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Abstract

CDMA systems are interference limited and therefore ef-
ficient interference management is necessary to enhance the
capacity of a CDMA system. In this paper, we consider
combining two effective receiver based interference man-
agement strategies: multiuser detection (temporal filtering)
and receiver beamforming (spatial filtering). We formulate
and examine the performance of several linear filter struc-
tures which are all based on minimum mean squared er-
ror (MMSE) criteria, but differ in how the MMSE problems
are defined in the temporal and spatial domains, i.e., jointly
or in cascade. It is shown that while the joint optimum
MMSE filter achieves the maximum signal-to-interference
ratio (SIR) among all possible linear filters, the constrained
optimum MMSE filter which results in a single temporal
and single spatial filter, outperforms all combined single-
user/multiple-user approaches and cascaded optimization
approaches either uniformly or asymptotically. The con-
strained optimum MMSE filter is near-far resistant in all but
very highly loaded systems and enjoys low complexity.

1 Introduction

The demand for high capacity flexible wireless services
is ever-growing. CDMA shows promise in meeting this de-
mand and consequently W-CDMA [1] has been proposed as
a standard for the third-generation (3G) wireless systems.
It is well known that CDMA systems are interference lim-
ited and suffer from near-far effect. The challenge to en-
hance the capacity of a CDMA system therefore lies in in-
terference management. In this work, we concentrate on
the two commonly used interference management methods:
multiuser detection and receiver beamforming. Both meth-
ods aim at suppressing or cancelling the interference using
receiver signal processing; multiuser detection exploits the
temporal structure whereas beamforming exploits the spa-
tial structure of the interference for interference manage-
ment [7, 12].

Multiuser detection [12] performs temporal filtering of
the received signal to effectively suppress the multiple ac-

cess interference. The optimum multiuser detector has been
shown to be exponentially complex in the number of users,
and a number of low complexity suboptimum receivers have
been proposed following this development [5, 6]. Increas-
ing the capacity of CDMA systems by employing antenna
arrays at the base station has been proposed in [8], where
the outputs of the multiple antenna array elements are com-
bined to make bit decisions for the user. In [8], matched filter
receivers are assumed in the temporal domain for each user
and the array observations are combined via a filter that is
matched to the array response of the user, i.e., single user
processing is employed in both domains.

Another method of capacity enhancement which utilizes
the spatial diversity is space-time processing for CDMA
which traditionally refers to receiver beamforming (space
processing) and multipath combining (time processing) [9].
The received signals from different paths and antennas are
combined to better decode the desired user’s bits. How-
ever, the inherent structure of the multiple access interfer-
ence is not exploited, i.e., no multiuser detection is em-
ployed [2, 4, 14]. A recent paper [13] addresses the deriva-
tion of the sufficient statistics and the optimum and some lin-
ear suboptimum multiuser detectors when an antenna array
is present at the receiver for a multipath channel.

In this work, we will investigate the possible receiver fil-
ter structures when both multiuser detection and beamform-
ing are employed to further increase the uplink capacity of
a CDMA system. Linear processing is assumed in both the
temporal and the spatial domains and the temporal-spatial
filters are denoted by two-dimensional matrix filters. Within
this framework, there are several possible filter structures.
One can derive the jointly optimal temporal and spatial fil-
ter that minimizes the mean squared error (MSE) between
the information bit and the filter output of a desired user.
Since this joint MMSE filter may have high computational
complexity, less complex filters which nevertheless provide
efficient interference suppression are of interest. To serve
this purpose, recently, constrained optimum filters are pro-
posed by forcing the joint receiver filter matrix to be of rank
1 [15, 16]. One can also construct cascaded filters where
MSE optimization is carried over in temporal and spatial



domains independently in tandem, in both spatial-temporal
and temporal-spatial orders. While the cascaded spatial-
temporal filter is similar to the idea of cascade optimum-
space/optimum-time combiner proposed in [2], the tempo-
ral combiner in our case is a chip combiner that exploits
the temporal structure of the interference composed of the
temporal signatures of the interferers, as opposed to a mul-
tipath combiner in [2] which is a single user temporal pro-
cessor. We consider all above filter structures and then give
analytical performance comparisons among them. While
the joint domain MMSE filter is clearly the SIR maximiz-
ing temporal and spatial processor over all matrix filters,
an interesting observation is that the constrained optimum
temporal spatial processor outperforms all combined single
user/multiple user approaches and the cascaded approaches
either uniformly or asymptotically.

