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Abstract — This paper explores a spectrally

efficient, variable rate transmission scheme

under a service outage constraint for a block

fading channel model. The service outage

constraint is motivated by real time variable

rate applications. In a service outage, the

transmission code rate is below a given basic

rate and may in fact be zero. Unlike an infor-

mation outage in the capacity versus outage

problem, asymptotically error free communi-

cation is maintained during a service outage.

We solve the problem of maximizing the time

average transmission code rate subject to the

probability of service outage being sufficiently

small. When the problem is feasible, the opti-

mum power policy is shown to be a combina-

tion of water filling and channel inversion al-

locations. The optimum power allocation for

delay limited capacity, capacity versus outage,

and ergodic capacity are special cases of this

optimum scheme. Numerical results for the

Rayleigh fading channel are given.

I. Introduction

Wireless communication channels vary with time due
to mobility of users and changes in the environment.
For a time varying channel, dynamic allocation of
resources such as power, rate, or bandwidth can re-
sult in a better performance than fixed allocation
strategies. Generally, the resource allocation prob-
lem requires finding the best allocation scheme given
an optimization metric. The optimization metric is
specified according to the quality of service (QoS)
requirements of an application.

In order to differentiate real-time from non real-
time applications, three capacity measures have been
defined in the literature: ergodic capacity [1], de-
lay limited capacity [2], and capacity versus outage
probability [3, 4]. A comprehensive survey of these
concepts can be found in [5]. The concepts of de-
lay limited capacity and the capacity versus outage
probability have been developed in [2] and [3, 4],
respectively, for applications with strict delay con-
straints. Although these approaches use a fixed rate
transmission scheme, this may not be essential for
some real time applications, including video, audio,
web surfing, and games. Motivated by these applica-

tions, this paper examines variable rate transmission
schemes for real time applications.

For real time applications, a communication ses-
sion is usually broken into frames and a certain
amount of information must be transmitted within
each frame. One approach to meet a real time re-
quirement is to ensure that the transmission code
rate over a frame meets a lower bound ro, which we
call the basic service rate. This basic service rate is
specified by an application. We also notice that for
many applications, the service quality is still deemed
acceptable when the transmission code rate is occa-
sionally lower than ro. Based on these considera-
tions, we propose the concept of service outage. The
service is said to be in an outage when the trans-
mission code rate over a frame is smaller than ro.
The service quality is acceptable as long as the ser-
vice outage probability is less than ε, a parameter
indicating the outage tolerance of the application.
Therefore, parameters (ro, ε) characterize the quality
of service (QOS) requirements for a real time variable
rate service.

We would like to emphasize that a service out-
age is fundamentally different from an information
outage defined in [4]. In [4], the transmission code
rate is fixed while the instantaneous mutual infor-
mation fluctuates with the fading process. The in-
stantaneous mutual information specifies the maxi-
mum reliable transmission code rate for each chan-
nel state. When the transmission code rate is greater
than the instantaneous mutual information, decoding
errors occur and this event is termed information out-
age. By comparison, in this work, the transmission
code rate varies with the fading process and is al-
ways equal to the instantaneous mutual information,
ensuring asymptotically error-free communication at
all times. However, when the transmission code rate
is less than the basic service rate, the rate require-
ment of the application is not satisfied and this event
is termed service outage.

Since the transmission code rate varies from frame
to frame, the spectral efficiency of this approach is
determined by the average rate. Therefore, in this
paper, the allocation problem is defined as follows:
given the average power Pav, the basic service rate
ro, and the maximum allowable outage probability ε,
find the optimum power and rate allocation policy to
maximize the average rate.

The remainder of this paper is organized as fol-



lows. In Section II, the system model and the opti-
mization problem are presented. In Section III, the
optimum power allocation is derived. The properties
of the optimum allocation are discussed in Section IV
and numerical results for the Rayleigh fading chan-
nel are given in Section V. Conclusions are drawn in
Section VI.

II. The Allocation Problem

In this work, we employ the block flat fading Gaus-
sian channel (BF-AWGN) model [3]. In the BF-
AWGN channel, a block of N symbols experiences
the same channel state, which is constant over the
whole block, but may vary from block to block. Note
that the value of N is related to the product of the
coherence time and the coherence bandwidth of the
wireless channel. We make the following assump-
tions:

• The channel state information is known per-
fectly at both transmitter and receiver.

Within each block we have the time-invariant
Gaussian channel

y =
√

hx + n. (1)

Here x is the channel input, y is the channel
output, n is white Gaussian noise with vari-
ance σ2, and h is the channel state. Since
the channel state information is known at the
transmitter, an adaptive transmission scheme
can be employed in the system. Let p(h) de-
note the power allocation for a channel state
h and R[hp(h)] be the capacity of a Gaussian
channel with received power hp(h), where

R[P ] =
1

2
log2

�
1 +

P

σ2

�
. (2)

• One adaptive transmission frame spans one
fading block and the block size N is sufficiently
large for reliable communication.

