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Abstract — A mobile infostation network stipulates all trans-
missions to occur when nodes are in proximity. In this paper,
we evaluate the effect of mobility on highway mobile infostation
networks. Each node enters a highway segment at a Poisson
rate with a constant speed drawn from a known but arbitrary
distribution. Both forward and reverse traffic are considered. For
node speed that is uniformly distributed, the expected fraction of
connection time, or expected number of connections in queueing
terminology, is independent of observer node speed forreverse
traffic, while it increases with observer node speed for forward
traffic. We also extend our mobility model such that each node
changes speed at each highway segment. The long run fraction
of connection time of an observer node is dependent on the ratio
of transmit range and connection time limit. Forward traffic
connection yields better performance when the ratio is small
and vice versa. We also compute the optimal transmit range and
the corresponding data rate for both traffic types. We conclude
that forward traffic connections yield much higher data rate in
most scenarios.

I. INTRODUCTION

In a mobile infostation network, nodes operate on low
transmit power. Any two nodes communicate only when they
are in proximity and have a very good channel. Under this
transmission constraint, any pair of nodes is intermittently
connected as mobility shuffles the node locations. The network
capacity of mobile infostation networks compares favorably
to conventional multihop ad hoc networks. In [3] Gupta and
Kumar showed that the per node throughput in a multihop
network drops to zero at a rate O( 1√

n ln n
) in the limit of large

n. Thus multihop networks do not scale with large network
size. On the other hand, Grossglauser and Tse showed in [2]
that the per node throughput of a mobile infostation network
is O(1), independent of the number of nodes. This capacity is
achieved through a two hop relay strategy.

Assume that each node in the network selects a random
destination for unicast. We focus on a source node i, which has
packets to deliver to a destination node j, as shown in Figure 1.
As time evolves, node i moves along a random trajectory and
eventually encounters nodes 1 and 2. Although neither nodes 1
nor 2 are the destination of i, i still relays packets to them, with
the expectation that when each of these relay nodes reaches
the destination j, it will complete the second relay on behalf of
node i. In steady state, each of the other n−2 nodes contains
packets generated by node i and destined to node j. At any

Fig. 1. Two hop packet relay strategy in a mobile infostation network.

network snapshot, it is almost surely that the nearest neighbor
of node j has packets addressed from node i and completes
the second relay on the behalf of i. That is, the long run per
node throughput is constant and is independent of the network
size. This capacity improvement comes from the exploitation
of node mobility to physically carry the packets around the
network, and is independent of the underlying mobility model,
as long as the mobility process is ergodic.

Motivated by the dramatic capacity improvement of mobile
infostation networks, there are a number of recent papers on ad
hoc networks that exploit node mobility. Whereas [2] focused
on unicast, most other papers focused on multicast. [5], [6]
has focused on scenarios in which nodes cooperate. In order
to expedite data dissemination, a node also forwards packets
for other nodes if it has not done so for some time. The issue
of noncooperation between nodes was explored in [9], [10] in
the context of a content distribution application. Transmissions
between two proximate nodes are allowed only when both
nodes benefit from a file exchange. On the other hand, the
effect of transmit range on capacity of mobile infostation
networks is examined in [8]. A refined interference model is
used for analysis.

In this paper, we examine the effect of mobility on mobile
infostation networks. In [2], mobility provides a mechanism
such that numerous instances of excellent channels between
different nodes can be exploited. The realization of large
network capacity comes from the translation of maximal
spatial transmission concurrency in each network snapshot
to the long run end-to-end network capacity. The physical
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Fig. 2. Illustration of the highway mobile infostation network model.

implication of mobility in node encounters has been glossed
over. In reality, the total connection time of a node over a
specific interval depends on the node encounter rate and the
connection time in each encounter, both of which depend on
the relative mobility of nodes. Although a high node speed
results in more node encounters, the connection time in each
node encounter also decreases. It is not apparent whether high
or low speed results in a larger connection time, and thus,
data rate. To this end we propose a new mobility model
for highway networks. The highway scenario proves to be
interesting despite its mathematical simplicity. First, forward
traffic connection time is much larger than that of reverse
traffic, but the node encounter rate is also much smaller. It
is not apparent which traffic type maximizes the fraction of
connection time. Second, the connection time in an encounter
depends on the transmit range of the nodes. For both forward
and reverse traffic, an optimal transmit range exists such that
the long run data rate of a node is maximized.

