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Abstract

In this paper, we characterize the user capacity, i.e., the maximum number of supportable users
at a common SIR target level for a fixed processing gain, of a single cell symbol asynchronous
CDMA system. Based on the delay profile of the users, we identify a class of optimum signature
sequences that achieve a lower bound on the total squared asynchronous correlation (TSAC)
among the users. When the users’ signatures achieve this lower bound, the user capacity of a
single-cell asynchronous CDMA system becomes the same as that of a single-cell synchronous
CDMA system; that is, there is no loss in user capacity due to asynchrony. Further, when
the optimum signature sequences are used, the users’ received powers are all equal and the
M-shot MMSE receiver filters turn out to be scaled matched filters. That is, the maximum
user capacity is achieved by observing only one symbol interval of the received signal and using
single-user matched filters in that interval. It is a significant open question whether these
optimal sequence sets exist for all delay profiles. However, we present iterative and distributed
signature adaptation algorithms, which, when executed sequentially by all of the users, appear
to converge to these optimum signature sequences.

1 Introduction

Code Division Multiple Access (CDMA) systems are interference limited. Much research
has been conducted in the area of multiuser detection [1] to develop techniques to sup-
press/cancel interference for a fixed (arbitrarily chosen) set of user signatures. Recently,
there has been an interest to understand the influence of multiuser detection schemes on
the overall system capacity in single-cell CDMA systems. This recent literature can be
divided into two general categories: those that assume random signature sequences [2-4],
and those that solve for the optimum signature sequences [5-7].

In [2,3], a random signature sequence analysis is applied to a large system where
both the number of users, K, and the processing gain, N, go to infinity, but their ratio
a = K/N is fixed and finite. References [2,3] showed that for this large system with
random signature sequences, the signal to inteference ratio (SIR) of all users converged
in probability to deterministic quantities, and calculated the user capacity of the system.
Among all linear receiver filters, much attention is paid to the minimum mean squared
error (MMSE) receiver, since it is the optimum linear filter in the sense of maximizing
the SIR [8]. Reference [2] showed that the user capacity of the single-cell synchronous
CDMA system with MMSE receivers is larger than that with matched filter receivers
in the amount of exactly 1 user per dimension. Subsequently, [5] showed that if one
can choose the signature sequences of the users carefully, then this gap between the
MMSE and the matched filter receivers can be closed. The user capacity of a single-
cell synchronous CDMA system using optimum signature sequences is the same for the



MMSE and matched filter receivers. Further, this capacity equals the asymptotic (i.e.,
large system) user capacity with random signature sequences using MMSE receivers. The
signature sequences that maximize the user capacity are Welch bound equality (WBE)
sequences [9-11]. In an earlier work [7], WBE sequences were shown to maximize the
information theoretic sum capacity of a single-cell synchronous CDMA system with equal
received powers. More recently, a generalized version of this problem where users have
arbitrary (unequal) received powers was solved in [6].

An iterative and distributed signature sequence adaptation algorithm that converges
to a set of optimum signature sequences was given in [12-14]. The algorithm exploits
the property of the optimum signature sequences that they minimize the sum of the
squares of the cross correlations among the users, called total squared correlation, TSC,
in [12-14]. The algorithm converges to a set of WBE sequences if K’ > N, or a a set
of orthogonal sequences if X' < N. The algorithm, which was named the MMSE update
algorithm, was based on the idea that the TSC—minimizing, hence optimum, signature
sequences may be obtained if at each iteration one user updates its signature sequence
to decrease the TSC of the whole set. In the proposed algorithm, each user updates its
signature sequence to be the normalized MMSE receiver filter for that user when the
signature sequences of all other users are fixed, hence the name MMSE update.

Recently, [4] generalized the analysis in [2] to a single-cell asynchronous CDMA sys-
tem. Reference [4] showed that under matched filter reception, the user capacity of a
single-cell asynchronous CDMA system is the same as the corresponding synchronous
system. However, when MMSE reception is employed, there is a loss in user capacity
compared to the user capacity in a synchronous system. This gap was shown to diminish
as the observation window length is increased.