This assumption is reasonable as long as the
product of the coherence bandwidth and the
block duration is large enough. Each code-
word spans only one block, and, consequently,
the decoding delay is fixed and independent of
the correlation structure of the fading process.
As a real time requirement, we allow for the
transmission code rate per frame to be only
occasionally (with some probability less than
or equal to ε) below an application specified
rate ro.

• The fading process is ergodic.

Under this assumption, the time average rate
is equal to the expected rate.

Let f(h) denote the probability density function
of the channel state h and F (h) denote the corre-
sponding cumulative distribution function. Here, we

only consider the case where h is a continuous ran-
dom variable.1 The assigned code rate for a channel
state h is always equal to the capacity of the Gaussian
channel R[hp(h)] with received power hp(h). Thus,
the resource allocation problem requires finding only
the optimum power allocation p∗(h). Given the av-
erage power Pav, the basic service rate ro, and the al-
lowable service outage probability ε, we wish to max-
imize the expected code rate, as follows:

R∗ =max
p(h)

Eh {R[hp(h)]} (3)

subject to: Eh {p(h)} ≤ Pav (3a)

p(h) ≥ 0 (3b)

Pr{R[hp(h)] < ro} ≤ ε . (3c)

The service outage constraint (3c) reflects the real
time requirement of an application. In the absence of
the constraint (3c), R∗ would be the ergodic capacity
for the fading channel, and the well known water
filling allocation [6, 7] would be the corresponding
optimum power assignment.

III. Optimum Power and Rate

Allocation

In this section, we derive an optimum power alloca-
tion p∗(h) for problem (3). The difficulty in deriving
p∗(h) is primarily due to the probabilistic character
of the constraint (3c). Here, we show how an op-
timum power allocation can be derived based on a
problem analogous to (3) with a deterministic con-
straint on the assigned rate. Given a basic service
rate ro, this new constraint is based on the concept
of a service set defined in the following.

Definition 1 For a power policy p(h), the service
set is Hs(p(h)) = {h|R[hp(h)] ≥ ro}, and its comple-
ment is the outage set Ho(p(h)) = {h|R[hp(h)] < ro}.

Our approach will be to show that there is an
optimum solution to problem (3) with a particular
service set. This approach will require first solving
the following subproblem in which we require that
the service set contains an arbitrary set of channel
states Ha:

R∗(Ha) =max
p(h)

Eh {R[hp(h)]} (4)

subject to: Eh {p(h)} ≤ Pav (4a)

p(h) ≥ 0 (4b)

R[hp(h)] ≥ ro h ∈ Ha . (4c)

Clearly, constraint (4c) implies that Ha is a subset
of the service set of any feasible policy for problem
(4). Let p∗(h,Ha) denote the optimum solution to
problem (4). Therefore, p∗(h,Ha) achieves the high-
est average rate among all the schemes whose service
set contains Ha.

1When h is a discrete random variable, optimum power
policies are typically probabilistic.



Problem (4) does not necessarily have a solution
given (Pav, ro,Ha). Constraint (4c) implies that a
feasible allocation p(h) must satisfy

p(h) ≥ σ2(22ro − 1)

h
h ∈ Ha . (5)

This implies that the minimum average power needed
to meet the constraint (4c), given (ro,Ha), is

Pmin(ro,Ha) =

Z
Ha

σ2(22ro − 1)

h
f(h) dh . (6)

Consequently, problem (4) has a solution only if
Pav ≥ Pmin(ro,Ha). When Pav = Pmin(ro,Ha) the
corresponding power allocation is

p∗(h,Ha) =

��
�

σ2(22ro − 1)

h
h ∈ Ha

0 otherwise
. (7)

When Pav > Pmin(ro,Ha) the corresponding power
allocation is given by the following theorem. We use
the notation (x)+ = max(x, 0).

Theorem 1 When Pav > Pmin(ro,Ha) the optimum
solution for problem (4) requires that:

p∗(h,Ha) =

����
���

σ2(22ro − 1)

h
h ∈ H∗

a

σ2

�
1

h0
− 1

h

�+

otherwise
, (8)

where

H∗
a = Ha ∩

�
h ≤ h02

2ro
�

(9)

and h0 is the solution of Eh {p∗(h,Ha)} = Pav .

Note that when Pav = Pmin(ro,Ha), the resulting
power allocation (7) can be viewed as a limiting case
of expression (8) as h0 → ∞. The power allocation
p∗(h,Ha) is a combination of channel inversion and
water filling allocations. To obtain a high average
rate, we would like to allocate power in the form of
the water filling allocation, while to meet the service
constraint (4c), we must allocate power no less than
the channel inversion allocation within the set Ha.
The solution p∗(h,Ha) balances these two factors.