2 System Model

We consider a single cell DS-CDMA system where each
user is assigned a unique signature sequence. For clarity of
exposition, we assume a synchronous system with process-
ing gain G. At the base station, an antenna array of K ele-
ments is employed. The received signal at the output of the
antenna array at the base station is:

r(t) =
N∑

j=1

√
pjbjsj(t)aj + n(t) (1)

where pj ,bj , sj(t) and aj are the received power, the bit,
the (temporal) signature and the array response vector (spa-
tial signature) of user j, respectively. Both the temporal and
spatial signatures of the users have unit energy, and the tem-
poral signatures are of the following form

sj(t) =
G∑

l=1

s
(l)
j ψ(t− (l − 1)Tc) (2)

where ψ(t) is the chip waveform, Tc is the chip duration,
and s(l)j = ±1/

√
G. Chip matched filtering and sampling

the received signal r(t) at the lth chip interval, we obtain a
K-dimensional observation vector rl

rl =
N∑

j=1

√
pjbjajs

(l)
j + nl (3)

which represents the chip matched filtered samples at the lth
chip interval across theK antenna array elements. Over one
bit period, Tb = GTc, we collect a set of G K-dimensional
vectors {rl, 1 ≤ l ≤ G} which we can arrange in a G ×K
matrix R = [r1, r2, · · · , rG]�:

R =
N∑

j=1

√
pjbjsja�

j + N (4)

These KG observation samples can also be seen
as a collection of K G-dimensional vectors, i.e.,
R = [z1, z2, · · · , zK ], where zk denotes the observa-
tion vector consisting G chip matched filtered samples at
the output of the kth antenna element and is expressed as

zk =
N∑

j=1

√
pjbjsja

(k)
j + nk (5)

In (4), N is the matrix that represents the spatially and tem-
porally white noise, i.e., E[N ∗

klNmn] = σ2δkmδln, where
(·)∗ denotes the conjugate of a complex number. We label
user i as the desired user and the other users as interferers.

3 Filter Structures

The detection of the information bit of the desired user is
done by taking the sign of the real part of the decision statis-
tic which is found by combining the entries of the observa-
tion matrix R by using a matrix filter Xi. Thus, the decision
statistic, yi, is the output of a two dimensional linear filter
Xi:

yi =
G∑

j=1

K∑
l=1

[Xi]∗jlRjl = tr(XH
i R) (6)

where tr(·) and (·)H are the trace and the hermitian transpose
operations, respectively.

In what follows, we investigate the possible filter struc-
tures. The filter structures in Sections 3.1, 3.2, and 3.3 use
single user processing in at least one of the temporal and
spatial domains and are well-known. Next we derive two
temporal-spatial filters, the filter structures in Sections 3.4
and 3.5, which use cascaded MMSE optimizations in spa-
tial and temporal domains. The structure of these receivers
is to combine either the received chip samples at the output
of each array element in the MMSE sense followed by a spa-
tial filter that combines the resulting vector in the MMSE
sense (Section 3.4); or to combine all array outputs for each
chip sample in the MMSE sense followed by the temporal
MMSE combiner for the resulting vector (Section 3.5).

Next, in Sections 3.6 and 3.7, we give the joint temporal-
spatial MMSE filter structures. The difference between the
two joint MMSE structures is the fact that while the joint
optimum temporal-spatial MMSE in Section 3.6 is the best
filter in terms of minimizing the MSE (and maximizing the
SIR) over all possible matrix filters, the constrained opti-
mum temporal-spatial filter in Section 3.7 is the MMSE fil-
ter when the filter space is constrained to contain matrix fil-
ters of rank 1 only. The physical interpretation of this math-
ematical constraint on the matrix filter is that it results in a
separable filter with a single temporal and a single spatial



combiner. The difference between the joint MMSE struc-
tures in Sections 3.6 and 3.7 and the cascaded MMSE struc-
tures in Sections 3.4 and 3.5 lies in the fact that the cascaded
structures use temporal and spatial filters that are optimized
independently in each domain while the joint structures are
found by optimization in both domains simultaneously.

