≤ 1 (16)

s.t Ptotal +
Eb(

R0
2j
−Ruser,min)

huser
= Ptotal + P

′ ≤ P (17)

P
′

: additional power required to step up user’s rate from
Ruser,min to R0/2

j .
Step 2: R̄(u) = R0/2

j

Step 3: Ptotal = Ptotal + P
′

end

An important fact is that the resulting rate assignment,R0/2
j ,

can be obtained by repeatedly doubling the user’s initial rate as
long as the constraints (4) and (5) permit.

Notice that Step 1 of Algorithm A determines the layer num-
ber j of user u on the binary code tree which uniquely de-
termines the optimum rate assignment for that user R̄(u) =
R0/2

j . However Step 1 does not tell about to which of the
nodes on layer j the user spreading code should be placed. On
the other hand, satisfying the Kraft Inequality (16) guarantees
the fact there is at least a set ofN spreading codes on the binary
code tree such that uth user’s spreading code is placed on layer
j, the rates of all other users are not affected by this placement
(although spreading codes might shift on the same layers) and
the set of spreading codes satisfies the prefix free property.

As an example in Figure 2, it is necessary to shift R5 to the
leftmost node in order to step up R2 to its optimal node as-
signment (found by Step 1 of the algorithm) which is shown
in the bottom left figure. The shifts or replacements of spread-
ing codes on the same layer on the binary code tree is an imple-
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mentational issue and such shifts do not affect the assigned rate
of a user. In this paper we are only interested in the maximum
achievable network throughput and the set of rates achieving the
maximum throughput. However we show that the set of opti-
mum rates concluded by our algorithm are always realizable on
the binary code tree as a result of the Kraft Inequality.

Algorithm B: The Greedy Algorithm for Multi-Code CDMA

Similar to variable spreading CDMA case, the greedy approach
solves the optimal rate and spreading code assignment problem,
(8)-(12), in Multi-Code CDMA systems. However, in this case
the greedy rate assignment only favors the best link gain user.
Namely, after the algorithm assigns the minimum required rates
and allocates the correspoding spreading codes to each of the
users, only the rate of the user with the best link gain is maxi-
mized using the remaining power budget.

In case there is also a maximum rate constraint on some of the
users’ rates, the greedy steps are executed for all users ordered
by link gains.

We summarize the algorithm below.

Optimal Greedy Scheduling Algorithm for Multi-Code
CDMA

Input: Eb, X0 (total number of spreading codes), P , Ri,min,
h̄ = [h1,.., hN ]
Output:R̄=[R1,. . . ,RN ] or x̄=[x1,. . . ,xN ]
xi: number of spreading codes assigned to user i
Rbase: the rate of a single spreading code , Ri = xiRbase
Algorithm B
Initialization:R̄=[R1,min,. . . ,RN,min],
Ptotal=

∑N
u=1

EbRu,min
hu

for the best link gain user u
Step 1: Find the largest possible positive integer xu satisfying

xu +
∑N
u′ 6=u xu′ ,min ≤ X0 (18)

s.t Ptotal + EbRbase(xu−1)
hu

≤ P (19)

end

IV. CORRECTNESS AND PROOF OF THE ALGORITHMS

In this section we will prove the optimality of Algorithm B for
Multi-Code CDMA systems and the optimality of Algorithm A
for Variable Spreading CDMA systems. The definition of op-
timality contains both maximizing the total network throughput
within the constraints and also achieving the optimal throughput
with minimum possible power.

The proof of the Algorithm B is as follows:

Proposition 1: Algorithm B solves any instance of the
combinatorial optimization problem associated with (8)-
(12). Moreover, if there is more than one optimal solution
R̄ = [R1, R2, .., RN ] leading to the same optimal total network
throughput, the proposed greedy scheduling algorithm yields
the minimum power solution.

Proof : Let Rbase denote the rate corresponding to a sin-
gle spreading code, xi denotes the number of spreading codes
assigned to user i, Ri denotes the rate assigned to user i and
Ri = xiRbase. Therefore we scale all rate assignments by
Rbase and prove the optimality of the vector x̄ = [x1, .., xN ].

