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Abstract— Without perfect channel state information at the
transmitter, it is possible for adaptive transmission systems to
experience information outage. In this paper, we formulate the
throughput maximization with both an average power constraint
and an information outage constraint. It is verified that, for the
optimal transmission policy, the transmission only needs to adapt
to a sufficient statistic for the channel state. For a Rayleigh fading
channel with a simple training scheme, numerical results show
that, with a reasonable amount of training and a small set of
code rates, the adaptive transmission can achieve a performance
very close to the ergodic capacity.

I. INTRODUCTION

In order to combat fading, adaptive transmission techniques
have been considered and applied in many wireless systems.
Typically, the performance of adaptive transmission techniques
is evaluated based on a set of idealized assumptions, such as
perfect channel estimates and a continuously varying code rate.
Thus, the task of the analysis is greatly simplified. Perhaps, by
relaxing idealized assumptions, one can hope to gain further
insight into this problem and improve guideline for developing
practical systems.

To accommodate practical constraints, an adaptive � -
ary quadrature amplitude modulation (MQAM) with a finite
number of modulation levels and an adaptive trellis-coded
modulation (TCM) scheme with a finite number of code
rates are proposed in [1] and [2], respectively. More recently,
an adaptive transmission design based on outdated channel
information and either MQAM or TCM is proposed in [3].

We are interested in the maximum achievable throughput
of a system with adaptive transmission techniques. In [4], the
throughput maximization of discrete code rates for adaptive
transmission systems is studied. However, it is assumed that
perfect channel state information (CSI) is available. In [5],
throughput maximization with channel uncertainty is studied.
In that paper, one of the adaptation parameters, code rate,
is assumed to be a continuous variable. Here, we combine
the assumptions of the previous two papers together with
an additional outage constraint and study the problem of
throughput maximization with both discrete code rates and
channel uncertainty.

We assume a slow multiplicative fading environment with
additive white Gaussian noise (AWGN). The channel response
is constant during the transmission of a codeword. Perfect

CSI and a channel measurement are available at the receiver
and the transmitter, respectively. The joint distribution of the
channel measurement and the current channel state is assumed
to be known. For each transmission, a message is encoded at
a rate selected from a finite rate set based on the channel
measurement and the resulting codeword is transmitted at
a power level based on the same channel estimate. Since
each codeword experiences an additive white Gaussian noise
(AWGN) channel, random Gaussian codes with multiple code-
books are employed.

For the proposed discrete adaptive system, it is possible
that the instantaneous mutual information corresponding to a
channel state is less than the assigned code rate. In this case, an
information outage event occurs. The information outage is an
intrinsic characteristic of communication over fading channels
with a decoding delay constraint [6], [7] or, alternatively,
with codewords not long enough to experience ergodic fading.
Moreover, it has been shown that the outage probability
matches well the error probability of actual codes [8], [9].
Thus, since typical communication services must sustain a
certain QoS requirement in terms of the error performance,
we introduce an additional information outage constraint to the
traditional power constrained throughput maximization. In this
paper, we demonstrate that the posed constrained throughput
maximization problem can be solved in a general case.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiplicative flat fading channel model
similar to that in [10]. The complex received signal
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�
�� ��� (1)

where � is the channel (fading) state, � is the complex
transmitted signal, and � is a circularly symmetric additive
white Gaussian noise (AWGN) with variance ��. The channel
state � is a real random variable of unit mean with a proba-
bility density function (PDF) �����, a cumulative distribution
function (CDF) 	����, and a domain � � ���� � ��. It is also
assumed that the fading is sufficiently slow that the channel
state is constant during transmission of a codeword.

The transmission is designed in such a way that before
transmitting a data message, the transmitter obtains a channel



measurement vector � � �
�� � � � � 
�����, where � is
the number of measuments. � is the corresponding random
vector with a domain � . We assume that � and � have a
joint PDF ��������� � ��������������. Our assumption is
rather general. For example, in a block fading channel, �
may be based on the observation corresponding to training
symbols transmitted during a finite set of past channel states.
Furthermore, measurements can be a function of the stochastic
process that describes the channel state evolution.

Given a measurement �, the transmitter selects a code rate
���� from � � ��� � �� ��� � � � � ��� and a power level
��� � �

��� �� ���, where � ��� denotes expectation, to
transmit the data message. It is assumed that perfect CSI is
available at the receiver side. Here, without loss of generality,
we assume that �� 	 ���� for � � �� � � � � �
 �.