Given the distribution F (h) on channel states, we
define hε such that F (hε) = ε. Note that hε is well
defined if h is a continuous random variable. The
threshold hε partitions the channel space into a set
Hε = {h ≥ hε} of good channels and the complemen-
tary set Hε = {h < hε} of bad channels. The fol-
lowing theorem indicates that the optimum scheme
ought to meet the service constraint on the set of
good channel states.

Theorem 2 Problem (3) has an optimum solution
p∗(h) such that Hε ⊆ Hs(p

∗(h)).

From Theorem 2 it is easy to show that problem (3)
is equivalent to problem (4) with Ha = Hε. Thus,
an optimum solution is p∗(h) = p∗(h,Hε) and the
following conclusions apply to problem (3).

• Problem (3) is feasible if

Pav ≥ Pmin(ro,Hε) (10)

where

Pmin(ro,Hε) =

Z ∞

hε

σ2(22ro − 1)

h
f(h) dh .

(11)

• When Pav = Pmin(ro,Hε) we have

p∗(h) =

��
�

σ2(22ro − 1)

h
h ≥ hε

0 h < hε

. (12)

• When Pav > Pmin(ro,Hε), we can apply The-
orem 1 with Ha = Hε yielding

p∗(h) =

����
���

σ2(22ro − 1)

h
h ∈ H∗

σ2

�
1

h∗
0

− 1

h

�+

otherwise
,

(13)

where

H∗ = {h ≥ hε} ∩
�
h < h∗

02
2ro
�

, (14)

and h∗
0 is the solution of Eh {p∗(h)} = Pav.

When h∗
0 → ∞, this power allocation will re-

duce to allocation (12).

IV. Properties of the optimum

allocation

The optimum power allocation scheme (13) includes
a combination of channel inversion and water fill-
ing. Depending on the value of (Pav, ro, ε) the opti-
mum solution belongs to one of the following possible
types:

I When Pav = Pmin(ro,Hε), p∗(h) includes no
transmission for h < hε and channel inversion
for h ≥ hε.

II When Pav > Pmin(ro,Hε) but hε ≤ h∗
0 , p∗(h)

includes no transmission for h < hε, channel
inversion for hε ≤ h < h∗

02
2ro , and water filling

for h ≥ h∗
02

2ro .

III When Pav is sufficiently high such that
hε2

−2ro < h∗
0 < hε, p∗(h) includes no trans-

mission for h < h∗
0, water filling for h∗

0 ≤ h <
hε, channel inversion for hε ≤ h < h∗

02
2ro , and

water filling for h ≥ h∗
02

2ro .

IV When Pav is high enough for h∗
0 ≤ hε2

−2ro ,
p∗(h) is just the water filling allocation.
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Fig. 1: For optimum solution types I-IV, power policies

are given on the left and the corresponding rate alloca-

tions are on the right.

These four types of power allocation schemes as
well as the corresponding rate allocations are de-
picted in Figure 1. For solution types I, II, and III,
the optimum service set is Hs(p

∗(h)) = Hε and the
resulting outage probability is ε, while for the type
IV solution Hε ⊆ Hs(p

∗(h)) and the resulting outage
probability is less than ε. Type I solution is the on-
off channel inversion allocation. In this case, we have
just enough average power to satisfy the service out-
age constraint. When we have extra power beyond
Pmin(ro,Hε), we can allocate the power in a more
efficient way to obtain a higher average rate and, at
the same time, to meet the service outage constraint.
When Pav is sufficiently high for the water filling al-
location to satisfy the service outage constraint, then
it must also be the optimum solution for problem (3).
Thus, for a given pair (ro, ε), the optimum power al-
location scheme gradually changes from the on-off
channel inversion allocation to the water filling allo-
cation as Pav increases.

Now we examine the connection of the service out-
age problem with the capacity versus outage problem
in [4]. In [4], the maximum ε-achievable rate [8] for
the general M-block fading channel is derived for a
given average power Pav and an outage probability
ε. As a special case, the ε-achievable rate Cε(Pav) for
the one block fading channel is

Cε(Pav) = sup
E(p(h))≤Pav

sup{R : Pr{R(hp(h)) < R} ≤ ε}.

(15)

In this case, the corresponding optimum power allo-
cation is the on-off channel inversion and the result-
ing Cε(Pav) is

Cε(Pav) =
1

2
log2

�
1 +

PavR∞
hε

(σ2/h)f(h)dh

	
. (16)

If we replace the rate R in expression (15) with
the basic service rate ro, then Cε(Pav) specifies the
maximum supportable basic service rate for a given
Pav and ε in problem (3). Therefore, problem (3)
has a solution iff ro ≤ Cε(Pav), or equivalently
Pav ≥ Pmin(ro, ε) given by the feasibility condition
(10). Thus, the ε-capacity for the capacity versus
outage problem provides the feasibility condition for
the service outage problem and identifies the opti-
mum power allocation when ro = Cε(Pav). This
work, in the general case, determines an optimum
power allocation for applications whose basic service
rate requirement ro is less than or equal to Cε(Pav).
Furthermore, we can see that the resulting average
rate R∗ satisfies R∗ ≥ Cε(Pav)(1 − ε).