Assume the users are ordered by their link gains and user 1 is
the best link gain user. Consider an optimal vector xopt achiev-
ing the maximum total network throughput

xopt = [x1o, x2o, .., xNo] (20)

and let xgreedy denote the vector of number of spreading codes
assigned to each user after the greedy step, meaning that each
user is assigned the minimum required rates and the rate of the
first user is increased greedily to x1,g

xgreedy = [x1,g , x2,min, .., xN,min] (21)

We now rearrange the user rates in xopt (20) to obtain another
set of rates x

′
opt achieving the same network throughput as xopt

x
′
opt = [x

′
1o, x

′
2o, . . . , x

′
No] (22)

x
′
io = xi,min, i=2, . . . ,N (23)

x
′
1o = x1o +

∑N
i=2(xio − xi,min) (24)

From xopt to x
′
opt, all user rates except the first one are re-

duced to the minimum required levels and the total rate reduc-
tion is assigned to the first user.

It is easy to show that x
′
opt requires less power than the opti-

mal xopt. To show this let Popt and P
′
opt denote the power spent

by xopt and x
′
opt respectively, then

P
′
opt − Popt =

EbRbase(x
′
1o − x1o)

h1

+
N∑

u=2

EbRbase(x
′
uo − xuo)

hu
(25)

<
EbRbase
h1

[(x
′
1o − x1o)

+
N∑

u=2

(x
′
uo − xuo)] < 0 (26)

(26) is due to the fact that h1 is the largest link gain and re-
placing hu by h1 in the second expression on the right side of
(25) upperbounds P

′
opt − Popt. Also note that x

′
uo − xuo ≤ 0

(u = 2, . . . , N ) and [(x
′
1o−x1o)+

∑N
u=2(x

′
uo−xuo)] = 0 due

to (23) and (24).
Comparing x

′
opt and xgreedy , they agree on all rate assign-

ments except the first one, (21) and (23). On the other hand
for user 1, x

′
1o > x1,g can not be true since the greedy step

maximizes the rate of the first user while all other users are
assumed to obtain the minimum requirel levels. Moreover if
x
′
1o < x1,g , then xgreedy offers larger throughput than x

′
opt,

which achieves the same throughput as xopt. This can not be
the case since xopt is optimal by assumption and therefore it
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must offer the maximum network throughput. Thus x
′
1o = x1,g

and therefore x
′
opt = xgreedy . As a result the greedy rate as-

signment achieves the maximum network throughput offered by
xopt, with a smaller amount of total power consuption (26).

This concludes the proof that starting from any optimal
vector xopt of (20), we can obtain the same network throughput
by the greedy choice xgreedy of (21) with a smaller amount of
total power consuption. The last statement also means that if
there is only one optimal solution, then that is what the greedy
algorithm concludes.

�

Proposition 2: Algorithm A solves any instance of the
combinatorial optimization problem associated with (3)-
(7). Moreover, if there is more than one optimal solution
R̄ = [R1, R2, .., RN ] leading to the same optimal total network
throughput, the proposed greedy scheduling algorithm yields
the minimum power solution.

Proof: We first start with 2 user case and prove the opti-
mality of Algorithm A in this case. We next generalize the
proof of optimality to any number of users.

Step 1: The optimality for 2 user case

A general form of the problem is as follows

max
∑2
u=1Ru (27)

subject to
∑2
u=1

EbRu
hu
≤ P ′ (28)

∑2
u=1 2−l(u) ≤ ρ (29)

Ru ≥ Ru,min, u=1,2 (30)

Ru ∈ Rset = {R0,
R0

2 ,
R0

4 , ..., Ru,min} (31)

for any 0 < P
′ ≤ P and 0 < ρ ≤ 1.

Following the notation used before, let Ropt andRgreedy de-
note the vectors of the optimal and the greedy rate assignments
respectively.

Ropt = [R1,opt, R2,opt] (32)

Rgreedy = [R1,g , R2,g] (33)

Consider the following 2 cases about R1,opt and R1,g :
(i) R1,opt > R1,g

The case can never occur sinceR1,g is the maximum rate that
can be assigned to user 1 while user 2 is supposed to receive its
minimum required data rate R2,min.

