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Abstract — A mobile infostation network stipulates all transmissions to
occur when nodes are in proximity. In this paper, the effect of transmit
range on the capacity of four transmission strategies is studied. We show
that a stipulated transmit range improves the capacity compared to the
Grossglauser-Tse strategy with an unconstrained transmit range by 25%,
and outperforms the non rate-adaptive strategy by 68%. This indicates
an optimal trade-off exists between spatial transmission concurrency and
spectral efficiency on individual links. The optimal number of neighbors
is invariant to node density, and is between 0.6 to 1.2 for our transmission
strategies. This should be contrasted to a magic number of 6 to 8 neigh-
bors for multihop networks, where the expected forward progress per hop
is maximized. This reflects the different optimization criteria of mobile in-
fostation and multihop ad hoc networks. In addition, the capacity per unit
area increases linearly with node density. This is counter-intuitive but can
be explained using a rescaling argument drawn from percolation theory.

I. INTRODUCTION

In a mobile infostation network, nodes operate on low trans-
mit power. Any two nodes communicate only when they are
in proximity and have a very good channel. Under this trans-
mission constraint, any pair of nodes is intermittently connected
as mobility shuffles the node locations. The network capacity
of mobile infostation networks compares favorably to multihop
ad hoc networks. In [2] Gupta and Kumar showed that the per
node throughput in a multihop network drops to zero at a rate
O( 1√

n ln n
) in the limit of large number of nodes n. Thus mul-

tihop networks do not always scale with large network size. On
the other hand, Grossglauser and Tse showed in [1] that the
per node throughput of mobile infostation networks is O(1), in-
dependent of the number of nodes. This capacity is achieved
through a two hop relay strategy.

Assume that each node in the network selects a random des-
tination for unicast. We focus on a source node i, which has
packets to deliver to a destination node j, as shown in Figure 1.
As time evolves, node i moves along a random trajectory and
eventually encounters nodes 1 and 2. Although neither nodes 1
nor 2 are the destination of i, i still relays packets to them, with
the expectation that when each of these relay nodes reaches the
destination j, it will complete the second relay on behalf of node
i. In steady state, each of the other n − 2 nodes contains pack-
ets generated by node i and destined to node j. At any network
snapshot, it is almost surely that the nearest neighbor of node
j has packets addressed from node i and completes the second
relay on the behalf of i. That is, the long run per node through-
put is constant and is independent of the network size. This
capacity improvement comes from the exploitation of node mo-
bility to physically carry the packets around the network, and
is independent of the underlying mobility model, as long as the
mobility process is ergodic.

Motivated by the dramatic capacity improvement of mobile
infostation networks, there are a number of recent papers on ad

Fig. 1. Two hop packet relay strategy in a mobile infostation network.

hoc networks that exploit node mobility. Whereas [1] focused
on unicast, most other papers focused on multicast. [8, 9] has
focused on scenarios in which nodes cooperate. In order to ex-
pedite data dissemination, a node also forwards packets for other
nodes if it has not done so for some time. The issue of noncoop-
eration between nodes was explored in [14,15] in the context of
a content distribution application. Transmissions between two
proximate nodes are allowed only when both nodes benefit from
a file exchange. On the other hand, the effect of node mobility
on highway mobile infostation networks is examined in [16,17].
The achievable data rate of a node is shown to improve with its
speed.

In the mobile infostation literature, the concept of physical
proximity is not well characterized. In [7,14], it is assumed that
the planar network consists of discrete locations, in which any
two collocated nodes can participate a file exchange. Physical
proximity is defined in terms of a hypothetical grid of discrete
points, leading to an overly simplified mobility and interference
model. On the other hand, [1] assumed that a candidate trans-
mit node always transmits to the closest receive node. Although
the transmit and receive node pair has the shortest distance, this
strategy may not perform well since this distance may be large in
some topology realizations. In these links, the benefit of spatial
transmission concurrency may be more than offset by a simul-
taneous increase in total interference power in the network. It
may be worthwhile to suppress packet transmissions when the
channel is less than excellent to the receive node closest in dis-
tance. The resultant decrease in total interference power due to
the suppression of these transmissions may be beneficial to the
sum rate of the remaining connections. To ensure that only ex-
cellent channels are used, a natural strategy will be to impose an
artificial transmit range for all nodes. A transmit node may well
see many receive nodes beyond the transmit range due to the
physical proximity of nodes. However, we impose this artificial
transmit range and block all these potential transmissions. Here