II. SYSTEM MODEL

We consider a highway network in which fixed infostations
are placed regularly at a distance d from each other. We assume
that all nodes are subscribers of a content provider, say a
movie distribution network. Movies are split into many files
and are cached in the infostations at various locations. Besides
downloading directly from an infostation, a node participates
in data exchanges whenever there is another node in proximity.
We assume data exchanges between two proximate nodes
in range always take place without further negotiation. The
amount of data exchanged is proportional to the connection
time in an encounter and the data transmission rate. It was
shown in [10] that in a large network, peer-to-peer node
exchanges account for most of the data transmissions. As the
network size increases, the importance of fixed infostations in
data dissemination dwindles. Thus, in this paper we focus on
peer-to-peer connections between proximate mobile nodes in
node encounters only. Connections to fixed infostations on the
highway are ignored.

In our analysis, we focus on an arbitrary highway segment
between two infostations, say A and B, as shown in Figure 2.
Nodes move at a constant speed V , an iid random variable
drawn from a known but arbitrary distribution G. Since nodes

have different speeds, a node may overtake other nodes or
being overtaken as it traverses the highway segment. We make
all our observations at a specific node, called the observer
node. Two types of traffic are considered here. For forward
traffic, nodes are injected into the highway segment at a
Poisson rate of λ from infostation A. Similarly, nodes are
injected into the highway at a Poisson rate λ from infostation
B for reverse traffic. We assume there is no delay incurred in
a node encounter. This is plausible in a wide motorway with
multiple lanes and moderate traffic, where a node overtakes
another at different lanes. This is called the wide motorway
model in [4]. More generally, a node changes speed as time
evolves. We assume each node still moves at a constant speed
in a highway segment. Whenever a node traverses a new
highway segment, it selects a new speed from the distribution
G, independent of the previous speed.

Suppose the observer node moves at a speed V = v0 on
a highway segment from infostation A to B. We denote the
time for the node to traverse a highway segment as the cycle
duration, given by T = d/V , with a corresponding distribution
F . F and G are obviously related, given by F (t) = G(d/t),
where F (t) = 1−F (t) denotes the complementary distribution
function. Given the observer node mobility t0, we denote
N1(t0) as the number of node encounters with forward traffic
in the duration t0 = d/v0. The connection time Y1(t0) in
each node encounter is a random variable dependent on the
relative speed of the nodes and the common transmit range of
all nodes r. Two nodes having a similar speed therefore have
an unbounded connection time. In reality, however, each node
only has a finite amount of data for dissemination to another
node. We stipulate a connection time limit parameter c to limit
the actual connection time B1(t0) in a node encounter, given
by B1(t0) = min(Y1(t0), c). We also denote the total connec-
tion time of the observer node in a highway segment as Z 1(t0).
The expressions E[N1(t0)]/t0 and η1(t0) = E[Z1(t0)]/t0 cor-
respond to the expected node encounter rate and the expected
fraction of time a node is busy as a function of observer node
mobility t0. Nevertheless, since a node can simultaneously
maintain more than one connection, η1(t0) can be larger than
1. In queueing terminology, the observer node is a server
and the connection time in a node encounter corresponds to
the service time. η1(t0) can be interpreted as the expected
number of connections of the observer node in a cycle. For
reverse traffic, the corresponding expected node encounter rate
and expected fraction of connection time (expected number
of connections) are denoted as E[N2(t0)/t0] and η2(t0) =
E[Z2(t0)/t0].