(ii) R1,g > R1,opt

In this case R1,opt can be at most R1,g/2 because of the ge-
ometric relationship between the rates on the binary code tree.
On the other hand, by Lemma 1, R1,opt is always larger than or
equal toR2,opt, therefore the sum ofR1,opt andR2,opt can never
exceed the sum of R1,g and R2,g , since R2,g is nonzero

R2,opt ≤ R1,opt ≤ R1,g/2 =⇒ R2,opt +R1,opt ≤ R1,g(34)

=⇒ R2,opt +R1,opt < R1,g +R2,g (35)

Therefore case(ii) can never occur sinceRopt should have led to
the maximum network throughput. As a result, R1,opt = R1,g.

Since R2,g is the maximum rate that can be assigned to user 2
within the constraints and assuming the first user is assigned
R1,g, R2,opt should also be equal to R2,g, R2,g = R2,opt. It is
clear that the greedy rate assignment vector is also the minimum
power solution. The argument behind this fact is similar to
the argument in the proof of Lemma 1: Among the set of rate
assignments R̄ = [R1, R2] leading to the same maximum
network throughput, the one which assigns the highest possible
rate to the user with better link gain is the minimum power
solution, since that user consumes less power per bit.

Step 2: The optimality in general

Assume that there are N users in the system and the greedy
algorithm is the optimal way to assign the rates of those N
users. Assuming this, the next question is whether the greedy
algorithm is optimal for N + 1 users as well, if it is assumed to
be optimal for N users.

LetRgreedy andRopt denote the greedy rate assignments and
the optimal rate assignments respectively for N + 1 users. The
users are ordered such that (N + 1)th user is the worst link gain
user and cannot receive a larger rate than any of the other N
users by Lemma 1.

Rgreedy = [R1,g , R2,g, .., RN,g, RN+1,g] (36)

Ropt = [R1,opt, R2,opt, .., RN,opt, RN+1,opt] (37)

A preliminary fact that will be used throughout the proof is
that due to the N user optimality assumption of the greedy al-
gorithm, if we assume to fix the rate of the (N + 1)th user to
RN+1,opt and determine the rest of N rate assignments greed-
ily, the resulting set of rates must be optimal. In other words the
first N rate assignments of Ropt can be obtained by the greedy
solution of the following problem:

max
∑N
u=1Ru (RN+1 = RN+1,opt) (38)

subject to
∑N
u=1

EbRu
hu
≤ P − EbRN+1,opt

hN+1
(39)

∑N
u=1 2−l(u) ≤ 1−RN+1,opt/R0 (40)

Ru ≥ Ru,min, u=1..N (41)

Ru ∈ Rset = {R0,
R0

2 ,
R0

4 , ..., Ru,min} (42)

Notice that in Step 1, we proved the greedy optimality forN =
2 and for any 0 < P

′ ≤ P and 0 < ρ ≤ 1, (27)-(31).
The rest of the proof shows that either Rgreedy is optimal or

there is no feasible Ropt. To show this fact we compare the rel-
ative powers spent byRgreedy and Ropt denoted by P g and P o

respectively.
Consider the rate assignments by (36) and (37). Notice that,

from user 1 to user N + 1, for the first user for which Rgreedy
and Ropt differ, the optimal assignment must be lower than the
greedy assignment. We name the index of this user as u1 (u1 ≥
1), thus

Ri,g = Ri,opt, i=1, . . . ,u1-1 (43)

Ru1,g > Ru1,opt (44)

The reasoning behind (44) is that the greedy algorithm locally
maximizes the rate of a user at hand starting from the best link
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gain user, therefore if Ru1,opt > Ru1,g were true, then Ru1,g

would not be the locally maximum choice for the u1th user due
to (44).