B. Outage, Policy, and Capacity

Since � is only a measurement, it is possible that the
corresponding channel state does not support the assigned
transmitted rate ���� given ��� and, thus, an outage occurs.
The corresponding conditional outage probability is
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and the worst channel state that supports the rate ���� is
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Note that (4) is only meaningful when ��� � � and, thus, a
meaningful ���� is strictly positive. Consequently,

�out��� � 	������������ (5)

where 	�������� is the conditional CDF 1 of � for any �

given � � � and is assumed to be strictly increasing in �.
An adaptive transmission policy is uniquely identified by

����� ����� or equivalently, ����� �����, where ���� is the
worst channel state � that still allows for ���� to be achieved
given �. The system throughput is
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The corresponding average power is
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Since communication in a wireless system is typically
power limited, we consider the average transmitted power
constraint

� ����� ����� 	 � (8)

1������������ � Pr �� � ���� �� � ��. Other conditional CDFs used
in this paper are defined in the same way.

Besides (8), we also assume an equality outage constraint,

�out��� � ����� � � �������� � ��� (9)

where ���� is the positive error probability requirement. Note
that the equality (9) is a simplification of the practical QoS
requirement in terms of the error performance. For instance, it
is normally assumed that voice communication with an error
probability up to 1% is acceptable. We will study the inequality
constraint in future work.

In this paper, we try to maximize the throughput in (6) over
a discrete rate set � and a continuously varying power alloca-
tion subject to both the average transmitted power constraint
(8) and the equality outage constraint (9). The throughput-
maximizing policies are referred as optimal policies.

III. PROPERTIES OF OPTIMAL POLICIES

A. Local Properties

Due to the outage constraint (9), the worst supportable
channel state satisfies

���� � 	������������ � � � � (10)

Within the scope of this paper, we assume that
Pr �� � ��� � �� 	 ����, for any � � � . Thus, since
	�������� is strictly increasing in �, ���� is uniquely
specified by ���� and 	��������. Let ����� � 	��������
and, then, we have

���� � ���
� ������� (11)

Thus, with (4), ��� and ���� have a one-to-one relationship.
In order to understand the structure of our problem, we

define the incremental efficiency or efficiency
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where � � �� � � � � �. The efficiency is the ratio of the rate in-
crement of the adjacent rates over the corresponding increment
in the transmitted power required to sustain the rate increment.

Proposition 1 The efficiency has the following properties.

1) ����� is non-negative;
2) ����� decreases in �.

Due to limited space, the proofs for all propositions and
theorems are omitted. From Proposition 1, it is clear that we
pay a heavier penalty in terms of power to transmit at a higher
rate regardless of observations. Consequently, it is intuitive that
reducing the average power dictates that lower rates should be
transmitted.



B. Global Properties

We define the most power efficient allocation (MPEA) as a
policy with ���� � �� if and only if ����� � � and ������� �
� for some � � � and � � �� � � � � �.

Theorem 1 For some � � �, MPEA is an optimum policy.

Corollary 1 The optimal policies have the same rate/power
allocation at �� and �� if ���������� � ����������.
Let � ��� be a sufficient statistic for �. Then [11],

��������� � �� ������� ����������� ���� � �� (15)

where ���� is a deterministic function which is independent
of � and
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Corollary 1 and (16) imply that the optimal policies have

����� � ������ ���� � ����� (17)

for any measurements �� and �� whenever � ���� � � ����.
Therefore, in the rest of this paper, we will concentrate on
rate/power allocations over values of � ��� instead of �. In
particular, let

� � � ���� (18)

where � is a random variable with a domain  . It is sufficient
to specify policies of interest by ������ ����, where ���� and
��� are the rate and power allocations corresponding to any
measurement � satisfying � � � ���. Equivalently, � indicates
a set of measurements, ���� ��� � �� which share the same
rate ���� and power ���.

Accordingly, the following functions are re-defined accord-
ingly,
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We assume that the upper limit of  is the same as that of �
which is infinity.

Let � � ������� � ��� � � � �� � � � � �, be a non-
overlapping partition of  . Then, the average power allocated
over � is
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Note that  � can be regarded as the average channel quality.
Clearly, if � is known, an optimal policy solves
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The optimization (29) is identical to the well-known rate
maximization in the parallel Gaussian channel [12] and the
following theorem can be obtained by directly applying the
Karush-Kuhn-Tucker conditions.

