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Abstract. In this paper we address the minimum-energy broadcast problem.
To increase the energy efficiency, we allow nodes that are out of the trans-
mission range of a transmitter to collect the energy of unreliably received
overheard signals. As a message is forwarded through the network, a node
will have multiple opportunities to reliably receive the message by collecting
energy during each retransmission. We refer to this strategy as accumulative
broadcast. Under the assumption that the nodes reliably forward messages, we
formulate the minimum-energy accumulative broadcast problem. We present
a solution employing two subproblems. First, we identify the ordering in which
nodes should transmit. Second, we determine the optimum power levels for
that ordering. While the second subproblem can be solved by means of lin-
ear programming, the ordering subproblem is found to be NP-complete. We
devise a heuristic algorithm to find a good ordering and evaluate the per-
formance of the algorithm. Preliminary results show the performance of the
heuristic algorithm is generally close to the optimum solution. Results also
show a significant improvement compared to the well known BIP algorithm
for constructing an energy-efficient broadcast tree.

1. Introduction.

In the problem of minimum-energy broadcasting in a wireless network, the
objective is to broadcast data reliably to all network nodes at a fixed rate with
minimum transmitted power. The problem of broadcasting in a wireless network
was introduced in [13] and formulated as a minimum-cost broadcast tree problem.
In a wired network, the minimum-cost broadcast tree can be found in O(n2) oper-
ations [8]. However, in the wireless network, this problem was shown in [6] to be
NP-hard and later on, in [1, 2, 7] to be NP-complete. The greater difficulty of the
wireless broadcast problem tree stems from the “wireless multicast advantage” [13],
the fact that a wireless transmission can be received by all nodes in the transmis-
sion range. Several heuristics for constructing energy-efficient broadcast trees have
been proposed in literature and evaluated through simulations. The quantitative
characterization of three such algorithms is given in [12].

The wireless formulation of the minimum energy broadcast problem assumes
that a node can benefit from a certain transmission only if the received power
is above a threshold required for reliable communication. This is a pessimistic
assumption. A node for which the received power is below the required threshold,
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but above the receiver noise floor, can collect energy from the unreliable reception
of the sent information. For example, in a Bluetooth system [9], the nominal
transmitted power is 1 mW resulting in a transmission range of 10 meters. However,
for a typical path exponent of α = 3, the received signal at a node within 90 meters
of the transmitter is likely to be above the receiver noise floor.

Moreover, it was observed in the relay channel [3] that utilizing unreliable
overheard information was essential to achieving capacity. We borrow this idea
and re-examine the minimum energy broadcast problem under the assumption that
nodes can exploit the energy of an unreliable reception. For the broadcast problem,
a node will have multiple opportunities to receive a message as it is forwarded
through the network. We refer to this strategy as accumulative broadcast.

Even in the simplest case of a single relay node, finding the maximum achievable
common rate for a given set of transmit powers is, in general, an unsolved open
problem. Even in the special case of the physically degraded single relay channel,
key techniques employed in [3] to enable coordination of the transmissions of the
source and the relay are not easily extensible to multiple node networks. In this
work, we seek to employ overheard information in a large scale network. To do
this, we make certain simplifying assumptions. First, our focus will be on networks
in which bandwidth is plentiful relative to the transmit power available to the
nodes. Second, we impose a reliable forwarding constraint that a node can forward
a message only after reliably decoding that message. Although reliable forwarding
is generally a suboptimal strategy, we will see that it greatly simplifies the system
architecture while still allowing us to benefit from unreliable overheard information.

In the following section, we give the network model. In Section 3, we describe
our approach for finding the best broadcasting solution and show that the problem
is NP-complete. A heuristic algorithm and its performance is presented in Section 4.
The proofs for the theorems are given in the Appendix.

2. System model.

We consider a wireless network of N nodes such that from each transmitting
node k to each receiving node m, there exists an AWGN channel of bandwidth W
characterized by a frequency non-selective link gain hmk. We further assume large
enough bandwidth resources to enable each transmission to occur in an orthogonal
channel, thus causing no interference to other transmissions. Each node has both
transmitter and receiver capable of operating over all channels.

A receiver node j is said to be in the transmission range of transmitter i if the
received power at j is above a threshold that ensures the capacity of the channel
from i to j is above the code rate of node i. We assume that nodes can use different
power levels, which will determine transmission ranges. The nodes beyond the
transmission range can exploit the fact that a message is sent through multiple
hops on its way to all the nodes. Repeated transmissions act as a repetition code
for all the nodes beyond the transmission range.