When speed change is incorporated to our model, the long
run average fraction of connection time and data rate are the
appropriate metrics. It turns out that simple characterization
of these metrics is possible by drawing results from renewal
reward theory [7]. Let M(t), t ≥ 0 be a counting process
to denote the number of highway segments traversed by the
observer node. At the n-th highway segment, the observer
node selects a random speed Vn independent of the speed Vn−1

at the previous highway segment n − 1. The corresponding
cycle durations Tn are iid random variables. Since M(t) is a
counting process with iid interarrival times, M(t) is a renewal



process. Moreover, we denote Rn as the reward earned in the
nth cycle, or renewal period. If we let

R(t) =
N(t)∑
n=1

Rn, (1)

then R(t) is the total reward earned by time t. Let E[R] =
E[Rn] and E[T ] = E[Tn], the renewal reward theorem [7]
states that if E[R] < ∞ and E[T ] < ∞, then with probability
1,

lim
t→∞

R(t)
t

=
E[R]
E[T ]

. (2)

That is, the rate of earning reward in the long run is just the
ratio of the expected reward in a cycle and the expected cycle
duration. Accordingly, if we define the reward as the number
of encounters N1(T ) in a highway segment for forward traffic,
then the long run node encounter rate of the observer node is
simply N1 = E[N1(T )]/E[T ]. Similarly, when the reward
is defined as the total connection time Z1(T ) in a highway
segment, Z1 = E[Z1(T )]/E[T ] corresponds to the long run
fraction of connection time of the observer node. Last, when
the reward is the total amount of delivered data W1(T ) in
a highway segment, W1 = E[W1(T )]/E[T ] denotes the
long run data rate of the observer node. For reverse traffic
the long run fraction of connection time Z2 and data rate
W2 are defined similarly, with Z2 = E[Z2(T )]/E[T ] and
W2 = E[W2(T )]/E[T ].

III. PERFORMANCE ANALYSIS

Consider the forward traffic scenario. Suppose the observer
node enters the highway segment at time s and departs at
time s+ t0. We denote an event occurs at time t ∈ [0,∞) if a
node enters the highway segment at infostation A. Since the
node travels with random speed V = d/T , this node leaves
the highway segment at time t + T . We define p1(t) as the
probability that a forward entrant at time t has an encounter to
the observer node at the highway segment. It is straightforward
to show that

p1(t) =




F (s + t0 − t) t < s
F (s + t0 − t) s < t < s + t0

0 t > s + t0

. (3)

Assuming the network has been operated for a long time s →
∞ before we observe the observer node enters the highway
segment. The total number of node encounters is also a Poisson
process and in steady state s → ∞, it is given by

lim
s→∞ E[N1(t0)] = lim

s→∞ λ

∫ ∞

0

p(t)dt

= λ

(∫ t0

0

F (t)dt +
∫ ∞

t0

F (t)dt

)
. (4)

It can be shown E[N1(t0)] attains a global minimum when
the observer node cycle duration t0 is the median of the
distribution F by twice differentiating (4). This agrees with
our intuition that there are few node encounters if the observer
node moves at a speed that goes along with the majority.

For reverse traffic, we define an event occurs at time t if
a node enters the highway segment from infostation B. For

an event at time t, it is marked with probability p2(t) if there
is a node encounter with the observer node at the highway
segment, given by

p2(t) =




0 t > s + t0
1 s < t < s + t0

F (s − t) t < s
. (5)

The total number of node encounters at steady state is

lim
s→∞E[N2(t0)] = lim

s→∞ λ

∫ ∞

0

p2(t)dt

= λ(t0 + E[T ]), (6)

where E[T ] is the expected cycle duration given by

E[T ] =
∫ ∞

0

F (t)dt. (7)

The long run node encounter rate for both traffic types can be
obtained by averaging over the speed distribution. Thus

E[N1(T )] =
∫ ∞

0

E[N1(t0)] dF (t0)

= 2λ

∫ ∞

0

F (t)F (t)dt, (8)

E[N2(T )] = 2λE[T ]. (9)

(8) and (9) suggest that the expected node encounter rate for
reverse traffic is always larger than that for forward traffic,
which is obviously true. Moreover, (9) shows that the expected
node encounter rate is completely characterized by the traffic
intensity λ and the first moment of distribution F .