3.1. Single User Temporal-Spatial Detector

This is a single user based approach for both the spatial
[8]. The decision statistic in this case is yi = s�i Ra∗

i =
tr(a∗

i s
�
i R) leading to

XMF-MF
i = sia�

i (7)

3.2. Temporal MMSE Filter–Spatial MF

This approach uses multiuser processing in temporal do-
main [6] and single user processing in spatial domain. The
decision statistic in this case is yi = c�i Ra∗

i = tr(a∗
i c

�
i R)

leading to

XMMSE-MF
i = cia�

i (8)

where

ci =
√
pi

( N∑
j=1

pj |aH
i aj |2sjs�j + σ2I

)−1

si (9)

3.3. Temporal MF–Spatial MMSE Filter

This approach uses single user processing in the tem-
poral domain combined with multi user processing in spa-
tial domain [7]. The decision statistic in this case is yi =
s�i Rw∗

i = tr(w∗
i s

�
i R) leading to

XMF-MMSE
i = siw�

i (10)

where

wi =
√
pi

( N∑
j=1

pj(s�i sj)2ajaH
j + σ2I

)−1

ai (11)

3.4. Cascaded Temporal-Spatial MMSE Filter

Assume that at the output of each antenna array we are
allowed to design a separate temporal filter, i.e., a linear chip
combiner. Recall that the output of the kth antenna element
is zk. We designK temporal filters ck, k = 1, . . . ,K, such
that each of the K resulting statistics

ỹk = cH
k zk =

N∑
j=1

√
pjbjcH

k sja
(k)
j + cH

k nk (12)

has minimum mean squared difference from the desired bit,
bi. The solution can be found as [6]:

ck =
√
pia

(k)
i

( N∑
j=1

|a(k)
j |2pjsjs�j + σ2I

)−1

si (13)

Note that what makes ck , the temporal MMSE filter at the
output of the kth antenna, different from cl, the temporal
MMSE filter at the output of the lth antenna, are the differ-
ent spatial gains users have for different antennas. Defining
the modified gain at the output of the kth antenna for user j
as ã(k)

j = (cH
k sj)a

(k)
j , from (12) we have

ỹk =
N∑

j=1

√
pjbj ã

(k)
j + ñk, k = 1, ...,K (14)

We can then combine {ỹk} in the MMSE sense, and similar
to (13), express the second stage of the cascaded filter as

w =
√
pi

( N∑
j=1

pj ãj ãH
j + Λ

)−1

ãi (15)

where Λ = diag{σ2(cH
k ck)} is the covariance matrix of ñ.

The final bit decision is done by taking the sign of the real
part of yi = wH ỹ.

Note that to construct the overall receiver we need to in-
vertK G×G matrices and oneK ×K matrix. To see how
the overall cascaded filter can be expressed as matrix filter
XTS-CMMSE

i , observe that

ỹk = cH
k zk = cH

k Rek = tr(ekcH
k R) (16)

and

yi =
K∑

k=1

w∗
kỹk = tr

( K∑
k=1

w∗
kekcH

k R
)

(17)

where ek is aK vector which has 1 in its kth entry and zeros
elsewhere. Comparing (17) with (6), we find that

XTS-CMMSE
i =

K∑
k=1

wkcke�k (18)

which can be of rank up to K.

3.5. Cascaded Spatial-Temporal MMSE Filter

Alternatively, one can think of first combining all antenna
array elements in each chip interval, followed by a temporal
combiner. We first designG spatial filters wl, l = 1, . . . , G,
to combine the entries of rl in the MMSE sense

wl =
√
pis

(l)
i

( N∑
j=1

(s(l)j )2pjajaH
j + σ2I

)−1

ai (19)



Recall from (2) that (s(l)j )2 = 1/G, for all l. Thus, defining

ŵ =
√
pi

( N∑
j=1

1
G
pjajaH

j + σ2I
)−1

ai (20)

we arrive at wl = s
(l)
i ŵ for l = 1, . . . , G. At the output of

the lth combiner, the resulting statistic can be expressed as

ŷl = wH
l rl =

N∑
j=1

√
pjbjŵHajs

(l)
i s

(l)
j + n̂l (21)

where n̂l = wH
l nl. Defining ŝ(l)j = ŵHajs

(l)
i s

(l)
j , we have

ŷl =
N∑

j=1

√
pjbj ŝ

(l)
j + n̂l, l = 1, . . . , G (22)