We view each orthogonal channel as a discrete-time Gaussian channel by rep-
resenting a waveform of duration T as a vector in the 2WT dimensional space [4].
Then, during the ith slot, a source node, labeled node 1, transmits a codeword
(vector) Xn(i) from a (2nR, n) Gaussian code that is generated according to the
distribution p(Xn) =

∏n
l=1 p(xl) where p(x) ∼ N(0, 1). Under the reliable for-

warding constraint, a node j is permitted to retransmit (forward) codeword Xn(i)
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only after reliably decoding Xn(i). With an appropriate set of retransmissions
at appropriate power levels, eventually every node will have reliably decoded Xn.
Henceforth, we drop the index i and focus on the broadcast of a single codeword
Xn. We will say a node is reliable once it has reliably decoded Xn.

The constraint of reliable forwarding imposes an ordering on the network nodes.
In particular, a node m will decode Xn from the transmissions of a specific set of
transmitting nodes that became reliable prior to node m. Starting with node 1, the
source, as the first reliable node, a solution to the accumulative broadcast problem
will be characterized by a reliability schedule, which specifies the order in which the
nodes become reliable.

A reliability schedule [n1, n2, n2, . . . , nN ] is simply a permutation of [1, 2, . . . , N ]
that always starts with the source node n1 = 1. Given a reliability schedule, it will
be convenient to relabel the nodes such that the schedule is simply [1, 2, . . . , N ].
After each node k ∈ {1, . . . ,m − 1} transmits codeword Xn with average energy
per symbol Pk, the received signal at node m for each symbol x in the codeword is

y = hx + n,(1)

where h = [h1, . . . , hm−1]T has kth element hk = (
√

hmkPk) equal to the received
energy corresponding to the transmission of node k and n is is a random noise
vector with covariance matrix Kn = σ2IK . It follows that the mutual information
is

I(x;y) =
1
2

log2

(
1 +

∑m−1
k=1 hmkPk

σ2

)
bits.(2)

This is precisely the capacity of a multi-antenna system derived in [10] with m− 1
transmitting antennas and one receiving antenna. It follows from Equation (2) that
the maximal number of bits per second that can be transmitted in the system given
by Equation (1) is

rm = W log2

(
1 +

∑m−1
k=1 hmkpk

N0W

)
bits/s,(3)

where pk is the transmit power at node k and N0 is the one-sided power spectral
density of the noise.

Achieving rm = r implies
∑m−1

k=1 hmkpk ≥ P where

r = W log2

(
1 +

P

N0W

)
bits/s(4)

is the fixed data rate used for broadcasting.
When the nodes are power limited and the data rate r is small relative to the

channel bandwidth W , the system operates in the wideband regime where energy
per bit is close to its minimum value and the increase in rate with power is linear:

r∞ = lim
W→∞

r = lim
W→∞

W log2

(
1 +

P

WN0

)
=

P

N0 ln 2
bits/s.(5)

From the above equation, transmission of r∞ = ET /(N0 ln 2) bits requires received
energy of ET = PT , revealing the well known fact that for the reliable reception of
one information bit, a receiver has to collect at least ET = N0 ln 2 Joules/bit. [11].
This energy can be collected at a node m during one transmission interval [0, T ]
when a transmitter j is signaling with power p = (N0 ln 2)/(hmjT ). However, in



4 IVANA MARIC AND ROY YATES

the system given by Equation (1), the required energy ET is collected in m − 1
repeated transmissions. In the wideband regime, Equation (3) is

lim
W→∞

rm =
1

N0 ln 2

m−1∑
k=1

hmkpk.(6)

Next we show that for the same transmitted powers, using a coding strategy other
than the repetition code described above, cannot increase the rate achieved at the
receiving node m.

Theorem 1. For the wideband regime, fixed transmitted powers {p1, . . . , pN}
and a reliability schedule [1, 2, . . . , N ], the maximum rate achievable from the source
to node m is given by Equation (2) and is achieved by the repetition coding strategy.