To compute the expected connection time in one encounter
for forward traffic E[B1(t0)], we note that

E[B1(t0)] =
∫ c

0

P [Y1(t0) > t]dt

=
∫ c

0

P

[
2r

|v0 − V | > t

]
dt

=
∫ c

0

G

(
2r

t
+

d

t0

)
− G

(
d

t0
− 2r

t

)
dt.(10)

Similarly, for reverse traffic we have

E[B2(t0)] =
∫ c

0

P [Y2(t0) > t]dt

=
∫ c

0

G

(
2r

t
− d

t0

)
dt. (11)

Refer to Figure 2 again, the total connection time for for-
ward traffic is obtained by summing all individual connection
time Bi

1(t0), i ∈ [1, N1(t0)] over the cycle. In the event that
the connection time of the encounter N1(t0) overshoots the
end of the cycle, the observer node undergoes a renewal and
selects a new speed. This in turn modifies the connection time
B

N1(t0)
1 . Nevertheless, the boundary effect of an overshoot

connection time is minimal when either N1(t0) is large, or
when B1(t0) ≤ c � t0 = d/v0. The former assump-
tion is valid when traffic intensity λ is moderate, such that
N1(t0) � 1. The latter assumption is valid when the distance
between fixed infostations d is large, which is likely in an



initial deployment of a fixed infostation network. Ignoring the
boundary effect of B

N1(t0)
1 (t0), we have

Z1(t0)] ≈
N1(t0)∑

i=1

Bi
1(t0). (12)

It can be shown that B i
1(t0) are iid random variables and

N(t0) is Poisson. However, N1(t0) and B
(
1t0) are in general

not independent. In fact, when node mobility is high, N 1(t0)
is large and the corresponding B1(t0) is small. Thus Z1(t0)
is not a compound Poisson process. Nevertheless, N1(t0) is
a stopping time w.r.t. the sequence B i

1(t0) since the stopping
rule {N1(t0) = n} is completely determined by the informa-
tion up to time n, and is unrelated to Bn+1

1 (t0),Bn+2
1 (t0) and

so on. Thus, Wald’s equality can be applied to (12) to yield

E[Z1(t0)] = E[N1(t0)]E[B1(t0)]. (13)

Similarly, for reverse traffic we have

E[Z2(t0)] = E[N2(t0)]E[B2(t0)]. (14)

The long run fraction of connection time, or number of
connections of the observer node for both traffic types can
be obtained by conditioning on distribution F , given by,

Z1 =
E[Z1(T )]

E[T ]
=

∫ ∞
0

E[Z1(t0)]dF (t0)
E[T ]

(15)

and

Z2 =
E[Z2(T )]

E[T ]
=

∫ ∞
0 E[Z2(t0)]dF (t0)

E[T ]
. (16)

Finally, we are also interested in the long run data rate for
both traffic types. Assuming non-adaptive radios are used, the
data rate is the Shannon rate at the transmit range boundary
r, given by

C(r) = ln(1 + 1/r4), (17)

where we have assumed a path gain exponent of 4 and ignored
the effect of mutual interference. We define the long run data
rate as

W1 = E[W1(T, r)] = C(r)E[Z1(T, r)], (18)

W2 = E[W2(T, r)] = C(r)E[Z2(T, r)], (19)

where we emphasize both connection time Z and the amount
of delivered data W are dependent on the transmit range r.
Since W1(r) = 0 and W2(r) = 0 when the transmit range is
zero or very large, an optimal transmit range r exists for both
traffic types such that W1 and W2 are maximized respectively.