It remains to find the MMSE combiner for ŷ. We can ex-
press this second stage of the cascaded filter as

c =
√
pi

( N∑
j=1

pj ŝj ŝH
j +

1
G
σ2(ŵHŵ)I

)−1

ŝi (23)

Notice that, as in the case of Section 3.4, the noise covari-
ance matrix is given by diag{σ2(wT

l wl)}. Since wH
l wl =

(1/G)(ŵHŵ) for all l, the noise covariance matrix reduces
to (σ2/G)(ŵHŵ)I. The final bit decision is done by taking
the sign of the real part of yi = cH ŷ.

Note that to construct the overall receiver we need to in-
vert oneK×K matrix to calculate ŵ and oneG×Gmatrix
to calculate c. To see how the overall cascaded filter can be
expressed as a matrix filter XST-CMMSE

i , observe that

ŷl = e�l Rw∗
l = s

(l)
i tr(ŵ∗e�l R) (24)

and

yi =
G∑

l=1

c∗l ŷl = tr

(
ŵ∗( G∑

l=1

c∗l s
(l)
i e�l

)
R

)
(25)

Then, comparing (25) with (6), we find that

XST-CMMSE
i =

( G∑
l=1

cls
(l)
i el

)
ŵ� (26)

which is of rank 1.

3.6. Optimum Temporal–Spatial MMSE Filter

The optimum matrix filter in temporal and spatial do-
mains which minimizes the MSE between yi and bi is

XO-MMSE
i = arg min

X
E

[∣∣tr(XHR) − bi
∣∣2] (27)

The optimization problem (27) can be converted to an op-
timization problem with vector variables for easier manip-
ulation [11]. The problem then becomes a straightforward
extension of the standard MMSE problem. Its solution is
[6, 7, 11, 13, 15]:

xi =
√
pi

( N∑
j=1

pjqjqH
j + σ2I

)−1

qi (28)

where qj is the temporal-spatial signature of user j and is
constructed by stacking columns of sja�

j as a long vector of
sizeKG. The matrix filterXO-MMSE

i is constructed by taking
everyG elements of xi and putting as a column to XO-MMSE

i .
The joint MMSE filter requires a possibly large matrix

(KG × KG) to be inverted which can be computationally
costly, or the corresponding adaptive implementation may
be slow. This is the reason why we consider the less com-
plex joint MMSE filter in the next section.

3.7. Constrained Optimum Temporal–Spatial
MMSE Filter

To reduce complexity of the temporal and spatial filtering
with little sacrifice in performance, [15,16] proposed finding
the optimum matrix filter in a constrained class of matrix fil-
ters. The proposed constrained class is rank 1 matrix filters,
or the separable temporal-spatial filters, i.e., the filters that
can be expressed as Xi = cw�. We can find the joint opti-
mal filter pair in the MMSE sense for this constrained class.
The optimization problem in (27) becomes

[c̄, w̄] = argmin
c,w

E
[∣∣cHRw∗ − bi

∣∣2] (29)

The resulting [c̄, w̄] pair yields the matrix filter

XCO-MMSE
i = c̄w̄� (30)

This matrix filter is suboptimal for the optimization problem
given in (27) since it is found in a constrainedXi space. The
MSE function in (29) can be expressed as

MSE =
N∑

j=1

pj |cHsj |2|wHaj |2 + σ2(cHc)(wHw)

− 2
√
pi
{(cHsi)(wHai)} + 1 (31)

where 
{·} denotes the real part of a complex number. The
minimizer of (31) does not have a closed form expression
[15]. Further, the MSE function is not jointly convex in c
and w, although it is convex in each variable (c, or w), when
the other variable is fixed. Thus, standard iterative opti-
mization algorithms cannot guarantee convergence to global
minima. However, an alternating minimization algorithm



[3] is given in [15] that is observed to have good conver-
gence properties. We restate the algorithm here for conve-
nience.

Consider fixing the value of one of the filters; say w is
fixed to w̃. It is then possible to find the filter, ĉ, that max-
imally decreases the MSE function in (31). The solution
is analogous to the MMSE detector [6], where user j’s re-
ceived amplitude is modified such that it is

√
pj(w̃Haj).

