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Abstract

In this paper we address the minimum-energy broadcast problem. To increase the en-
ergy efficiency, we allow nodes that are out of the transmission range of a transmitter to
collect the energy of unreliably received overheard signals. As a message is forwarded
through the network, a node will have multiple opportunities to reliably receive the mes-
sage by collecting energy during each retransmission. We refer to this strategy as accu-
mulative broadcast. Under the assumption that the nodes reliably forward messages, we
formulate the minimum-energy accumulative broadcast problem. We present a solution
employing two subproblems. First, we identify the ordering in which nodes should trans-
mit. Second, we determine the optimum power levels for that ordering. While the second
subproblem can be solved by means of linear programming, the ordering subproblem is
found to be NP-complete. We devise a heuristic algorithm to find a good ordering and
evaluate the performance of the algorithm. Preliminary results show the performance of
the heuristic algorithm is generally close to the optimum solution. Results also show a
significant improvement compared to the well known BIP algorithm for constructing an
energy-efficient broadcast tree.

1 Introduction.

In the problem of minimum-energy broadcasting in a wireless network, the objective is to
broadcast data reliably to all network nodes at a fixed rate with minimum transmitted power.
The problem of broadcasting in a wireless network was introduced in [13] and formulated as
a minimum-cost broadcast tree problem. In a wired network, the minimum-cost broadcast tree
can be found in O(n2) operations [8]. However, in the wireless network, this problem was
shown in [6] to be NP-hard and later on, in [1, 2, 7] to be NP-complete. The greater difficulty
of the wireless broadcast problem tree stems from the “wireless multicast advantage” [13], the
fact that a wireless transmission can be received by all nodes in the transmission range. Several
heuristics for constructing energy-efficient broadcast trees have been proposed in literature and
evaluated through simulations. The quantitative characterization of three such algorithms is
given in [12].

The wireless formulation of the minimum energy broadcast problem assumes that a node
can benefit from a certain transmission only if the received power is above a threshold required
for reliable communication. This is a pessimistic assumption. A node for which the received
power is below the required threshold, but above the receiver noise floor, can collect energy
from the unreliable reception of the sent information. For example, in a Bluetooth system
[9], the nominal transmitted power is 1 mW resulting in a transmission range of 10 meters.



However, for a typical path exponent of α = 3, the received signal at a node within 90 meters
of the transmitter is likely to be above the receiver noise floor.

Moreover, it was observed in the relay channel [3] that utilizing unreliable overheard infor-
mation was essential to achieving capacity. We borrow this idea and re-examine the minimum
energy broadcast problem under the assumption that nodes can exploit the energy of an unre-
liable reception. For the broadcast problem, a node will have multiple opportunities to receive
a message as it is forwarded through the network. We refer to this strategy as accumulative
broadcast.

Even in the simplest case of a single relay node, finding the maximum achievable common
rate for a given set of transmit powers is, in general, an unsolved open problem. Even in the
special case of the physically degraded single relay channel, key techniques employed in [3] to
enable coordination of the transmissions of the source and the relay are not easily extensible
to multiple node networks. In this work, we seek to employ overheard information in a large
scale network. To do this, we make certain simplifying assumptions. First, our focus will be on
networks in which bandwidth is plentiful relative to the transmit power available to the nodes.
Second, we impose a reliable forwarding constraint that a node can forward a message only
after reliably decoding that message. Although reliable forwarding is generally a suboptimal
strategy, we will see that it greatly simplifies the system architecture while still allowing us to
benefit from unreliable overheard information.

In the following section, we give the network model. In Section 3, we describe our ap-
proach for finding the best broadcasting solution and show that the problem is NP-complete.
A heuristic algorithm and its performance is presented in Section 4. Due to space limitations,
we were unable to provide proofs for most theorems in this paper.

2 System model.

We consider a wireless network of N nodes such that from each transmitting node k to each
receiving node m, there exists an AWGN channel of bandwidth W characterized by a fre-
quency non-selective link gain hmk. We further assume large enough bandwidth resources to
enable each transmission to occur in an orthogonal channel, thus causing no interference to
other transmissions. Each node has both transmitter and receiver capable of operating over all
channels.

A receiver node j is said to be in the transmission range of transmitter i if the received
power at j is above a threshold that ensures the capacity of the channel from i to j is above
the code rate of node i. We assume that nodes can use different power levels, which will
determine transmission ranges. The nodes beyond the transmission range can exploit the fact
that a message is sent through multiple hops on its way to all the nodes. Repeated transmissions
act as a repetition code for all the nodes beyond the transmission range.