Fig. 2. A network populated with candidate transmit nodes and receive nodes.
A candidate transmit node attempts a transmission if there are receive nodes
in its transmit range.

we explicitly trade spatial transmission concurrency for greater
spectral efficiency of the remaining connections in the network.
As far as the transmit node is concerned, all nodes within the
transmit range are its neighbors. It is desirable to see if the stip-
ulation of an artificial transmit range will further improve the
network capacity.

The rest of the paper is organized as follows. In section II, we
describe the system model, the four strategies and the perfor-
mance metric. In section III-A, four transmission strategies are
compared on the basis of capacity maximization. We identify
the scaling invariance property of the network in section III-B
and compare the optimal parameters of the four transmission
strategies in section III-C. Finally, we discuss the implications
of our results and wrap up in section IV.

II. SYSTEM MODEL

We assume nodes populate a planar region according to a ho-
mogeneous spatial Poisson process with node densityλ. Time is
divided into slots. In each slot, a fraction θ of all mobile nodes
are randomly selected as candidate transmit nodes such that the
candidate transmit and receive nodes have spatial Poisson distri-
butions with average node density λθ and λ(1 − θ) respectively
[4].

We consider a sender-centric transmission model for the
nodes. A candidate transmit node transmits when there are re-
ceive nodes within a ring of radius r0. Referring to the example
of Figure 2, three transmit nodes (T1 to T3) have receive nodes
in their transmit range and therefore proceed with transmission.
The remaining candidate transmit nodes (T4 to T7) cannot find
any receive node and remain silent in the time slot. If there are
more than one receive node in range, say T3, it may select a re-
ceive node randomly, or the closest receive node in range R3,
and initiate data transmission. It may happen that two transmit
nodes select the same receive node simultaneously, which is not
a problem for receivers that can capture more than one packet.

We assume all nodes transmit at the same power. The network
is interference limited and background noise at a receive node is
neglected. In this case, the SIR at a receive node is independent
of the transmit power, which is normalized to 1. The path gain
g(r) of a signal is solely determined by the distance r between
a transmitter and receiver. Second order effects such as shad-
owing and multipath fading [12] are ignored. We assume that
interference combines non-coherently at each receive node and
treat the total interference power as the sum of the interference

power of a Poisson field of interferers. Denoting the distance of
node i to its intended receive node j as rij , the SIR at the receive
node j is thus

γj =
g(rij)

Y
=

g(rij)∑
k �=i g(rkj)

(1)

where Y is the summation of interference power contributions
from all interference transmitters. Moreover, each point in the
plane sees the same interference statistics due to the spatial in-
variance of homogeneous Poisson process. The subscript j in
the SIR γ is dropped in subsequent analysis to emphasize the
spatial invariance of SIR.

Assume our systems operate on unit bandwidth. The trans-
mission strategies described in this paper are compared in the
metric of expected capacity per unit area E[C], in the unit
bit/s/m2. Here the notion of capacity is defined in a loose
sense. The theoretical capacity of the strategies are computed
under the assumption of single-user receiver decoding. The ca-
pacity represents an upper bound performance of a particular
transmission and reception strategy and should not be confused
with the maximum network capacity over all possible network-
ing and decoding strategies. Mathematically, the capacity per
unit area is written as

E[C] = E[λt log2(1 + g(R)/Y )] (2)

where λt is the node density of the transmit nodes, and log2(1+
g(R)/Y ) is the link capacity at SIR g(R)/Y . The expectation is
taken over the random variables R the communication distance
of the node pair and total interference power Y . Our aim is
to determine the optimum transmit range r0 and the fraction of
candidate transmit nodes θ based on the objective E[C].