IV. NUMERICAL STUDY

We consider the case when node speed is uniformly dis-
tributed according to (20), given by

G(v) =




0 0 ≤ v ≤ va
v−va

vb−va
va ≤ v ≤ vb

1 v ≥ vb

. (20)

The corresponding distribution of the cycle duration T = d/V
is

F (t) =




0 0 ≤ t ≤ d/vb
vb−d/t
vb−va

d/vb ≤ t ≤ d/va

1 t ≥ d/va

. (21)

E[N1(t)], E[N1(T )] and E[B1(t0)] can be readily computed
by evaluating (4),(8), (10) as

E[N1(t0)] =
λ

vb − va

(
(va + vb)t0 + d ln

d2

t20e
2vavb

)
, (22)

E[N1(T )] =
2dλ

(vb − va)2

(
(va + vb) ln

vb

va
− 2(vb − va)

)
,

(23)
and E[B1(t0)] =


c( d
t0

−va)+2r ln[(vb− d
t0

)( ce
2r )]

vb−va
t0 ≥ max( d

va+ 2r
c

, d
vb− 2r

c

)
c(vb− d

t0
)+2r ln[( d

t0
−va)( ce

2r )]
vb−va

t0 ≤ min( d
va+ 2r

c

, d
vb− 2r

c

)
2r ln[( ce

2r )2
(vb− d

t0
)( d

t0
−va)]

vb−va

d
vb− 2r

c

≤ t0 ≤ d
va+ 2r

c

c d
va+ 2r

c

≤ t0 ≤ d
vb− 2r

c

.

(24)
Recall that E[N1(t0)] is minimized when t0 is median of
F , i.e. F (t0) = 1/2. For uniform distribution, the median is
equal to the arithmetic mean. It can be shown that E[N1(t0)
is convex with a minimum at t0 = 2d/(va + vb), or v0 =
(va+vb)/2. Similarly the node encounter rate E[N1(t0)]/t0 is
also convex with a minimum at t0 = d/

√
vavb ≥ 2d/(va+vb),

where the inequality follows from the fact that arithmetic
mean is greater or equal to the geometric mean. On the
other hand, B(t0) is a concave function with a maximum
at t0 = 2d/(va + vb). Moreover, the connection time B is
symmetric about the mean speed, i.e. the connection time is
the same when the observer node has speed v0 and vb+va−v0.

Similarly by substituting (21) to (6),(9),(11) we have

E[N2(t0)] = λ
(
t0 +

d

vb − va
ln

vb

va

)
, (25)

E[N2(T )] =
2λd

vb − va
ln

vb

va
, (26)

and E[B2(t0)] =


2r ln
(

vb+d/t0
va+d/t0

)
vb−va

t0 ≤ d
max(va,2r/c−va)

2r ln
(

d/t0+vb
2r ce

)
−c(d/t0+va)

vb−va

d
min(vb,2r/c−va) ≤ t0

≤ d
max(va,2r/c−vb)

c t0 ≥ d
max(vb,2r/c−vb)

.

(27)
For reverse traffic, E[N2(t0)] is a decreasing function and
E[B2(t0)] is an increasing function.