Denote this filter as ĉ = MMSE(w̃):

ĉ =
√
pi(w̃Hai)

( N∑
j=1

pj |w̃Haj |2sjsH
j + σ2|w̃|2I

)−1

si

(32)

The same argument can be made for the case where c is fixed
to c̃ and the spatial filter is found to maximally decrease the
MSE, ŵ = MMSE(c̃):

ŵ =
√
pi(c̃Hsi)

( N∑
j=1

pj|c̃Hsj |2ajaH
j + σ2|c̃|2I

)−1

ai

(33)

Now, consider the following algorithm. Starting with the
filter pair c(0),w(0) and keeping w(0) fixed, one can find
c(1) = MMSE(w(0)). This operation decreases the MSE
defined in (31). Then keeping c(1) fixed, one can find
w(1) = MMSE(c(1)). This operation further decreases the
MSE in (31). Iteration n+ 1 of this two step iterative algo-
rithm for user i is given below.

c(n+ 1) = MMSE(w(n)) (34)

w(n+ 1) = MMSE(c(n+ 1)) (35)

Note that the order in which c andw are updated could be re-
versed. After each two-step iteration given by (34) and (35),
the MSE in (31) monotonically decreases. The algorithm
is provably convergent and the convergence point is exper-
imentally observed to be the optimum pair [c̄, w̄] where the
MSE is minimized and the SIR of the user is maximized
[15].

4 Performance Comparison

An important performance comparison criterion is the bit
error rate (BER). Unfortunately, for general system param-
eters, it is difficult to derive analytical results for the BER
rendering this comparison intractable. Commonly the BER
is expressed as a function of the SIR by applying a Gaus-
sian approximation to the total interference. It was reported
in [10] that this approximation is particularly accurate when
MMSE receivers are employed. For a general matrix filter
X, the MSE and the SIR are related as (for details, see the

Appendix of [15])

1
minα MSE(αX)

= 1 + SIR(X) (36)

Thus, with an appropriate scaling, the MSE and the SIR pro-
duced by a filter can be related, and the filter that minimizes
the MSE also maximizes the SIR. Note that the SIR, and
therefore the BER when defined in terms of the SIR, are in-
sensitive to the scaling of the linear receiver filter.

From the arguments above, it is clear that the optimum
MMSE receiver of Section 3.6 outperforms all other re-
ceiver structures mentioned in Sections 3.1 through 3.5, as
well as the constrained optimum MMSE receiver in Sec-
tion 3.7, in terms of both the MSE and the SIR. The reason
for this is that the filter in Section 3.6 is chosen to minimize
the MSE over all possible matrix filters. It only remains
to compare the performance of the constrained optimum
MMSE receiver of Section 3.7 with the receiver structures
in Sections 3.1 through 3.5. First we observe from (7), (8),
(10), (26) that the filters XMF-MF

i , XMMSE-MF
i , XMF-MMSE

i ,
XST-CMMSE

i are of rank 1. Given that the constrained opti-
mum MMSE, XCO-MMSE

i , minimizes the MSE and therefore
maximizes the SIR among all possible rank 1 matrix filters,
we conclude that the constrained optimum MMSE receiver
filter outperforms all of these suboptimum receiver filters.
In fact, the iterative algorithm described by ((34),(35)) can
be started at any of the temporal-spatial filter pairs that de-
fine XMF-MF

i , XMMSE-MF
i , XMF-MMSE

i or XST-CMMSE
i . Since

each iteration increases the SIR and decreases the MSE
monotonically, with each iteration, the performance of the
resulting filter pair is better than the previous one and the
convergence point temporal-spatial filter pair, XCO-MMSE

i ,
outperforms the starting point filter pair.

The cascaded temporal-spatial MMSE filter, XTS-CMMSE
i ,

in Section 3.4 can have rank up to K, just as the joint opti-
mum MMSE filter of Section 3.6 which can have rank up
to min{K,G}. Thus, there could be cases under which
XTS-CMMSE

i performs better than the constrained optimum
filter; see Section 5. However, the fact that XTS-CMMSE

i

has higher rank than XCO-MMSE
i does not necessarily guar-

antee that it yields a lower MSE or a higher SIR than
XCO-MMSE

i . This is also demonstrated in Section 5. Thus,
neither XCO-MMSE

i nor XTS-CMMSE
i performs uniformly bet-

ter than the other; depending on the system parameters (N ,
G,K, spatial and temporal signatures of the users, etc.) one
may outperform the other.