We investigate four transmission strategies in this paper: a
non rate-adaptive strategy, a random node in range strategy, a
closest node in range strategy and the closest node strategy.
In the non rate-adaptive strategy, the transmission rate is con-
stant and determined by the SIR at the transmit range boundary,
γ(r0) = g(r0)/Y . Even if the SIR is higher when two nodes are
closer than distance r0, the additional link capacity warranted by
the higher SIR is not exploited. We denote the performance met-
ric of the non rate-adaptive strategy as E[C] to allude that this
strategy provides a lower performance bound to the four strate-
gies.

Both the random node in range and the closest node in range
strategies operate on the assumption of adaptive transmission.
In the random node in range strategy, a candidate transmit node
randomly selects a receive node when multiple receive nodes
are within its range. In the closest node in range strategy, the
closest node in range is selected to exploit the best channel. In
the case there are no receive nodes in the range of a candidate
transmit node, as are all the transparent nodes in Figure 2, no
transmission is scheduled. It is obvious the latter strategy has
superior performance since the candidate transmit node always
selects the receive node with the best SIR and link capacity. We
denote the performance metric as E[C] to emphasize that this
strategy provides an upper performance bound of all the four
strategies. The corresponding metric for the random node in
range strategy is denoted as E[Crand].

We also examine a reference strategy with an unconstrained
transmit range, where a candidate transmit node always trans-
mits to the closest receive node. This strategy is similar to the



strategy in [1], though there is no consideration of rate adapta-
tion in that paper. For the sake of comparison, however, we as-
sume the reference strategy is rate-adaptive. Hereafter, we refer
to this strategy as the Grossglauser-Tse (GT) strategy. The cor-
responding capacity per unit area is denoted as E[CGT ]. Since
there is no transmit range for this strategy, we optimize E[CGT ]
over θ.

In order to compute E[C], we need to derive the PDF of the
total interference power Y and connection distance R of the
node pair. We employ the two ray ground reflection model [10];
the path gain is given by g(r) = r−4. Our derivation of the
interference statistics closely parallels that in [11], with node
density λ replaced by the transmit node density λ t to denote the
point process of the transmit nodes. Suppose the transmit range
of all nodes is r0. A candidate transmit node transmits if the
number of receive nodes in its range N(r0) is non zero. Thus,
the transmit node density λt is

λt = λθPr[N(r0) > 0] = λθ(1 − e−λ(1−θ)πr2
0). (3)

Following the same steps in [11], the PDF fY (y) can be derived
and is dependent on the transmit node density only, given by

fY (y) =
π

2
λty

−3/2e−π3λ2
t /4y. (4)

III. PERFORMANCE ANALYSIS

A. Capacity Maximization

In the non rate-adaptive strategy, the SIR γ is a function of
random interference power only. The expected capacity per unit
area is therefore obtained by conditioning on the total interfer-
ence power Y .

E[C] = E[λt log2(1 + γ)]

=
λt

ln 2

∫ ∞

0

ln
(
1 +

g(r0)
y

)
fY (y)dy

= − λt

ln 2

(
π3λ2

t r
4
0

2 2F2

(
1, 1;

3
2
, 2;

π3r4
0λ

2
t

4

)

+ b − π erfi
(π3/2r2

0λt

2

)
+ ln(π3r4

0λ
2
t )

)
(5)

where

b = lim
n→∞(

n∑
k=1

1
k
− ln n) ≈ 0.5772 (6)

is Euler’s constant and erfi(x) is the imaginary error function
given by

erfi(x) =
2√
π

∫ x

0

et2dt. (7)

In addition, pFq(a1, ..., ap; b1, ..., bq; x) is the generalized Hy-
pergeometric function, a series of the form

pFq(a1, ..., ap; b1, ..., bq; x) =
∞∑

k=0

ckxk, (8)

for which c0 = 1 and the ratio of successive terms is

ck+1

ck
=

(k + a1)(k + a2)...(k + ap)
(k + b1)(k + b2)...(k + bq)(k + 1)

. (9)

We observe that both the generalized Hypergeometric function
and the imaginary error function diverge as x increases. How-
ever, the difference of these two functions is always finite.