Similar to u1, we name the index of those other users, for
which the optimal assignment determines a lower rate than the
greedy assignment, by u2, . . . , uM (M ≤ N ). Thus

Ri,g > Ri,opt, i=u1, u2, . . . , uM (45)

Rj,g = Rj,opt or Rj,g < Rj,opt, j 6= i, j ≤ N (46)

The difference in power spent by the optimal and the greedy
rate assignments for users u1, . . . , u2−1 is denoted by Pdiff,1,
similary the difference in sum of rates for the same users is de-
noted by Rdiff,1

Rdiff,1 =
∑u2−1
i=u1

(Ri,opt −Ri,g) (47)

Pdiff,1 =
Eb(Ru1,opt−Ru1,g)

hu1
+
∑u2−1
i=u1+1

Eb(Ri,opt−Ri,g)
hi

(48)

Pdiff,1 >
Eb
hu1

∑u2−1
i=u1

(Ri,opt −Ri,g) =
EbRdiff,1

hu1
(49)

The last inequality follows from the fact that hu1 > hi for each
i in (48) and therefore replacing hi by hu1 in (48) lowerbounds
Pdiff,1.

An important observation on (47)-(49) is thatRdiff,1 is non-
positive. Before explaining why it is so, remember that due to
N user optimality assumption of the greedy algorithm, the first
N rate assignments of Ropt can be obtained as the greedy so-
lution of (38)-(42) assuming (N + 1)th user’s rate is fixed to
RN+1,opt, thus in fact Ru1,opt is a locally optimum decision if
the original N + 1 user problem is reduced to an N user prob-
lem by the assumption on (N + 1)th user’s rate. Now con-
sider the case where Rdiff,1 is positive. Then Pdiff,1 is also
positive due to (49), which implies that Ropt remains feasible
if [Ru1,opt, . . . , Ru2−1,opt] is replaced by [Ru1,g , . . . , Ru2−1,g]
and the rest of user rates remain the same in Ropt. In this case
the locally maximum choice of a greedy algorithm at u1th step
(greedy assumes minimum rates for successive users) can not be
Ru1,opt due to (44). The contradiction leads us to the point that
Rdiff,1 is not positive.

Similar to Rdiff,1 and Pdiff,1, the difference in power
spent by the optimal and the greedy rate assignments for users
uj , . . . , uj+1−1 is denoted byPdiff,j and the difference in sum
of rates for the same users is denoted by Rdiff,j . The lower
bound on Pdiff,1 and the nonpositivity of Rdiff,1 extend to
Rdiff,j and Pdiff,j as well. Remember that there are M users,
among the first N users, for which the optimal assignnment is
lower than the greedy assignment (45).

Rdiff,j =
∑uj+1−1
i=uj

(Ri,opt −Ri,g) ≤ 0 (50)

Pdiff,j >
EbRdiff,j

huj
, j=1,. . . ,M-1 (51)

Rdiff,M =
∑N
i=uM

(Ri,opt −Ri,g) ≤ 0 (52)

Pdiff,M >
EbRdiff,M

huM
, j=M (53)

Let P g and P o denote the total power spent by Rgreedy and
Ropt, Rg and Ro denote the total sum of rates of Rgreedy and
Ropt respectively, using (50)-(53)

Ro −Rg =
N+1∑

u=1

(Ru,opt −Ru,g)

=
M∑

j=1

Rdiff,j + (RN+1,opt −RN+1,g)

(54)

P o − P g =
N+1∑

u=1

Eb(Ru,opt −Ru,g)
hu

=
M∑

j=1

Pdiff,j +
Eb
hN+1

(RN+1,opt −RN+1,g)

(55)

P o − P g >
M∑

j=1

EbRdiff,j
huj

+
Eb
hN+1

(RN+1,opt −RN+1,g)

(56)

Since hN+1 is the smallest link gain, Rdiff,j is nonpositive
for each j due to (50) and using (54), we can further lowerbound
(56) as follows

P o − P g >
M∑

j=1

EbRdiff,j
hN+1

+
Eb
hN+1

(RN+1,opt −RN+1,g)

=
Eb
hN+1

(Ro − Rg)
(57)

Eq (57) has a nice interpretation, among the set of rates lead-
ing to the same optimal network throughput (Ro−Rg = 0), the
greedy one minimizes the total power (P o − P g > 0). We will
now show that if there is any feasibleRopt, thenRgreedy always
achieves the maximum network througput offered by Ropt and
since it also minimizes the total power, it is in fact the optimal
one.