Proof. An upper bound to the achievable rate between the source and the
destination is the maximum conditional mutual information across a minimum cut
[4]. Consider the multiaccess cut in the given network that separates the destination
node from the rest of the network. Let Xj denote a symbol transmitted at node
j and Y denote the received signal at the destination. The maximum mutual
information across this cut is given by

CMAC = I(X1, . . . Xm−1;Y ).(7)

In the considered network, each orthogonal channel is assigned bandwidth W and
hence the mutual information above is given by the sum of rates achieved in each
of the channels. For Gaussian channels,

CMAC = W
m−1∑
k=1

log2

(
1 +

hmkpk

N0W

)
.(8)

In the wideband regime, Equation (8) becomes

CMAC = lim
W→∞

W
m−1∑
k=1

log2

(
1 +

hmkpk

N0W

)
=

1
N0 ln 2

m−1∑
k=1

hmkpk,(9)

which is precisely the rate given by (6) achieved using the repetition strategy. Since
this rate is achievable, this cut is the minimum cut. No better rate can be achieved
since it would violate the condition for the upper bound. �

Not allowing the noisy observations to be amplified and sent at relays makes
achieving the broadcast cut-set bound impossible. As shown in [5], this bound
can be asymptotically achieved in a network with one source-destination pair as
the number of relays goes to infinity. Again, this situation is equivalent to the
multi-antenna system [10], but in this case, with one transmitting antenna and K
receiving antennas.

3. Approach

Under the constraint of reliable forwarding, an optimal solution to the minimum
power accumulative broadcasting problem must specify the reliability schedule as
well as the transmitter power levels used at each node. An optimal choice of the
reliability schedule will result in minimum total transmitted power over the set of
nodes.

From the above arguments, it follows that our problem of finding the minimum-
energy accumulative broadcast differs from the minimum-energy broadcast tree
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[1,2,6,7,12–14] in the sense that no received energy is wasted at the nodes while they
collect energy unreliably. The two problems are similar in that finding the optimum
solution involves the right ordering of relay nodes and determination of transmitter
power levels. Defining the broadcast tree determines all the transmission levels and
thus solves the problem completely; a relay that is the parent of a group of nodes
in the broadcast tree transmits with the power needed to reliably reach the most
disadvantaged node in the group. Hence, the arcs in the broadcast tree uniquely
determine the power levels for each transmission.

In our scenario, however, the broadcast tree loses its meaning since nodes collect
energy from the transmissions of many nodes. The optimum solution may require
that a relay transmits with a power level different from the level precisely needed
to reach a group of nodes reliably; the nodes can collect the rest of the needed
energy from the future transmissions of other nodes. In fact, the optimum solution
favors such situations because all nodes beyond the range of a certain transmission
are collecting energy while they are unreliable; the more such nodes, the more effi-
ciently the transmitted energy is being used. Therefore, if during one transmission,
an unreliable node is collecting energy faster due to a good channel gain with a
current transmitting node, it may be desirable for the transmitting node to stop
transmitting before the collected energy at the node in favor reaches the thresh-
old of reliable communication; that node will collect the rest of the energy needed
during future transmissions of other nodes.

The next theorem shows that this approach can never do worse than the solu-
tion to the minimum-energy broadcast tree approach. In fact, accumulative broad-
casting will always result in a more energy-efficient solution.

Theorem 2. The sum of transmitted powers of the minimum-energy broadcast
tree is an upper bound to the sum of transmitted powers for accumulative broadcast-
ing.

The differences in our problem from the minimum-energy broadcast tree dic-
tate a new approach. The crucial step is finding the best reliability schedule. Given
a schedule, we can formulate a linear program (LP) that will find the optimum so-
lution for that schedule. Such a solution will identify those nodes that should
transmit and their transmission power levels. Solving the LP for all possible sched-
ules and taking the minimum-energy solution among all the LP solutions will result
in the optimum schedule, and optimum transmission power levels. This divides the
problem into two subproblems.

To define the LP for a certain schedule, we use the observation that every node
selected to transmit by the optimum solution, needs to transmit only once. This
fact is given by the next theorem.

Theorem 3. Given a solution to the accumulative broadcast problem consisting
of a sequence of transmissions where a node j is assigned to transmit K times with
power levels P 1

j , . . . PK
j then there is a feasible optimum solution in which node j

transmits only once with power level
∑K

k=1 P k
j .

A reliability schedule can be represented by a matrix X where

xij =
{

1 if node i is scheduled to transmit after node j
0 otherwise(10)

Each xij is an indicator that a node i collects energy from a transmission by node
j. Note that xii = 0, for all i and xji = 1 − xij . Given X we define a gain matrix



6 IVANA MARIC AND ROY YATES

. ..
5

. .
3 42

d

1

d d21 32 43d51

Figure 1. A five node network example.

for that schedule H(X). Each element (i, j) in H(X) is given as hijxij . In terms
of the vector p of transmitted powers, the LP for that schedule is

ρ(X) =min 1Tp(11)

subject to H(X)p ≥ 1P,

p ≥ 0.