We view each orthogonal channel as a discrete-time Gaussian channel by representing a
waveform of duration T as a vector in the n = 2WT dimensional space [4]. Then, dur-
ing the ith symbol interval of length T , a source node, labeled node 1, transmits a codeword
(vector) Xn(i) from a (2nR, n) Gaussian code that is generated according to the distribution
p(Xn) =

∏n
l=1 p(xl) where p(x) ∼ N(0, 1). Under the reliable forwarding constraint, a node j

is permitted to retransmit (forward) codeword Xn(i) only after reliably decoding Xn(i). With
an appropriate set of retransmissions at appropriate power levels, eventually every node will
have reliably decoded Xn. Henceforth, we drop the index i and focus on the broadcast of a
single codeword Xn. We will say a node is reliable once it has reliably decoded Xn.



The constraint of reliable forwarding imposes an ordering on the network nodes. In partic-
ular, a node m will decode Xn from the transmissions of a specific set of transmitting nodes
that became reliable prior to node m. Starting with node 1, the source, as the first reliable
node, a solution to the accumulative broadcast problem will be characterized by a reliability
schedule, which specifies the order in which the nodes become reliable.

A reliability schedule [n1, n2, n2, . . . , nN ] is simply a permutation of [1, 2, . . . , N ] that al-
ways starts with the source node n1 = 1. Given a reliability schedule, it will be conve-
nient to relabel the nodes such that the schedule is simply [1, 2, . . . , N ]. After each node
k ∈ {1, . . . , m− 1} transmits codeword Xn with power Pk, the received signal at node m
for each symbol x in the codeword is

y = hx + n, (1)

where h = [h1, . . . , hm−1]
T has kth element hk = (

√
hmkPk) equal to the received power

corresponding to the transmission of node k and n is is a random noise vector with covariance
matrix Kn = σ2IK . It follows that the mutual information is

I(x;y) =
1

2
log2

(
1 +

∑m−1
k=1 hmkPk

σ2

)
bits. (2)

This is precisely the capacity of a multi-antenna system derived in [10] with m−1 transmitting
antennas and one receiving antenna. It follows from Equation (2) that the maximal number of
bits per second that can be transmitted in the system given by Equation (1) is

rm = W log2

(
1 +

∑m−1
k=1 hmkPk

N0W

)
bits/s, (3)

where N0 is the one-sided power spectral density of the noise.
Acheiving rm = r implies

∑m−1
k=1 hmkPk ≥ P where

r = W log2

(
1 +

P

N0W

)
bits/s. (4)

is the fixed data rate used for broadcasting.
When the nodes are power limited and the data rate r is small relative to the channel band-

width W , the system operates in the wideband regime where energy per bit is close to its
minimum value and the increase in rate with power is linear:

r∞ = lim
W→∞

r = lim
W→∞

W log2

(
1 +

P

WN0

)
=

P

N0 ln 2
bits/s. (5)

From the above equation, transmission of r∞ = ET /(N0 ln 2) bits requires received energy of
ET = PT , revealing the well known fact that for the reliable reception of one information bit,
a receiver has to collect at least ET = N0 ln 2 Joules/bit. [11]. This energy can be collected at
a node m during one transmission interval [0, T ] when a transmitter j is signaling with power
P = (N0 ln 2)/(hmjT ). However, in the system given by Equation (1), the required energy ET

is collected in m− 1 repeated transmissions. In the wideband regime, Equation (3) is

lim
W→∞

rm =
1

N0 ln 2

m−1∑
k=1

hmkPk. (6)

Next we show that for the same transmitted powers, using a coding strategy other than the
repetition code described above, cannot increase the rate achieved at the receiving node m.



Theorem 1 For the wideband regime, fixed transmitted powers {P1, . . . , PN} and a reliability
schedule [1, 2, . . . , N ], the maximum rate achievable from the source to node m is given by
Equation (2) and is achieved by the repetition coding strategy.