It is possible to compare the two filters in the asymp-
totic regime when the background noise σ2 goes to zero,
or equivalently the received powers of the interfering users
go to infinity. It is well-known that the MMSE receiver re-
duces to a decorrelating receiver as the background noise
power goes to zero or the received powers of the interfering
users go to infinity [12]. The decorrelating receiver [5] is a



linear multiuser detector which suppresses the multiaccess
interference totally. This is done by projecting the desired
user’s signal onto the subspace that is orthogonal to the sig-
nal space spanned by the interfering users. The decorrela-
tion operation is independent of the received powers of the
users and only depends on their signature sequences. The
multiaccess interference is suppressed totally if the desired
user’s signature sequence is linearly independent of the in-
terfering signatures. Nevertheless, the decorrelating detec-
tor exists even when the signature sequences of the users are
not linearly independent; in this case one needs to use the
Moore-Penrose generalized inverse of the cross correlation
matrix as opposed to its direct inverse [5]. The decorrelator
is independent of the received powers in this case as well [5].

Recall now that in the calculation of the cascaded
temporal-spatial MMSE receiver filter XTS-CMMSE

i , first, K
temporal MMSE receiver filters are found and that these K
MMSE receivers, ck’s, are different due to the fact that the
received powers of the users are different at each antenna ar-
ray element; see (13). This is because the actual received
powers of the users are multiplied with the square magni-
tudes of the antenna gains |a(k)

j | at the outputs of different
antenna elements. Since in the interference limited regime
the MMSE receivers go to decorrelators and since decorrela-
tors are independent of the received powers of the users, all
K temporal receiver filters become identical, i.e., ck = c
for all k. Note that this is true even when the cross corre-
lation matrix is not invertible and the Moore-Penrose gen-
eralized inverse is used. When the temporal filters at the
output of all antenna array elements are the same, the re-
ceiver filter XTS-CMMSE

i becomes a rank 1 filter. The MSE
achieved by XTS-CMMSE

i , MSETS-CMMSE
i , is larger than that of

the constrained optimum MMSE filter, MSECO-MMSE
i , sim-

ply because XCO-MMSE
i is the filter that yields the minimum

MSE among all rank 1 matrix filters. Thus,

lim
σ2→0

MSETS-CMMSE
i ≥ lim

σ2→0
MSECO-MMSE

i (37)

Equivalently, using (36), the SIRs achieved by these two fil-
ters in this interference limited regime is compared as

lim
σ2→0

SIRTS-CMMSE
i ≤ lim

σ2→0
SIRCO-MMSE

i (38)

Hence, the constrained optimum MMSE filter outperforms
the cascaded temporal-spatial MMSE filter of Section 3.4
asymptotically.

5 Results and Conclusions

We consider a single cell CDMA system, the base station
of which employs a linear antenna array [13]. The temporal
signatures and users’ positions which in turn determine the
spatial signatures are created randomly, and kept fixed for
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Figure 1. N = 2,K = 2, G = 8.

the duration of the experiment. We plot the output signal-to-
interference ratio (SIR) for the desired user (in linear scale)
versus the received signal-to-noise ratios (SNRs) of all in-
terferers (in dB scale). The desired user’s SNR is 10dB.

Consider first a system with processing gain G = 8,
K = 2 array elements and N = 2 users. Figure 1 shows
the output SIR of the desired user. As expected, with only a
single interferer present, all filters perform well even under
very severe near-far conditions where the interferer’s power
is as much as 60dB above the desired user’s. The only ex-
ception is the temporal-spatial matched filter which is well-
known to be not near-far resistant. The more interesting ob-
servation about this system is better observed in Figure 2.
Recall that we concluded in Section 4 that the constrained
optimum MMSE filter does not necessarily outperform the
cascaded temporal-spatial MMSE filter of Section 3.4, it
only is as good or better than the cascaded temporal-spatial
MMSE filter asymptotically. Indeed, in Figure 2, we see that
the cascaded temporal-spatial MMSE outperforms the con-
strained optimum MMSE filter. When the system becomes
interference limited, both detectors have identical perfor-
mance. The constrained optimum MMSE filter outperforms
all other filters, except for the optimum MMSE filter which
is the SIR maximizer among all matrix filters.