The inequality H(X)p ≥ 1P contains N −1 constraints requiring that the received
power at all the nodes but the source is above the required threshold P . Given
a schedule X, we will use p∗(X) to denote a power vector p that achieves total
transmitted power ρ(X).

In a schedule, all N nodes are given a chance to transmit the data (since pj

can be greater than 0 for every node) and only the order of transmission is different
for different schedules. Every schedule is a different ordered sequence of N nodes.
Since the source always transmits first, there are (N − 1)! schedules corresponding
to the number of permutations of N − 1 elements. Thus, out of N (N−2) broadcast
trees, we consider a subset of (N − 1)! schedules. The reason is that, if the best
solution is that only a subset of nodes should be transmitting, the appropriate LP
will find that solution by setting appropriate powers to zero. In general, however,
the problem of finding a best schedule is intractable.

Theorem 4. The existence of a schedule X such that ρ(X) ≤ B is an NP-
complete problem.

In the following, we describe scheduling heuristics.

4. Scheduling Heuristics

We observe that we can restrict ourselves to scheduling nodes in an order in
which they can become reliable one at a time. When a node j is scheduled to be
the next node in a schedule after a set of nodes S, then a transmission from that
set has to make node j reliable. If the power that is needed to reach node j is
enough to reach another unreliable node i as well, than we could have done better
by assigning node i for transmission before node j. This is because i cannot benefit
from a transmission from node j (since it is made reliable before j) but j might
benefit from a transmission from i. This reasoning will be used in the proposed
heuristic algorithm.

The next theorem shows how the solution of a LP for a certain schedule gives
information about the subsequent schedule to be considered.

Theorem 5. If the solution p∗ = p∗(X) of the LP (11) has a subset of nodes
I, such that p∗i = 0 for all i ∈ I, then ρ(X̂) ≤ ρ(X) for a new schedule X̂ that
assigns nodes in I to transmit last.
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s = [1]; p = 0
while (|S| < N) do

k = arg maxi∈S

∑
j∈U hji;

j = arg minm∈U(P −
∑

i∈S hmipi)/hmk;
n = Ik(s);
if (n �= |S| and pk �= 0)

pk ← pk + (P −
∑

i∈S hjipi)/hjk;
for i = n + 1 : |S| do psi = 0 end;
s ← [s1, . . . , sn];
do

l = arg maxm∈U

∑
i∈S hmipi;

if (
∑

i∈S hlipi ≥ P ) s ← [s, l];
while (

∑
i∈S hlipi ≥ P )

else
pk ← pk + (P −

∑
i∈S hjipi)/hjk;

s ← [s, j]
end;

end

Given a partial schedule s, S is the unordered set of nodes in s and its
complement U is the set of unreliable nodes. The cardinality of S is given by |S|.
In addition, Ik(s) returns the position of node k in the schedule s. That is, if
sn = k, then Ik(s) = n.

Figure 2. Greedy Filling Heuristic Algorithm - The Offline Version.

s = [1]; p = 0
while (|S| < N) do

k = arg maxi∈S

∑
j∈U hji;

j = arg minm∈U(P −
∑

i∈S hmipi)/hmk;
pk ← pk + (P −

∑
i∈S hjipi)/hjk;

s ← [s, j]
end

Figure 3. Simplified Greedy Filling Heuristic Algorithm.

We illustrate our approach on an example network with 5 nodes on a line as
shown in Figure 1. For every two nodes j and k, the link gain is calculated from
hjk = d−3

jk for the distances given in Figure 1. Let node 1 be a source. The number
of possible spanning trees is 125. By Theorem 3, (N − 1)! = 24 schedules need to
be considered given by all the possible permutations of all the nodes except the
source who always transmits first. Two observations help reduce the number of
schedules: Since the closest neighbor to the source is node 2, this node will become
reliable first regardless of a schedule. Following the reasoning from above, all the
considered schedules should assign this node for a possible transmission after the
source. For the same reason node 3 should always be scheduled to transmit before
node 4, thus giving node 4 the chance to collect energy from the transmission of
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node 3. This leaves only three possible schedules to be considered:

s1 = [1, 2, 3, 4, 5], s2 = [1, 2, 3, 5, 4], s3 = [1, 2, 5, 3, 4].