When the transmission strategy is rate-adaptive, the expected
capacity per unit area is obtained by conditioning on both the
interference power and communication distance. Given there
exists a non-zero number of nodes N(r0) in the coverage radius,
we define R as the distance to the receive node to which we
communicate. We denote the PDF of the connection distance
R as fR(r|n). It is implicitly understood that the number of
receive nodes in the transmit range N(r0) is non zero when a
transmission is attempted. On the other hand, the PDF may be
dependent on the number of receive node n in the transmit range.

Since the receive nodes are Poisson distributed with intensity

λr = λ(1 − θ), (10)

each receive node within the range is uniformly located in the
area πr2

0 . In the random node in range strategy, the distance be-
tween the random receive node and the transmit node therefore
has a PDF

fR(r) =
{

2r/r2
0 0 ≤ r ≤ r0

0 o.w. (11)

independent of n. For the closest node in range strategy, the
distance is the minimum of among the receive node distances.
Given N(r0) = n receive nodes in range, it is straightforward
to deduce

fR|N(r0)(r|n) =
2nr

r2
0

(
1 −

( r

r0

)2
)n−1

. (12)

The PDF of the distance to the closest receive node is then com-
puted by averaging over N(r0):

fR(r) =
∞∑

n=1

fR|N(r0)(r|n)Pr[N(r0) = n]

=
2λrπre−λrπr2

1 − e−πλrr2
0

0 ≤ r ≤ r0. (13)

In the GT strategy, a candidate transmit node always transmits.
Taking the limit r0 → ∞ in (13), the PDF of the connection
distance fR(r) with an unconstrained transmit range is

fR(r) = 2πrλre
−λrπr2

0 ≤ r < ∞. (14)

For the above adaptive strategies, the expected sum rate per
unit area E[C] is then computed as

E[E[λt log2(1 + γ(R, Y ))]]

=
λt

ln 2

∫ r0

0

∫ ∞

0

ln
(
1 +

g(r)
y

)
fY (y)dyfR(r)dr (15)

where fR(r) assumes the form of (11), (13), (14) for the three
rate-adaptive strategies. In the random node in range strategy,
E[Crand] can be evaluated as

1

2r2
0 ln 2

[
2πr2

0λterfi
( π3/2r2

0λ2
t

2

)
− π3r6

0λ3
t

3
2F2

(
1, 1; 2,

5

2
;
π3r4

0λ2
t

4

)

− 2

π

(
− 2(1 − e

π3r4
0λ2

t
4 + πr2

0λ(b − 2) + λtπr2
0 ln(π3r4

0λ2
t )
)]

. (16)

For the closest node within range and the GT strategy, (15)
cannot be evaluated analytically and numerical integration must
be used.



Fig. 3. Illustration of rescaling of two coupled percolation models.

B. Optimum Transmit Range and Scaling Invariance

The existence of an optimal range for capacity maximization
is intuitively obvious. When the transmit range is too large, a
transmit node may connect to a receive node that is not close.
Although there are more simultaneous transmissions over an
area, the increase in the mutual interference reduces the achiev-
able rate for each transmit receive node pair considerably. On
the other hand, when the transmit range is too small, only node
pairs in close proximity transmits. High spectral efficiency of
individual links can be obtained due to the reduction of interfer-
ence power. Few candidate transmit nodes actually transmits,
however, since very few receive nodes are very close to the can-
didate transmit nodes. Thus, the potential spatial transmission
concurrency is not fully utilized, leading to a poor capacity per
unit area usage.

A couple of interesting observations can be drawn from our
numerical results. First, the optimal range r0 shrinks as node
density increases. As node density increases, it is more likely
for a transmit node to find receive nodes at a smaller range. A
decrease in the transmit range does not adversely affect the num-
ber of simultaneous transmissions in the network. Moreover, the
optimal range shrinks in a way such that the expected number of
neighbors of a candidate transmit node N is constant. Simi-
larly, the optimal fraction of transmit nodes θ is also invariant
to node density. Finally, the expected capacity per unit area is
linearly increasing with node density. These observations are
inter-related and can be explained using the rescaling argument
drawn from continuum percolation theory [6].