In this paper, we investigate the user capacity of an asynchronous single-cell CDMA
system. Based on the users’ delay profile, we identify a class of optimum signature
sequences that achieve a lower bound on the total squared asynchronous correlation
(TSAC) among the users. When the users’ signatures achieve this lower bound, the user
capacity of a single-cell asynchronous CDMA system is the same as that of a single-cell
synchronous CDMA system, that is, there is no loss in user capacity due to asynchrony.
Further, when the optimum signature sequences are used, the M-shot MMSE receiver
filters turn out to be scaled matched filters; that is, the maximum user capacity is
achieved by observing only one symbol interval of the received signal and using single-
user matched filters in that interval. Although it is an open question whether these
optimal sequence sets exist for all delay profiles, we propose iterative signature sequence
adaptation algorithms which we observe experimentally to converge to optimum signature
sequence sets. At each step of the algorithms only one signature sequence from the set
is replaced in a way not to increase the TSAC.

2 Problem Statement and Derivations

We consider a single-cell symbol-asynchronous (but chip-synchronous) CDMA system
with A users and processing gain of N. The received signal in the nth symbol interval
of user k is given as

ru(n) = Virbe(n)se + 3 v/ (b,(n)TgMS, +bi(n o+ 1)Tgkls,> (1)
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Figure 1: Asynchronous interference calculation.

where pg, bg(n) and s; are the received power, nth transmitted symbol and signature
sequence of user k, respectively. The signature sequences of all users are of unit energy,
i.e.,s] s, =1, for all k. For users k and [, dj; represents the relative time delay of user
with respect to the time delay of user k, that is, dy; = d; — dj., where d;, and d; are the
time delays of users k and [, respectively. Symbols T and T denote the operations of
shifting, to right and left, respectively, of a vector by d and N — d chips (components).
For both operators, the vacated positions in the vector are filled with zeros. That is, for
for d > 0, we use 0? to denote d consecutive zeros and we define

T]%X: [Odvxlv"' 7$N—d] (2)
and
TgX = [J}N_d, L UN, ON_d] (3)

We will use one-shot matched filters as the receivers. In general, for an arbitrary set of
signature sequences, single user receivers (matched filters) are suboptimum in multiuser
systems, and one-shot detectors are suboptimum in asynchronous systems. Therefore,
the one-shot matched filter detector we assume is clearly suboptimum for arbitrarily
chosen signature sequences. However, as we will show later, when the optimum signature
sequences are used, the optimum linear receivers, i.e., the MMSE receivers, turn out to
be scaled matched filters, and there is no loss in capacity due to one-shot filtering.

The decision statistics for the kth user in the nth symbol interval is y(n) = s} ri(n),
where we do assume that the matched filter receiver of each user is perfectly aligned with
the symbol interval of the user. The SIR of the kth user is then given by

SIR, = pk(sll—sk)z (4)
e mn { (ST T80 + (ST T2} + o2(sT 1)

We define the K x K matrix A with the following entries

TTdkl 2 TTdkl 2 L !
Akl:{(()sk R's))t 4 (s, Tp'si) kil (5)



A simple observation that will be important later is that A is a symmetric non-negative
matrix. Since s]s; = 1, the SIR of the kth user in (4) becomes

Pk
SIR; = 6
g E[;ﬁk Aklpl + o? ( )

The common SIR target [ is said to be feasible iff one can find non-negative powers

{p Y&, such that SIRg > 8, for k=1,--- , K, i.e.,

pe > 3 (Z Appr + 02> (7)
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which can be written in an equivalent matrix form as

p=>[(Ap+0°1) (8)

where 1 is the vector of all ones. It is well known that if the SIR target [ is feasible,
then the optimum power vector, i.e., the componentwise smallest feasible power vector,
is found by solving (8) with equality:

p=f3Ap+ 0’51 (9)