We consider schedule S1 first. The LP for that schedule is

min p1 + p2 + p3 + p4⎡
⎢⎢⎣

h21

h31 h32

h41 h42 h43

h51 h52 h53 h54

⎤
⎥⎥⎦

⎡
⎢⎢⎣
p1

p2

p3

p4

⎤
⎥⎥⎦ ≥ 1P

p1, p2, p3, p4 ≥ 0

Solving the LP we get the optimum power levels for this schedule. In particular,
the solution finds that p4 = 0. Therefore, although node 4 was given a chance to
transmit as soon as possible, its transmission is not needed; by theorem 5 we can
move node 4 to the end of the schedule. In both schedules s2 and s3 node 4 is
scheduled to be the last node in the schedule. Hence, we consider both s2 and s3.
By solving the LP for those two schedules, and comparing the minimum energy
solution for three schedules, we get the optimum solution. The solution gives nodes
1, 2 and 3 as the transmitting nodes. The power level at node 1 is higher than
needed to reach node 2 but less than needed to reach node 5; the rest node 5
collects from later transmission at nodes 2 and 3. The transmitted power at node
2 is enough to reach node 3 given what it collected from p1. Node 3 transmits to
4 such that enough energy from three transmissions is collected at node 4 to meet
the threshold.

Because of the complexity of the problem of finding the best schedule, we
now propose a heuristic algorithm that finds a good schedule. Once the schedule is
determined, the LP for that schedule is solved to find the optimum power levels. We
propose two versions of the algorithm: The offline version that requires a schedule
adjustment, and its simplified counterpart where no such adjustment is needed.
We evaluate the performance of the algorithm through simulation and compare its
power efficiency to the optimum solution as well as to the performance of BIP, the
heuristic algorithm proposed in [13].

We present the offline version of the algorithm first. The algorithm pseudocode
is given in Figure 2. The algorithm starts with a partial reliability schedule s = [1]
that contains only the source. In general, given s = [s1, . . . , sn], if sl = k, then
node k is the lth node in the schedule. Given a partial schedule s, we find the
reliable node k that maximizes the fill rate of the unreliable set. By Theorem 3,
node k should transmit only once. Therefore, we check to make sure that k has
not yet transmitted, or if it did, k was the last reliable node to transmit. In this
case, we increase pk by the power needed to add one more node, node j, to the
reliable set and we simply append node j to the schedule. Otherwise, if k is not
the last reliable node to transmit and pk �= 0, then k has been chosen to transmit
earlier in the schedule. By Theorem 3, k should have transmitted at that earlier
time with a higher power level, making more of its neighbors reliable at the same
step. Thus we reset the schedule after node k in the following way. All transmitting
nodes that followed node k in the schedule have their powers set to zero and we
truncate the schedule after node k. However, those nodes that are made reliable
by transmissions of the truncated schedule are appended to the schedule in order
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of decreasing total received power. Once the schedule is complete, the LP is solved
to find the optimum power levels for that schedule.
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To avoid the offline schedule adjustment we consider a simplification of the
above algorithm where we drop the requirement on a single transmission at a node.
Then, in each step of the algorithm we only need to choose a reliable node k
for transmission and to append a single node j to the existing schedule. As the
simulation results will show, the loss in the performance due to the simplification
is negligible. The corresponding simplified pseudocode is given in Figure 3.

We evaluated the performance of the algorithms and compared them to the
optimal solution as well as to the performance of BIP. Networks with a small number
(5 − 10) of randomly positioned nodes were generated. We also compared the
performance of all three heuristics for more dense networks. The transmitted power
was attenuated as rα for three different values of propagation exponent α = 2, 3, 4.
The received power threshold was chosen to be P = 1. The results were based
on the performance of 100 randomly chosen networks. When comparison with the
optimum solution was performed, the performance metric used was the normalized
total power in the network. In each simulation run, the power used when a heuristic
algorithm was employed was normalized by the power used in the optimum solution.

Results are shown in Figure 4 as a function of the number of network nodes
for α = 2. In this case, the offline version of the algorithm was used. Results show
the heuristic algorithm performance very close to the optimum. This is a desirable
and important characteristic, given the complexity of finding the optimum solution.
The simulation result also show the noticeable improvement in the power saving in
our approach compared to power used when the minimum-energy broadcast tree
approach is used and the broadcast tree is found using BIP.