A percolation model is characterized by a point process and a
connectivity function. In our context of a homogeneous spatial
Poisson process, the point process is completely characterized
by the node density λ. A connectivity function, on the other
hand, specifies the probability that a link exists between two
nodes as a function of distance r between them. Here we are
using the on-off random connection model, in which two nodes
are connected w.p. 1 when their distance is less than r, which
is the same as our artificial transmit range r0. We denote our
percolation model as Π(λ, r). Any network topology with node
density λ and transmit range r is therefore a realization of the
percolation model Π(λ, r).

With reference to Figure 3, realizations of two percolation
models Π(λ1(θ1), r1) and Π(λ2(θ2), r2) are drawn. The two
realizations are coupled in the sense that the second realization
is exactly identical to the first except for the distance scaling in

the 2-dimensional space. Accordingly, the following rules must
be satisfied.

θ1 = θ2, (17)

λ1A1 = λ2A2, (18)

λ1r
2
1 = λ2r

2
2 . (19)

Equations (17), (18) and (19) express the conservation of the
fraction of transmit nodes, number of nodes in the network area,
and number of neighbors of an arbitrary node N . These rules
must be observed if the two realizations are scaled versions of
each other. Note that the two topology realizations have exactly
the same connectivity structure. The SIR of an arbitrary link in
realization 1, and the associated link capacity, must be identical
to that of the corresponding link in realization 2. Since the ca-
pacity of a link depends only on the SIR at the receive node, the
equivalence of link SIR in two coupled realizations implies that
both realizations have the same sum capacity.

Denote c(Ai), i = 1, 2 as the sum capacity of realization 1
and 2, where Ai is the network size of realization i. Using the
technique of coupling, for each realization of one percolation
model Π(λ1, r1), we can always find an equivalent realization
in the rescaled percolation model Π(λ2, r2). Taking the expec-
tation over all realizations, we deduce that

E[c(A1)] = E[c(A2)]. (20)

Suppose θ1 and r1 jointly maximize E[c(A1)]. From rescaling
we know that the optimal θ2 and r2 that maximizes E[c(A2)]
must satisfy θ1 = θ2 and λ1r

2
1 = λ2r

2
2 . That is, the number of

neighbors of a node N , and the fraction of transmit nodes θ are
constant.

The linear increase in expected capacity per unit area is a di-
rect consequence of rescaling in percolation models. The cor-
responding capacity per unit area for percolation model 1 and 2
are c(A1)/A1 and c(A2)/A2. Taking expectations over all cou-
pled realizations, we have

E[C2] = E[C1]
A1

A2
= E[C1]

λ2

λ1
. (21)

Let λ1 = 1, we obtain

E[C2] = λ2E[C1]. (22)

That is, the expected capacity per unit area is linearly increas-
ing with node density. The slope corresponds to the expected
capacity per unit area for unit node density.

In Figure 4, we compare the capacity of the four strategies.
The non rate-adaptive strategy has the worst performance, as
expected, with E[C]/E[C] = 1.68. The closest node within
range strategy outperforms the random node within range strat-
egy by a small margin (E[C]/E[Crand] = 1.04). At the op-
timal range, the average number of nodes within the transmit
range is between 0.6 to 1.2 for the four strategies. Thus, most
of the time a random node is exactly the same as the closest
node. This explains the close performance of the two strategies.
The GT strategy, however, has a capacity that is almost halfway
between the closest neighbor in range strategy and the non rate-
adaptive strategies, with E[C]/E[CGT ] = 1.25. Although the
GT strategy is rate-adaptive, an unconstrained transmit range
allows connection to a distant receive node in some instances.



Fig. 4. The expected sum rate per unit area for the four strategies vs. node
density λ.

By stipulating a transmit range that excludes transmissions to
distant nodes, only good channels are exploited and network in-
terference is reduced.