Theorem 2 The optimal power allocation is in a water-filling
form satisfying
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where !� is a constant ensuring the power constraint��

�	� ��	� � . The corresponding optimal rates are
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In addition, it can be shown that the allocated power is zero
only for � � �. This means that if the water-filling allocation
results �� � � for � � �, an inefficient set of rates � has been
chosen.

Proposition 2 For optimal policies,

�� � �� � � �� � � � � �� (33)

and
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C. Sufficient Statistic with Stochastic Ordering

In this subsection, we concentrate on a special class of
problems with such a sufficient statistic � that 	��
 ����� is a
collection of distributions with stochastic ordering [13]. More-
over, we concentrate on the case of stochastically increasing
scenarios where � � �� implies 	��
 ����� � 	��
 ������ for
all � � �. It states that the channel state � corresponding to
� � �� is statistically worse than that corresponding to � �.



In this paper, the outage probability is in the form of the
conditional distribution of � given � and we proceed to explore
the significance that stochastic ordering brings.

Proposition 3 The efficiency corresponding to a sufficient
statistic � satisfies the following.

1) ����� is non-negative;
2) ����� decreases in �;
3) ����� increases in �.

The third condition of Proposition 3 implies the following
proposition.

Proposition 4 The optimal �’s are

� � ���� ������ � � �� � � � � �
 �� (36)

where ���� �� and �� � ����� � � �� � � � � �.

Following Proposition 2 and Proposition 4, the policy of
interest can uniquely be specified by �����, where

� � ���� � � � � ��� � (37)

� � ���� � � � � ��� � (38)

The corresponding throughput and the average power are
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A necessary condition for the optimal policies follows as

����� �

�
�� 
 ����
��� 
 �����

�
�����

��
�

�

��!�
� (41)

where

!� �
"�� �

	�
	�

�
��	��
 ��� ��	�

	�
�
 ��� ��

� (42)

follows from (35). Note that (41) is meaningful since ���� of
interest is positive.

Since �������
������� decreases in ��, according to (41), we can

find a unique �� given !�, ����, and �����. Consequently,
a unique �� can be found given !�, ����, and ��. On the
other hand, (34) guarantees that a unique  � given ��. Together
with (26), ���� can be uniquely specified by �� and �� since
���� is strictly positive. Thus, an iterative algorithm can be
constructed to find the optimal policy starting from ��.

Theorem 3 An optimal policy can be uniquely specified by
��.
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Fig. 1. Sample performance in a Rayleigh fading channel with �� � ����.

IV. TRAINING BASED ADAPTIVE TRANSMISSION

The transmission is designed in such a manner that, before
transmitting a data message, the channel is probed by a
training sequence consisting of � identical symbols with
an amplitude #
 �

��
. Note that �
 is the transmitted
energy corresponding to a training symbol. Based on the
corresponding � received symbols � � �
�� � � � � 
�����,
the transmitter selects a code rate ���� to encode and a power
level ��� to transmit the data message. The signal-to-noise
ratio (SNR) for the training sequence is

$
 ��
���
��
��

� (43)

For simplicity, we assume that the training symbols ex-
perience the same channel � as the transmitted information
(payload) (1). In addition, we assume that the phase of the
received signals is accurately known at the receiver. In this
case,
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A sufficient statistic for � given � is
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Hence, with (18), we have
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For a Rayleigh fading channel with

����� � ���� (48)



we have
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where &� ���
���
 ���� and &� ���
"&�.
Then, we can find �
 ���

2 and 	��
 ����� 3. It is straight-
forward to verify that � is a sufficient statistic satisfying the
stochastic ordering requirement.

V. SAMPLE RESULT

In Fig. 1, we present a sample numerical result for a
Rayleigh fading channel. Here, following [14], we let � � � �
in order to evaluate the system performance numerically.

The ergodic capacity curve is reproduced according to [10].
For the rest of curves, we fix $
 � ���� or 30 dB. When there
is an infinite number of rate levels (� � �), the throughput
is within 1 dB from the ergodic capacity.

The last four curves correspond to � � � and various ����’s.
From these curves, we can see that reducing ���� makes
the constraint more stringent and, thus, lowers the overall
throughput.

In Fig. 2, it is shown that within a wide range of $
, the
results with � � � are very close to those with � ��.
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