For the networks with a larger number of nodes, performance results for the
accumulative broadcast heuristics and BIP are shown in Figure 5. The metric used
was the average total power used for broadcasting. We observe that total power
decreases with the number of nodes due to the increased number of shorter hops.
The decrease in the case of the accumulative broadcast is steeper since the increased
number of transmissions allows for more energy to be collected. Hence the relative
improvement over BIP increases with the number of network nodes. For smaller
values of propagation exponent α, the smaller path loss allows for the higher gains
from the accumulative broadcast. Results also show that, for a larger number of
nodes the total power required is smaller for larger values of α. This counterintuitive
result is due to the fact that, as the networks becomes more dense, the most of the
distances become less than 1. Results show no significant performance loss when
the simplified heuristic algorithm is used.

5. Conclusion

In this paper we address the minimum-energy broadcast problem. To increase
the energy efficiency, we realize that a lot of energy is radiated into the network
in each transmission and thus, we allow nodes outside of the transmission range
to collect the energy of the unreliably received signal. A node will have multiple
opportunities to receive reliably the message by collecting energy while the message
is forwarded through a network. We demonstrate that finding the optimum solution
to this problem is complex and therefore, propose a heuristic algorithm that has
energy-efficiency close to optimal and can still provide energy-saving compared to
broadcasting that doesn’t collect energy from unreliable transmission.
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6. Appendix: Additional Proofs.

Proof (Theorem 2): Let the optimum solution to the minimum-energy broad-
cast problem be a vector of transmitted powers, p̂∗ and a matrix X̂ determined by
the minimum-energy broadcast tree (MEBT) such that x̂ij = 1 if j is a parent of i
in MEBT and zero otherwise. Again, x̂ij is an indicator that node i collects energy
from a transmission at node j. We show that p̂∗ belongs to the feasibility region of
the LP (11) for some schedule X and can therefore only be worse than the optimum
solution for accumulative broadcast.

As in accumulative broadcast, the solution to the MEBT problem has to satisfy
the constraint that the received power at all nodes except the source is above the
required threshold. Using matrix X̂, we can represent these constraints as in (11)
in the form

H(X̂)p̂∗ ≥ 1P.(12)

Given the MEBT, we can form an ordered sequence of all the nodes in which
each parent node appears before its children. The nodes that are at the same depth
from the source appear in any order relative to each other. The sequence defines one
permutation of N elements with the source being the first element and thus defines
a possible schedule for accumulative broadcast. For convenience, we relabel the
nodes in the order they have been scheduled such that the schedule is [1, 2, . . . , N ].
Let X be a corresponding matrix for that schedule. Each element of X can be
represented as xij = x̂ij + 1(j < i)(1 − x̂ij) where 1(·) is an indicator function.
Thus, X = X̂ + X̃ where x̃ij = 1(j < i)(1 − x̂ij). The feasibility constraints (11)
become

H(X̂)p + H(X̃)p ≥ 1P.(13)

From (12) and nonnegativity of H(X̃), it follows that p̂∗ satisfies (13). Therefore,
p̂∗ belongs to the feasibility region of the LP for schedule X and the solution of
that LP can only be better than p̂∗. �
Proof (Theorem 3): For the purpose of this proof we represent a solution to
the accumulative broadcast problem by a vector with each entry i containing the
ith transmitting node ni and the ith transmitted power level Pi. Non-transmitting
nodes are appended in an arbitrary order at the end and assigned zero power levels.
A solution S is represented as

S =
[

(n1, P1) (n2, P2), . . . (nM , PM )
]T(14)

for some M ≥ N .
Let S∗ be the optimum solution. Given S∗, we can represent a feasibility

condition at every node j as follows. Assume that a first transmission of a node
j occurs at the kth step for some k ∈ [1,M ]. Then, nk = j and ni �= j for all
i < k. From the feasibility of S∗ it follows that every node becomes reliable before
it transmits. Therefore, a feasibility condition at node j

k−1∑
i=1

hnkniPi ≥ P(15)

is satisfied.
Assume that S∗ schedules the same node for a transmission more than once.

Let l denote the smallest integer such that there exists an integer m > l with



12 IVANA MARIC AND ROY YATES

nl = nm. Consider the policy Ŝ∗, a vector of length M − 1 with elements (n̂i, P̂i)
such that

(n̂i, P̂i) =

⎧⎪⎪⎨
⎪⎪⎩

(ni, Pi) if i < l,
(nl, Pl + Pm) if i = l,
(ni, Pi) if l < i < m,
(ni+1, Pi+1) if i ≥ m.