C. Optimum Point of Network Operation

It is also instructive to compare the optimal values of the frac-
tion of transmit nodes θ, number of neighbors N of a node
and the probability of a node transmission for all the strate-
gies. A node is selected as a candidate transmitter with prob-
ability θ. For the GT strategy, a candidate node always trans-
mits to the closest neighbor. Thus the probability that an arbi-
trary node transmits is θ. For the random and closest node in
range strategies, the candidate node transmits with probability
(1 − e−(1−θ)N) when the transmitter sees some receive nodes
are in range. Thus an arbitrary node transmits with probability
pT = θ(1 − e−(1−θ)N). The values for the four strategies are
summarized in Table I. We observe that the optimal value of θ is

Capacity E[C] E[Crand] E[C] E[CGT ]
θ 0.533 0.555 0.531 0.364
N 0.558 0.964 1.17 n/a
pT 0.1223 0.1936 0.2243 θ = 0.364

TABLE I

OPTIMIZED PARAMETERS FOR THE FOUR STRATEGIES.

close to 0.5 in all strategies except GT. A connection is made up
by a transmit and receive node pair. If either kind of nodes are
dominant in the network, the scarcity of the other kind of nodes
adversely affect the number of transmit and receive node pairs
in proximity. A fraction θ close to 0.5 conforms to our intuition
and enables a nice mix of transmit and receive nodes over space
for creating numerous excellent channels. The observation that
θ is slightly larger than 0.5 for all strategies indicates that the
transmit nodes has a slightly more influential role in the creation
of connections as hinted by the sender-centric approach. In the
GT strategy, however, the optimal θ = 0.364 is smaller than 0.5.
Since there is no constrained transmit range, a high receive node
density is needed to ensure the nearest receive node is actually
nearby the transmit node.

The optimal number of neighbors N increases from 0.56 to
1.17 as we move from the non rate-adaptive to the closest node
in range strategy. The non rate-adaptive strategy should be op-

erated at a small range, since the link capacity at any point in-
side the transmit range boundary is not fully utilized. For the
adaptive strategies, the random node in range strategy should be
operated at a smaller range, to minimize the opportunity cost in
case the random node is not the closest receive node. The clos-
est node strategy is not penalized for having a larger transmit
range compared to the other two strategies. The shortest link to
a receive node is always chosen for connection.

The probability of transmission pT also increases from
0.1123 to 0.2243 as we move from the non rate-adaptive to the
closest node in range strategy. Since θ is similar in the strategies,
the probability of transmission is dictated by N . The non rate-
adaptive strategy is penalized severely for having a large trans-
mit range. A transmission is attempted when a receive node is
close by, at a transmission probability of 0.1223. Thus a sacri-
fice of spatial transmission concurrency is traded for more spec-
tral efficiency of individual links. On the other hand, the GT
strategy has a large transmission probability, more than 50%
larger than the closest node in range strategy. Since all can-
didate transmit nodes transmit in the GT strategy, maximum
spatial concurrency is attained at the expense of increased net-
work interference and decreased spectral efficiency in individual
links. The comparison of the four strategies in Figure 4 shows
that both the non rate-adaptive and the GT strategy have infe-
rior performance versus the adaptive strategies with a stipulated
transmit range. This suggests that an optimal tradeoff exists be-
tween spectral efficiency and spatial concurrency such that the
overall capacity per unit area is maximized.

IV. DISCUSSION

We have examined four transmission strategies in this paper,
and showed that rate-adaptive strategies with a stipulated trans-
mit range perform substantially better than the GT strategy with
an unconstrained transmit range. Our results imply there is a
tradeoff between the spatial transmission concurrency and the
spectral efficiency of each transmission. In order to maximize
the capacity per unit area, it is necessary to limit the number
of simultaneous transmissions to reduce the network interfer-
ence power such that the SIR and the spectral efficiency of other
connections are improved. Moreover, the random node within
range strategy has a performance that is close to the closest node
in range strategy. Thus a designer of multiple access protocols
only needs to focus on contention of local channel when several
receive nodes are in proximity. There is little need of a schedul-
ing algorithm for prioritized transmissions based on distance or
received power.