Proof. An upper bound to the achievable rate between the source and the destination is the
maximum conditional mutual information across a minimum cut [4]. Consider the multiaccess
cut in the given network that separates the destination node from the rest of the network. Let
Xj denote a symbol transmitted at node j and Y denote the received signal at the destination.
The maximum mutual information across this cut is given by

CMAC = I(X1, . . .Xm−1; Y ). (7)

In the considered network, each orthogonal channel is assigned bandwidth W and hence the
mutual information above is given by the sum of rates achieved in each of the channels. For
Gaussian channels,

CMAC = W

m−1∑
k=1

log2

(
1 +

hmkPk

N0W

)
. (8)

In the wideband regime, Equation (8) becomes

CMAC = lim
W→∞

W

m−1∑
k=1

log2

(
1 +

hmkPk

N0W

)
=

1

N0 ln 2

m−1∑
k=1

hmkPk, (9)

which is precisely the rate given by (6) achieved using the repetition strategy. Since this rate is
achievable, this cut is the minimum cut. No better rate can be achieved since it would violate
the condition for the upper bound. �

Not allowing the noisy observations to be amplified and sent at relays makes achieving
the broadcast cut-set bound impossible. As shown in [5], this bound can be asymptotically
achieved in a network with one source-destination pair as the number of relays goes to infinity.
Again, this situation is equivalent to the multi-antenna system [10], but in this case, with one
transmitting antenna and K receiving antennas.

3 Approach

Under the constraint of reliable forwarding, an optimal solution to the minimum power accu-
mulative broadcasting problem must specify the reliability schedule as well as the transmitter
power levels used at each node. An optimal choice of the reliability schedule will result in
minimum total transmitted power over the set of nodes.

From the above arguments, it follows that our problem of finding the minimum-energy ac-
cumulative broadcast differs from the minimum-energy broadcast tree [1, 2, 6, 7, 12–14] in the
sense that no received energy is wasted at the nodes while they collect energy unreliably. The
two problems are similar in that finding the optimum solution involves the right ordering of
relay nodes and determination of transmitter power levels. Defining the broadcast tree deter-
mines all the transmission levels and thus solves the problem completely; a relay that is the
parent of a group of nodes in the broadcast tree transmits with the power needed to reliably
reach the most disadvantaged node in the group. Hence, the arcs in the broadcast tree uniquely
determine the power levels for each transmission.

In our scenario, however, the broadcast tree loses its meaning since nodes collect energy
from the transmissions of many nodes. The optimum solution may require that a relay trans-
mits with a power level different from the level precisely needed to reach a group of nodes



reliably; the nodes can collect the rest of the needed energy from the future transmissions of
other nodes. In fact, the optimum solution favors such situations because all nodes beyond
the range of a certain transmission are collecting energy while they are unreliable; the more
such nodes, the more efficiently the transmitted energy is being used. Therefore, if during one
transmission, an unreliable node is collecting energy faster due to a good channel gain with a
current transmitting node, it may be desirable for the transmitting node to stop transmitting be-
fore the collected energy at the node in favor reaches the threshold of reliable communication;
that node will collect the rest of the energy needed during future transmissions of other nodes.

The next theorem shows that this approach can never do worse than the solution to the
minimum-energy broadcast tree approach. In fact, accumulative broadcasting will always re-
sult in a more energy-efficient solution.

Theorem 2 The sum of transmitted powers of the minimum-energy broadcast tree is an upper
bound to the sum of transmitted powers for accumulative broadcasting.

The differences in our problem from the minimum-energy broadcast tree dictate a new ap-
proach. The crucial step is finding the best reliability schedule. We call such an order a
schedule. Given a schedule, we can formulate a linear program (LP) that will find the opti-
mum solution for that schedule. Such a solution will identify those nodes that should transmit
and their transmission power levels. Solving the LP for all possible schedules and taking the
minimum-energy solution among all the LP solutions will result in the optimum schedule, and
optimum transmission power levels. This divides the problem into two subproblems.

To define the LP for a certain schedule, we use the observation that every node selected to
transmit by the optimum solution, needs to transmit only once. This fact is given by the next
theorem.

Theorem 3 Given a solution to the accumulative broadcast problem consisting of a sequence
of transmissions where a node j is assigned to transmit K times with power levels P 1

j , . . . P K
j

then there is a feasible optimum solution in which node j transmits only once with power level∑K
k=1 P k

j .

Mathematically, a reliability schedule can be represented by a matrix X where

xij =

{
1 if node i is scheduled to transmit after node j
0 otherwise

(10)

Each xij is an indicator that a node i collects energy from a transmission by node j. Note that
xii = 0, for all i and xji = 1− xij . Given X we define a gain matrix for that schedule H(X).
Each element (i, j) in H(X) is given as hijxij . In terms of the vector p of transmitted powers,
the LP for that schedule is

ρ(X) =min 1Tp (11)

subject to H(X)p ≥ 1P ,

p ≥ 0.