(16)

The solution Ŝ∗ combines transmissions at steps l and m into a single transmission
with power Pl + Pm at step l. The rest of the nodes are scheduled as in S∗.

From (16),

k−1∑
i=1

hn̂kn̂i P̂i =

⎧⎪⎨
⎪⎩

∑k−1
i=1 hnkniPi if k ≤ l,∑k−1
i=1 hnkniPi + hnknl

Pm if l < k < m,∑k−1
i=1 hnkniPi if m ≤ k ≤ M − 1.

(17)

From (15) and (17) it follows that the feasibility condition is satisfied for every
node j in Ŝ∗. Optimality of the solution Ŝ∗ follows from the fact that the total
power transmitted in both solutions is the same. Since the solution S∗ minimizes
the total power, the solution Ŝ∗ does too. The above combining technique can be
repeatedly applied until each node transmits just once. �
Proof (Theorem 4): Let Πi denote the set of all vectors π = [π0, . . . , πi] that
are permutations of [0, 1, . . . , i]. A formal statement of the ACCUMULATIVE
BROADCAST (AB) problem is

AB: Given a nonnegative matrix specified by {hj,k|1 ≤ j ≤ m, 0 ≤ k ≤ m},
and a constant c, does there exist a permutation π ∈ Πk with π0 = 0
and a non-negative vector p = [p0, p1, . . . , pm] such that

∑m
k=0 pk ≤ c and∑j−1

k=0 hπj,πk
pπk

≥ 1, j = 1, . . . ,m.
Thus an instance of AB is specified by the pair ({hj,k}, c). Note that we set the

reliability threshold to unit power since any scaling can be specified by the constant
c. We observe that AB is in NP since given a permutation π and vector p, it is
easy to check whether the AB constraints are met.

We will show that the ACCUMULATIVE BROADCAST problem is NP com-
plete by a polynomial time reduction of the DIRECTED HAMILTON PATH (DHP)
[8] problem. Formally the DHP problem is

DHP: Given a directed graph G = (V,A) with nodes V = {0, . . . , n}, does
there exist a permutation π ∈ Πn such that π0 = 0 and (πi, πi+1) ∈ A for
i = 0, . . . , n − 1.

We now describe the transformation of DHP into an instance of AB. Without
loss of generality, we assume that the instance of DHP is such that node 0 has a
single outgoing arc (0, 1) and that node n is a sink node reachable by an arc (i, n)
from each node i ∈ {1, . . . , n − 1}. Note that if this condition does not hold, we
can add such source and sink nodes and solve an equivalent DHP. Thus, for each
such graph, the Hamilton path, if it exists, will start at node 0 and terminate at
node n.

Given G = (V,A) for DHP, we construct a set of nodes G′ and matrix {hj,k}
for an instance of AB. In particular, for each node k ∈ G, we construct a cluster of
nodes Ck ⊂ G′. In particular, the cluster Ck includes a node ij,k for each incident
arc (j, k) ∈ A and a node ok,l for each outgoing arc (k, l) ∈ A. That is, in terms
of each arc (j, k) ∈ A, we have created an incident node ij,k ∈ Ck and an outgoing
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node oj,k ∈ Cj . Note that cluster C0 contains only the single node o0,1 and that
the sink node n has the cluster Cn = {ij,n|1 ≤ j < n} of only incoming nodes.

To avoid an explicit enumeration of the nodes in G′, we describe the matrix
{hj,k} in terms of a function h(a, b) that gives the channel gain from node b to
node a. Similarly, we will use the notation p(a) to denote the transmitted power
of the node a. Corresponding to each arc (j, k) ∈ A, we have h(ij,k, oj,k) = 1.
Within each cluster Ck, we have that for any pair of incident nodes ij,k and ij′,k,
h(ij,k, ij′,k) = 1. In addition, for each outgoing node ok,l ∈ Ck, and each incoming
node ij,k ∈ Ck, h(ok,l, ij,k) = 1. For all other pairs of nodes a, b ∈ G′, we set
h(a, b) = 0. Keep in mind that if h(a, b) = 1, then p(b) = 1 yields received power
h(a, b)p(b) = 1 at node a. We will see in our AB construction, each node a will use
power p(a) ∈ {0, 1}.