Although both E[N1(t0)] and E[B1(t0)] are known ana-
lytically, the critical points for η1(t0) = E[Z1(t0)]/t0 cannot
be determined analytically since it involves the products of
logarithmic functions. We perform numerical experiments to
compare the performance of forward and reverse traffic con-
nections at different observer node mobility. The parameters
va = 2,vb = 10,d = 1000 are adopted in our numerical study.
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Fig. 3. Expected number of connections η(t0) versus node mobility t0 =
d/v0 for different transmit range r and connection time limit c. (a) r =
1, c = 1 (b) r = 2, c = 1 (c) r = 0.5, c = 1 (d) r = 1, c = 10

With reference to Figure 3, the expected number of connec-
tions η1(t0) and η2(t0) are plotted together versus t0 in the
range d/vb = 100 to d/va = 500. At mean speed v0 = 6, the
corresponding t0 is 166.67 unit. Consider scenario 1 for r =
1, c = 1. For forward traffic, η1(t0) attains a global maximum
of 0.6 when t0 is minimum. η1(t0) decreases steadily as t0
increases and hits the minimum of 0.3 at t0 = 267.73. Beyond
that, there is a slight increase of η1(t0) when t0 is increased
further. Similar trends are observed for other scenarios in
Figure 3(b),(c),(d). Nevertheless, a slight dip of η1(t0) occurs
at low mobility (t0 ≈ 500) for Figure 3(d). Although there are
slightly more encounters at low mobility, there is a steeper
decrease in connection time. Thus η1(t0) is not convex in
general. In the particular case of v0 = va = 0, the observer
node is stationary. The expected fraction of connection time
for forward and reverse traffic should be arbitrarily close.
That is, the two curves should coincide when t0 is arbitrarily
large. In our example, the observer node moves slowly when
v0 = va = 2. The dip in Figure 3(d) is consistent to our
intuition that the fraction of connection time for forward and
reverse traffic are close when the observer node has low
mobility.

In contrast to forward traffic, the expected fraction of
connection time η2(t0) is almost constant at all observer node
speed for reverse traffic. The relative value of η1(t0) and
η2(t0) depends on the ratio of transmit range and connection
time limit r/c. When r/c is large (Figure 3(b)), it is likely
that the connection time for forward traffic is truncated. Thus
η1(t0) is consistently smaller than η2(t0) except for very high
observer node speed. When r/c is small (Figure 3(c),(d)), the
connection time of each node encounter is large. In fact, if
there is no connection time limit, the expected connection

Fig. 4. Long run average number of connections Z versus transmit range r
for connection time limit c = 0.5, 1, 2.

time for forward traffic is unbounded. The large connection
time at large c stipulates that η1(t0) > η2(t0) at all node
speed. Incidentally, when r/c = 1 (Figure 3(a)), η1(t0)
and η2(t0) intersects at t0 = 162.7, which is close to the
cycle duration at mean speed d/E[V ] = 166.67. Thus, if an
observer node moves at a constant speed v0 less than the mean
speed E[V ], reverse traffic connections are more preferable.
Similarly, forward traffic connections are more preferable if a
node moves at a constant speed v0 ≥ E[V ] in this particular
example.

When nodes move with random speed in different highway
segments, the long run fraction of connection time or average
number of connections Z1(r, c) and Z2(r, c) are relevant and
dependent on the transmit range r and connection time limit c.
In practice, c is typically long enough such that the connection
time for reverse traffic Y2 is not truncated. This is satisfied
when max(Y2) = r/va ≤ c, or r/c ≤ 2. Thus Z2(r) is
independent of c for the cases of our interest. In Figure 4
the long run average number of connections for both forward
and reverse traffic is plotted for c = 0.5, 1, 2. Both Z1 and
Z2 are increasing functions of the transmit range. This is
obvious since as c increases, the connection time B1 and
B2 also increase. We also observe that when the long run
average number of connections for both traffic types are the
same, r ≈ c holds. For r/c > 1 the network nodes have a
large transmit range relative to c, reverse traffic connections
are more preferable due to the truncated connection time for
forward traffic. Similarly, forward traffic connections are more
preferable when r/c < 1.