The inequality H(X)p ≥ 1P contains N − 1 constraints requiring that the received power at
all the nodes but the source is above the required threshold P . Given a schedule X, we will use
p∗(X) to denote a power vector p that achieves total transmitted power ρ(X).

In a schedule, all N nodes are given a chance to transmit the data (since pj can be greater
than 0 for every node) and only the order of transmission is different for different schedules.
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Figure 1: A five node network example.

Every schedule is a different ordered sequence of N nodes. Since the source always transmits
first, there are (N − 1)! schedules corresponding to the number of permutations of N − 1
elements. Thus, out of N (N−2) broadcast trees, we consider a subset of (N − 1)! schedules.
The reason is that, if the best solution is that only a subset of nodes should be transmitting,
the appropriate LP will find that solution by setting appropriate powers to zero. In general,
however, the problem of finding a best schedule is intractable.

Theorem 4 The existence of a schedule X such that ρ(X) ≤ B is an NP-complete problem.

In the following, we describe scheduling heuristics.

4 Scheduling Heuristics

We observe that we can restrict ourselves to scheduling nodes in an order in which they can
become reliable one at a time. When a node j is scheduled to be the next node in a schedule
after a set of nodes S, then a transmission from that set has to make node j reliable. If the
power that is needed to reach node j is enough to reach another unreliable node i as well, than
we could have done better by assigning node i for transmission before node j. This is because
i cannot benefit from a transmission from node j (since it is made reliable before j) but j
might benefit from a transmission from i. This reasoning will be used in the proposed heuristic
algorithm.

The next theorem shows how the solution of a LP for a certain schedule gives information
about the subsequent schedule to be considered.

Theorem 5 If the solution p∗ = p∗(X) of the LP (11) has a subset of nodes I , such that p∗
i = 0

for i ∈ I , then ρ(X̂) ≤ ρ(X) for a new schedule X̂ that assigns nodes in I to transmit last.

We illustrate our approach on an example network with 5 nodes on a line as shown in Figure
1. For every two nodes j and k, the link gain is calculated from hjk = d−3

jk for the distances
given in Figure 1. Let node 1 be a source. The number of possible spanning trees is 125.
By Theorem 3, (N − 1)! = 24 schedules need to be considered given by all the possible
permutations of all the nodes except the source who always transmits first. Two observations
help reduce the number of schedules: Since the closest neighbor to the source is node 2, this
node will become reliable first regardless of a schedule. Following the reasoning from above,
all the considered schedules should assign this node for a possible transmission after the source.
For the same reason node 3 should always be scheduled to transmit before node 4, thus giving
node 4 the chance to collect energy from the transmission of node 3. This leaves only three
possible schedules to be considered:

s1 = [1, 2, 3, 4, 5], s2 = [1, 2, 3, 5, 4], s3 = [1, 2, 5, 3, 4].



s = [1]; p = 0
while (|S| < N) do

k = arg maxi∈S

∑
j∈U hji;

j = arg minm∈U (P −∑i∈S hmipi)/hmk;
n = Ik(s);
if (n �= |S| and pk �= 0)

pk ← pk + (P −∑i∈S hjipi)/hjk;
for i = n + 1 : |S| do psi

= 0 end;
s← [s1, . . . , sn];
do

l = arg maxm∈U

∑
i∈S hmipi;

if (
∑

i∈S hlipi ≥ P ) s← [s, l];
while (

∑
i∈S hlipi ≥ P )

else
pk ← pk + (P −∑i∈S hjipi)/hjk;
s← [s, j]

end;
end

Given a partial schedule s, S is the unordered set of nodes in s and its complement U is the set
of unreliable nodes. The cardinality of S is given by |S|. In addition, Ik(s) returns the position
of node k in the schedule s. That is, if sn = k, then Ik(s) = n.