To prove that AB is NP-complete, we show that the graph G has a Hamilton
path if and only if the resulting instance (h(·, ·), c = 2n) of AB is feasible. Consider
a Hamilton path that starts at node zero and proceeds through all nodes to node
n. Suppose the Hamilton path uses arc (j, k), then for the AB problem, we set
p(oj,k) = 1, p(ij,k) = 1, p(oj,k′) = 0 for all k′ �= k, and p(ij′,k) = 0 for all j′ �= j.
In the context of AB, node oj,k transmits to make node ij,k reliable and then
node ij,k transmits to make all nodes in cluster Ck reliable. If the next arc in the
Hamilton path is (k, l), then in the AB, ok,l, which has already been made reliable
by the transmission of ij,k, will transmit to make ik,l reliable. We call the event
that an incoming node ij,k is made reliable a visit to cluster Ck. The sequence of
nodes in the Hamilton path corresponds exactly to the sequence of cluster visits.
To calculate the total transmitted power, note that in cluster C0, node o0,1 will
transmit. In clusters 1, . . . , n − 1, one incoming node and one outgoing node will
transmit. Lastly, in cluster Cn, one incoming node will transmit to make the other
incoming nodes in Cn reliable. The total transmitted power will be exactly 2n.
We note that the node ordering required by the formal statement of AB will not
be uniquely specified. If cluster Ck is visited before cluster Cl, then all nodes in
Ck must be ordered ahead of nodes in Cl. In a cluster Ck, if incoming node ij,k is
made reliable then ij,k must be first in the cluster but other nodes in the cluster
can be ordered arbitrarily.

To complete the proof, suppose we have a solution to the AB problem. This
AB solution must make every node in the graph G′ reliable. For each cluster Ck,
1 ≤ k ≤ n, at least one incoming node ij,k must be made reliable by the transmission
of the corresponding outgoing node oj,k. However, since this transmission of oj,k

makes only ij,k reliable, one such transmission is needed for each cluster Ck. Over
all clusters Ck, 1 ≤ k ≤ n, we require n such transmissions. Further, within each
cluster, the outgoing nodes can be made reliable only by the transmission of an
incoming node in the cluster. Thus for each cluster Ck, 1 ≤ k ≤ n, at least one
incoming node ij,k must transmit to make all other nodes in the cluster reliable;
this requires n additional transmissions. Thus 2n is a lower bound to the number
of transmissions for the AB problem. Moreover, if the solution to AB achieves the
minimum 2n, then each outgoing node transmission must be to an incoming node
in a cluster that has had no other incoming nodes receive a transmission from its
corresponding outgoing node. That is, each cluster can be visited only once for
the 2n lower bound to be met. Starting with node 0 and cluster C0, node o0,1 will
transmit to make node i0,1 reliable. Node i0,1 must then transmit to make all other
nodes in cluster C1 reliable. An outgoing node o1,k will then transmit to make a
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node i1,k reliable, constituting a visit to cluster k. To achieve the 2n lower bound,
each cluster will be visited precisely once, with termination at cluster Cn. Since
moving from cluster Cj to visit Ck can occur only if (j, k) is an arc in G, the AB
solution corresponds to a Hamilton path in the graph G. �

Proof (Theorem 5): Let LPX and LPX̂ denote the LPs for schedules X and
X̂, respectively. We show that p∗ = p∗(X) belongs to the feasibility region for
LPX̂ given by (11) and therefore the optimum solution of LPX̂ can only be better
than p∗.

Consider the schedule X. From the assumption that p∗i = 0 for all i ∈ I, it
follows that the feasibility condition (11) for LPX satisfied for every node k is∑

j

xkjhkjp
∗
j =

∑
j /∈I

xkjhkjp
∗
j ≥ P.(18)

Next consider the schedule X̂. Since all the nodes k such that k /∈ I are
scheduled in the same order relative to each other in both schedules X and X̂, it
follows that x̂kj = xkj for all k, j /∈ I. All the nodes k such that k ∈ I are scheduled
last in X̂, therefore x̂kj = 1 for all k ∈ I, j /∈ I. Then,

∑
j

x̂kjhkjp
∗
j =

∑
j /∈I

x̂kjhkjp
∗
j =

{ ∑
j /∈I xkjhkjp

∗
j k /∈ I,∑

j /∈I hkjp
∗
j k ∈ I.(19)

From (18) and (19) it follows that the p∗ satisfies the feasibility conditions for
X̂. �
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