Whereas the long run fraction of connection time is an in-
creasing function of the transmit range, there exists an optimal
range such that the long run data rate is maximized. With
reference to Figure 5, the data rate for both traffic types are
plotted versus transmit range for the cases c = 0.25, 0.5, 1, 2.
The optimal transmit range corresponding to the cases c =
0.25, 0.5, 1, 2 is r = 0.15285, 0.19022, 0.22187, 0.24722 for
forward traffic. For reverse traffic, the optimal range is r =
0.37713 independent of c. The smaller optimal range for
forward traffic connections is intuitively plausible. Forward
traffic enjoys longer connection time. A short range is favored
such that a high channel rate can be realized. When the
connection time limit c is small (Figure 5(a)), it is likely
the connection time of forward traffic is truncated. Reverse
traffic enjoyed much higher encounter rate that contributes
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Fig. 5. Long run data rate W versus transmit range r for different connection
time limit c (a) c=0.25, (b) c=0.5, (c) c=1, (d) c=2.

to the total connection time. Thus reverse traffic outperforms
forward traffic at large transmit range. The long run data rate
for forward and reverse traffic at optimal range are roughly
the same. However, the discrepancy of the optimized data
rate increases as c increases. At c = 1, 2 (Figure 5(c)(d)), the
optimized data rate of forward traffic is more than twice the
reverse traffic. Thus, forward traffic connections yields much
higher data rate. The result of Figure 5 can be compared to
Figure 4. Figure 4 shows that for r/c > 1, reverse traffic
connections are more preferable due to the increased long run
fraction of connection time. However, the achievable channel
rate also decreases rapidly at large transmit range. Thus the
extraneous data rate at r/c > 1 is negligible as shown in
Figure 5(b),(c). In most scenarios, forward traffic connections
yield much higher data rate. The optimized range for forward
traffic is also considerably smaller than that in reverse traffic.
Thus it is also energy efficient to maintain forward traffic
connections.

Our results show that the data rate of forward traffic
connections and reverse traffic connections is dependent on c.
The value of c, in turn, is closely related to the correlation
of the contents between two nodes. If nodes have highly
correlated contents, any two arbitrary nodes may want to
exchange only a few files with each other, effectively mod-
eled by a small c. It is more efficient to maintain reverse
traffic connections and exchange files with more nodes. In a
content distribution application, this is an appropriate strategy
when most nodes get most files already. Similarly, when new
content is disseminated, nodes have few files in common and
should maintain forward traffic connections to exploit the long
expected connection time as warranted by the uniform speed
distribution.

V. DISCUSSIONS

In [2], it was shown that mobility increases the capacity of
a mobile infostation network. Capacity gain arises from the
realization of the maximal spatial transmission concurrency in
each network snapshot. Mobility comes into the picture by
shuffling node locations, creating numerous instances when
excellent channels between different nodes can be exploited
(multiuser diversity). As a result of mobility, the sum capacity
of each network snapshot translates to the long run end-to-
end network throughput. It is noteworthy that in this network-
ing paradigm, end-to-end capacity does not depend on node
mobility per se. Node mobility, however, do impact the delay
performance. The delay of a transiting packet is directly related
to the time scale of the mobility process.

In this paper we have focused on the physical implications
of mobility. It turns out that for reverse traffic, the expected
fraction of connection time or number of connections is really
independent of node mobility. For forward traffic, however,
the expected number of connections increases as mobility
increases. Numerical results show that the expected number of
connections at high node mobility can be much greater. Thus,
mobility not only provides a mechanism for the exploitation of
multiuser diversity. The increase of the fraction of connection
time and data rate is a physical consequence of node mobility.

It is well known that mobility degrades network perfor-
mance in many wireless paradigms such as cellular networks
and multihop networks. In multihop networks, for instance,
extraneous overhead is needed for route maintenance to cope
with link failures in node mobility. On the other hand, the
fraction of connection time in a fixed infostation model [1] is
constant regardless of node mobility. We have shown in this
paper that the total connection time, and data rate increases
with node mobility in a mobile infostation network. Thus the
mobile infostation network paradigm is superior to multihop
networks and fixed infostation networks in its robustness to
node mobility.
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