Figure 2: Greedy Filling Heuristic Algorithm

We consider schedule S1 first. The LP for that schedule is

min p1 + p2 + p3 + p4

h21

h31 h32

h41 h42 h43

h51 h52 h53 h54





p1

p2

p3

p4


 ≥ 1P

p1, p2, p3, p4 ≥ 0

Solving the LP we get the optimum power levels for this schedule. In particular, the solution
finds that p4 = 0. Therefore, although node 4 was given a chance to transmit as soon as
possible, its transmission is not needed; by theorem 5 we can move node 4 to the end of the
schedule. In both schedules s2 and s3 node 4 is scheduled to be the last node in the schedule.
Hence, we consider both s2 and s3. By solving the LP for those two schedules, and comparing
the minimum energy solution for three schedules, we get the optimum solution. The solution
gives nodes 1, 2 and 3 as the transmitting nodes. The power level at node 1 is higher than
needed to reach node 2 but less than needed to reach node 5; the rest node 5 collects from
later transmission at nodes 2 and 3. The transmitted power at node 2 is enough to reach node
3 given what it collected from p1. Node 3 transmits to 4 such that enough energy from three
transmissions is collected at node 4 to meet the threshold.

Because of the complexity of the problem of finding the best schedule, we now propose
a heuristic algorithm that finds a good schedule. Once the schedule is determined, the LP for
that schedule is solved to find the optimum power levels. We evaluate the performance of the
algorithm through simulation and compare its power efficiency to the optimum solution as well
as to the performance of BIP, the heuristic algorithm proposed in [13].
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Figure 3: Normalized power used for broadcasting.

The algorithm pseudocode is given in Figure 2. The algorithm starts with a partial reliability
schedule s = [1] that contains only the source. In general, given s = [s1, . . . , sn], if sl = k,
then node k is the lth node in the schedule. Given a partial schedule s, we find the reliable node
k that maximizes the fill rate of the unreliable set. By Theorem 3, node k should transmit only
once. Therefore, we check to make sure that k has not yet transmitted, or if it did, k was the
last reliable node to transmit. In this case, we increase pk by the power needed to add one more
node, node j, to the reliable set and we simply append node j to the schedule. Otherwise, if k
is not the last reliable node to transmit and pk �= 0, then k has been chosen to transmit earlier in
the schedule. By Theorem 3, k should have transmitted at that earlier time with a higher power
level, making more of its neighbors reliable at the same step. Thus we reset the schedule after
node k in the following way. All transmitting nodes that followed node k in the schedule have
their powers set to zero and we truncate the schedule after node k. However, those nodes that
are made reliable by transmissions of the truncated schedule are appended to the schedule in
order of decreasing total received power. Once the schedule is complete, the LP is solved to
find the optimum power levels for that schedule.

We evaluated the performance of the algorithm and compared it to the optimal solution
as well as to the performance of BIP. Networks with a small number (5 − 10) of randomly
positioned nodes were generated. We also compared the performance of two heuristics for
more dense networks. The transmitted power was attenuated as rα for propagation exponent
α = 2. The received power threshold was chosen to be P = 1. The results were based on the
performance of 100 randomly chosen networks. When comparison with the optimum solution
was performed, the performance metric used was the normalized total power in the network. In
each simulation run, the power used when a heuristic algorithm was employed was normalized
by the power used in the optimum solution.

Results are shown in Figure 3 as a function of the number of network nodes. Results
show the heuristic algorithm performance very close to the optimum. This is a desirable and
important characteristic, given the complexity of finding the optimum solution. The simulation
result also show the noticeable improvement in the power saving in our approach compared to
power used when the minimum-energy broadcast tree approach is used and the broadcast tree
is found using BIP.
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Figure 4: Average total power used for broadcasting.

For the networks with a larger number of nodes, performance results for the accumulative
broadcast heuristics and BIP are shown in Figure 4. The metric used in this case was the
average total power used for broadcasting. We observe that total power decreases with the
number of nodes due to the increased number of shorter hops. The decrease in the case of the
accumulative broadcast is steeper since the increased number of transmissions allows for more
energy to be collected. Hence the relative improvement over BIP increases with the number of
network nodes.

5 Conclusion

In this paper we address the minimum-energy broadcast problem. To increase the energy ef-
ficiency, we realize that a lot of energy is radiated into the network in each transmission and
thus, we allow nodes outside of the transmission range to collect the energy of the unreliably
received signal. A node will have multiple opportunities to receive reliably the message by col-
lecting energy while the message is forwarded through a network. We demonstrate that finding
the optimum solution to this problem is complex and therefore, propose a heuristic algorithm
that has energy-efficiency close to optimal and can still provide energy-saving compared to
broadcasting that doesn’t collect energy from unreliable transmission.
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