For the rest of this section, the system considered has
K = 4 antenna array elements andG = 16 processing gain.
We will examine the performance of the filter structures for
this system under different loading conditions.

We first consider N = 8 users. Figure 3 shows the
output SIR of the desired user. The constrained optimum
MMSE filter outperforms all filters, except for the optimum
MMSE filter. Note that, for this system, user’s temporal sig-
nature sequences are linearly independent and thus, when
the system is interference limited, the filters that perform
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Figure 2. Figure 1 magnified.

temporal MMSE first, i.e., the temporal MMSE filter-spatial
matched filter of Section 3.3 and the cascaded temporal-
spatial MMSE filter of Section 3.4 end up decorrelating all
interferers in temporal domain. Specifically, the temporal
MMSE filter at the output of each antenna becomes a decor-
relator, ck = c, for all k = 1, ...,K, for the the cascaded
temporal-spatial MMSE filter. In this case, the output statis-
tics of the first stage of the cascaded temporal-spatial MMSE
filter are interference free, i.e., (14) can be expressed as

ỹ =
√
pibi(cHsi)ai + ñ (39)

where ñk is the enhanced noise at the output of the kth an-
tenna and the components of ñ are independent. Thus, the
second stage spatial MMSE combiner w in (15) becomes
the spatial matched filter, ai, which explains why the tempo-
ral MMSE-spatial matched filter and the cascaded temporal-
spatial MMSE filter have identical performance asymptoti-
cally. It is also notable that constrained optimum MMSE de-
tector becomes a temporal-spatial decorrelator and chooses
to suppress some of the interferers in temporal domain and
others in spatial domain such that it gets the best asymptotic
SIR among such temporal-spatial decorrelators.

Next we consider N = 16 users. The output SIR of the
desired user is plotted in Figure 4. There are still enough
temporal dimensions for users to be decorrelated in the tem-
poral domain, i.e., N ≤ G, even if they can not all be sup-
pressed in the spatial domain. As a result, all filters that em-
ploy MMSE combining in the temporal domain have non-
zero SIRs asymptotically. However, the constrained opti-
mum MMSE filter, by choosing the appropriate users to sup-
press in the spatial or temporal domains, achieves higher
SIR over all filters except the optimum MMSE filter.

The next system to be considered has N = 18 users and
results are shown in Figure 5. Since the number of interfer-
ers are larger than both the processing gain and the number
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Figure 3. N = 8,K = 4, G = 16.
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Figure 4. N = 16,K = 4, G = 16.

of array elements, all interferers cannot be suppressed in a
single domain, thus the combined single user/multiple user
filter structures, i.e., XMMSE-MF

i and XMF-MMSE
i , are not near-

far resistant. For this example, the cascaded structures, i.e.,
XST-CMMSE

i and XTS-CMMSE
i are not near-far resistant either,

since in the interference dominated regime, each stage tries
to suppress all interferers independently in cascade. When
an interference suppressor is designed by considering both
domains jointly, as in the case of constrained optimum and
optimum detectors, XCO-MMSE

i , andXO-MMSE
i , near-far resis-

tance is achieved.
The last example we consider is a very highly loaded sys-

tem withN = 36 users. The purpose of this experiment is to
show the difference between the optimum MMSE filter and
the constrained optimum MMSE filter. We observe from
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Figure 5. N = 18,K = 4, G = 16.

Figure 6 that although the constrained optimum MMSE fil-
ter, XCO-MMSE

i , results in acceptable SIR values in near-far
situations, e.g. an output SIR of 5 (7dB) when all interfer-
ers’ powers are 10dB higher than the desired user, it is not
near-far resistant. This is simply due to the fact that the con-
strained optimum MMSE filter can suppress up to G − 1
users in the temporal domain and K − 1 users in the spa-
tial domain. Thus, for this example, when N > 19, the
constrained optimum MMSE filter is not able to suppress all
the interference and the output SIR it produces approaches
0 when the interferers’ powers approach infinity. The opti-
mum MMSE detector on the other hand can suppress up to
KG− 1 users and for this example is near-far resistant.
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