The results shown in Table I show that the optimum range
of our strategies is between 0.6 to 1.2 neighbors, independent
of node density. These results can be contrasted to the results
in [3, 5, 13], which suggested that a magic number of 6 to 8
neighbors, or a scaled version of that number to account for the
processing gain in spread spectrum systems [11] and second or-
der effects of the channel [18], is optimum. In these works, a
hypothetical line is drawn from a source to the destination node.
The transmit range is chosen such that the the expected distance
advance in one transmission projected to this line is maximized.
This performance metric is called the forward progress in the lit-
erature. The concept of forward progress is predicated on the as-
sumption that mobile nodes communicate using multihop rout-
ing. What we have shown in this paper suggests that capacity



Fig. 5. Illustration of SIR γ as a function of number of neighbors N .

per unit area of one network snapshot can be fully utilized only
if each transmit node sees about one neighbor node on the aver-
age. Our results demonstrate that the mobile infostation network
is a paradigm that fits into this optimization criterion.

To appreciate the potential improvement in link capacity over
the multihop paradigm, we plot the expected SIR γ(N) at the
transmit range boundary as a function of number of neighbors
of a node in Figure 5. As the number of neighbors N increase
from 1 to 8, the SIR at the range boundary drops from 15dB to
-15dB, a factor of 1000. The corresponding link capacity of a
mobile infostation connection is over 100 times that of a multi-
hop forwarding connection. The dramatic improvement in link
capacity, together with [1] which explicitly shows that the sum
capacity in each network snapshot is sustainable in the long run,
demonstrates that a much larger end-to-end throughput capacity
is realizable for mobile infostation networks.

Recall that [1] showed the mobile infostation paradigm al-
lows a network throughput that is scalable to the number of
nodes. We have obtained exact capacity per unit area expres-
sions as a function of transmit range, the fraction of candidate
transmit nodes and node density. It turns out that the mobile in-
fostation paradigm not only improves the spectral efficiency of
a link over the multihop paradigm. It is somewhat surprising to
find out that the spectral efficiency per unit area is linearly in-
creasing with node density in mobile infostation networks. This
is counter-intuitive since an increase in the node density is of-
ten accompanied by a corresponding increase of network inter-
ference. However, a mobile infostation also shrinks the trans-
mit range such that the number of nodes within the transmit
range remains constant. Thus, a mobile infostation also exploits
the increase in physical proximity of the receive nodes as node
density increases. The contrasting effects of increasing signal
strength and increasing interference power at high node density
work together that brings about the independence of link SIR’s
to node density. At high node density, the same sum capacity
can be achieved at a smaller area, leading to an increase in ca-
pacity per unit area. This result has far reaching implications for
the feasibility of future pervasive computing environments. The
proliferation of mobile devices makes the deployment of dense
node networks in the future almost a certainty. Unfortunately
multihop networks suffers from the curse of node density. The
excessive need of multihop forwarding in high node density en-
vironments drives the achievable per-node throughput to zero.
In contrast, node density is a blessing in mobile infostation net-
works. The increase in interference power due to increased node

density is counter-balanced by the improved channel due to the
proximity of receive nodes at high node density. Since nodes are
packed closer in high node density scenarios, better spatial con-
currency is achieved, leading to an increase in capacity per unit
area. Our results show that the capacity per unit area for mobile
infostations actually increases linearly with node density.

In retrospect, we have looked into the optimal transmit range
and the theoretical and practical achievable rate per unit area
of mobile infostation networks. The concept of transmit range
is novel in the paradigm of mobile infostations. Capacity equa-
tions are derived for four strategies and we show that a stipulated
transmit range improves capacity. Though it is not obvious in
the problem formulation, the optimal number of neighbors of
a node, and the fraction of nodes as candidate transmit nodes
is invariant to node density. Comparisons have been made to
the well known magic number of 6 to 8 neighbors, reflecting
the contrasting optimization criteria for the multihop network-
ing and mobile infostations paradigm. Another finding is that
the capacity per unit area is linearly increasing with node den-
sity. This can be explained by a rescaling argument drawn from
percolation theory. This has implications in the design of ad
hoc networks in future pervasive networking environments with
high node density.
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