Consider (54), in order forRopt to be optimal, it should have
the maximum sum of rates, thus

Ro −Rg = RN+1,opt −RN+1,g +
∑M
j=1 Rdiff,j ≥ 0(58)

RN+1,opt −RN+1,g ≥ 0 (59)

(59) follows from the fact that Rdiff,j is nonpositive for each
j due to (50). By Lemma 1 the user rates are ordered by the
link gains, using this fact and (59), it follows thatRN+1,g is the
smallest rate assignment of all Ru,g and Ru,opt. Therefore, us-
ing the geometric relationship between the rates on the binary
code tree, all rate assignments byRgreedy andRopt are express-
ible in terms of integer multiples of RN+1,g

Ru,opt, Ru,g = aRN+1,g, a = 2k, k ≥ 0 (60)

In this case the difference in throughput offered byRgreedy and
Ropt can also be expressed as an integer multiple of RN+1,g

Ro −Rg =
N+1∑

u=1

(Ru,opt −Ru,g) = jRN+1,g , j ≥ 0 (61)
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Consider Rgreedy (36). At (N + 1)th greedy step, the maxi-
mum rate that can be assigned to the (N+1)th user within avail-
able resources is RN+1,g. At this point 2 case might have oc-
cured: Case-1) the system is power limited and although there is
available bandwidth, (N+1)th user cannot receive 2RN+1,g be-
cause of the power constraint. Case-2) the system is bandwidth-
limited and although there is available power, (N + 1)th user
cannot receive 2RN+1,g because most of the bandwidth has al-
ready been used.

For Case-1, the power required to assign an additional
RN+1,g to the (N + 1)th user is less than the residual power of
Rgreedy . Denoting the total available power by P and rewriting
the lowebound (57) as an equality

P − P g < EbRN+1,g

hN+1
(62)

P o − P g = Eb
hN+1

(Ro −Rg) + ε, for an arbitrary ε > 0(63)

Combining (62) and (63) we obtain a relationship between the
total power spent by the optimal assignments P o and the total
available power P , then using (61) we come up with the final
inequality (65)

P − P o < EbRN+1,g

hN+1
− Eb

hN+1
(Ro −Rg)− ε (64)

P − P o < (1− j)EbRN+1

hN+1
− ε (65)

for a real arbitrary ε > 0 and for an integer j ≥ 0. In order for
Ropt to be feasible, it should satisfy the following inequality

P − P o ≥ 0 (66)

Thus according to (65), Ropt is feasible only if j = 0. In this
case, from (61), the optimal and the greedy rate assignments of-
fer the same total network throughput

Ro = Rg (67)

For Case-2, denoting the total available bandwidth byR0, the
total sum of rates of Rgreedy by Rg, the remaining bandwidth
out ofRg is less thanRN+1,g so that (N+1)th user can only get
RN+1,g instead of 2RN+1,g although there is available power.
Using (61)

R0 −Rg < RN+1,g (68)

Ro −Rg = jRN+1,g, j ≥ 0 (69)

R0 −Ro < RN+1,g − jRN+1,g (70)

The total sum of rates offered by Ropt can not exceed the total
available bandwidth R0 − Ro ≥ 0. In this case, Ropt is only
achievable if j = 0. In this case, from (61), the optimal and the
greedy rate assignments offer the same total network throughput
(67).

To sum up, we started with the assumption that the greedy al-
gorithm is the optimal way to assign the rates of N users. Us-
ing this assumption, we have shown that the greedy algorithm
achieves the maximum network throughput for N + 1 user as
well. Moreover (57) implied that among the set of rates lead-
ing to the same optimal network throughput (Ro − Rg = 0),
the greedy one minimizes the total power (P o − P g > 0), thus
proving that the greedy rate assignment is in fact the optimal one
forN + 1 user. The proof of optimality of the greedy algorithm
for 2 user case is therefore generalized to any number of users
by induction.

�

V. CONCLUSION
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