We also observe that type I solution has the same
on-off channel inversion power allocation form as that
for the capacity versus outage problem in the one
block fading channel [4]. It degenerates to the pure
channel inversion scheme when ε = 0 as in the case
of delay limited capacity [2]. Furthermore, as we
said before, type IV solution has the same water
filling power allocation form as that for ergodic ca-
pacity [1]. Thus, the optimum power allocations for
minimum outage probability, delay-limited capacity,
and ergodic capacity are special cases of the opti-
mum power allocation (13) for certain parameters
(Pav, ro, ε).

V. Numerical Results

In this section, we apply the service outage based
optimum policy to the Rayleigh fading channel. For
Rayleigh fading with normalized mean, we have

f(h) =



e−h h ≥ 0
0 otherwise

. (17)

In addition, the noise variance is also normalized as
σ2 = 1.

First, the average rate versus the preset allowable
service outage probability is plotted in Figure 2 with
fixed ro = 1 bits/symbol and Pav = 14 dB. In this
case, the feasibility condition (10) requires that pa-
rameter ε ≥ εmin = 1.3 · 10−4. The ergodic capac-
ity is also given in Figure 2 for comparison and is
2.03 bits/symbol for Pav = 14 dB. It can be seen
that the average rate increases rapidly with the ser-
vice outage probability for fixed ro and Pav. This
phenomenon is easily understood. When ε = εmin,
the power allocation scheme is the on-off channel
inversion scheme as in [4], which is very inefficient
with respect to the average rate. When ε > εmin,
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Fig. 2: Average rate versus service outage probability for

a Rayleigh fading channel.
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Fig. 3: Service outage approach versus water filling allo-

cation scheme for fixed ro = 1 bits/symbol and ε = 0.01.

the power allocation scheme contains the water fill-
ing component, which is the most efficient allocation
component for a high average rate. Therefore, one
can get a much higher average rate if the application
can tolerate somewhat higher service outage proba-
bility than εmin. In this example, the average rate
will achieve the ergodic capacity if the application
can tolerate a service outage probability around 0.13.

In Figure 3, the service outage approach for fixed
ro = 1 bits/symbol and preset ε = 0.01 is compared
to the pure water filling allocation. The pure wa-
ter filling allocation is the optimum power alloca-
tion for the ergodic capacity. Therefore, it achieves a
higher average rate than the service outage approach,
but suffers from a larger service outage probability.
When the average power Pav ≥ 15 dB in this exam-
ple, the service outage approach achieves an average
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Fig. 4: Average rate versus basic service rate for a

Rayleigh fading channel.

rate very close to the ergodic capacity, and, at the
same time, has a much lower outage probability. Fur-
thermore, the service outage approach meets the ser-
vice outage constraint without sacrificing too much
spectral efficiency.

The average rate versus the basic service rate is
plotted in Figure 4 with fixed Pav = 14 dB and
ε = 0.01. In this case, the feasible range of the ba-
sic service rate ro is between 0 and 1.4 bits/symbol.
When ro = 0, the ergodic capacity is obtained. The
average rate decreases with the basic service rate ro.

VI. Conclusion

In this paper, we have identified the optimum power
and rate allocation scheme in the fading channel un-
der a service outage constraint. A service outage
occurs when the transmission code rate is lower than
a specified basic service rate. The service quality is
deemed acceptable as long as the service outage prob-
ability is sufficiently small. Under the assumptions
that one frame experiences a single channel state and
that the channel state is known perfectly at the trans-
mitter, we verify that the resulting optimum power
allocation is a combination of channel inversion and
water filling when the parameters (Pav, ro, ε) are fea-
sible. The water filling allocation maximizes the
average rate without the service outage constraint,
while the channel inversion allocation provides suffi-
cient power for meeting the service outage constraint.
Our solution balances these two factors. When the
average power Pav is just sufficient to meet the ser-
vice outage condition, the optimum power allocation
has the same form as the allocation for the capacity
versus outage problem in [4]. On the other hand,
when Pav is large enough, the optimum power allo-
cation is the water filling allocation and the resulting
average rate is equal to the ergodic capacity. We also



show that the feasible parameter set (Pav, ro, ε) can
be obtained based on the capacity versus outage con-
cept [4]. In fact, the maximum supportable ro for a
given ε and Pav equals the ε-capacity.
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