That is, if the common SIR target [ is feasible, the optimum power vector is given as
p* = c?B(I— BA)~'1. The power control problem is feasible iff [15]

B < pi (10)

where p4 is the largest (also called the Perron-Frobenius) eigenvalue of matrix A. We
define the matrix R = A 4+ I so that Ry, = (s,Isk)2 = 1 and R represents the squared
asynchronous cross correlations of the signatures. The Perron-Frobenius eigenvalue of R
satisfies pr = pa + 1, and the feasibility condition in (10) can also be expressed as

1
pr—1

B < (11)
That is, for a single cell CDMA system, the range of common achievable SIR values are
determined only by the Perron-Frobenius eigenvalue of the squared asynchronous cross
correlation matrix R which depends only on the signature sequences of the users and
their relative time delays. For a given signature sequence set {s;} | and a set of time
delays {d;,}I*_,, the supremum of common achievable SIR targets equals 1/(pr — 1) Our
aim is to choose the signature sequences of the users, for any given set of time delays,
such that the common achievable SIR is maximized. Therefore, we seek the signature
sequence set that maximizes 1/(pr — 1), or, equivalently, minimizes pg.

We note that it is hard to characterize the dependence of pr on individual signature
sequences. If this was not the case, one could devise an algorithm to update the signature
sequences of the users in the direction that decreases pg. Instead, our approach is to tie
the Perron-Frobenius eigenvalue of R, pr, to another parameter which can be related
to the signature sequences in a more direct way. By this approach we will be able to
characterize the optimum signature sequences in a closed form expression in addition to
being able to devise an iterative and distributed signature sequence update algorithm
that will construct progressively better signature sequence sets.



To this end, we start our derivation with the following bounds on the Perron-Frobenius
eigenvalue of R in terms of its row-sums [15]

K K
Hlkiﬂz Ry < pr < mkaXZ Ry (12)

Similar bounds that can be obtained using column-sums of R are identical to (12) since
R is symmetric. We also have the following bound from a simple application of the
Rayleigh quotient [16]

K K

%ZZRM < pr (13)

k=1 =1

which is equivalent to (1"TR1)/(171) < pg. Combining (12) and (13) and the fact that
the minimum row-sum lower bounds the average of the row-sums yields

K K

K K
. 1
min lg_l Ry < 17 E E Ry < pr < max 2 Ry (14)

k=1 [=1
We define the total squared asynchronous correlation (TSAC) as

K K

TSAC=> > Ru (15)

k=1 =1

Since we want to minimize pg, and since pg is lower bounded by TSAC/ K, it is reasonable
to try to minimize the TSAC over the space of all possible signature sequences. It is not
clear, however, that pr decreases as TSAC decreases. We will show, though, that the
signature sequence sets that minimize TSAC are precisely those that minimize pg.

In order to motivate the solution of the asynchronous problem, we will first revisit
the synchronous problem which has been recently solved in [5].

3 The Synchronous Problem Revisited

In the synchronous case the (k,{)th component of R is Ry = (s} s;)?. The following two
theorems guarantee that the signature sequences that minimize the TSC (equivalent of
TSAC in synchronous case) are those that minimize pg.

Theorem 1 (Welch [9], Massey [10], Massey-Mittelholzer [11])

K K

TSC=Y ") (sis1) > [‘—N2 (16)

k=1 =1

Theorem 2 (Massey-Mittelholzer [11]) (The Uniformly-Good Property) If the se-
quences {s;}I_ | are such that the equality holds in (16) then

K

[,7
Ssls)=5 k=l K (17)

=1



Theorem 1, combined with (14) and Ry = (s]s;)? for the synchronous case, says that
> — (18)

Since our aim is to minimize pr, the best we can do is to choose signature sequences
so as to achieve (18) with equality. Theorem 2 says that when the signature sequences
are chosen such that the TSC is minimized, i.e., the bound on the TSC is satisfied by
equality, then all of the row-sums are equal, and they are all equal to K'/N. Since the
row-sums sandwich pg, (18) is also satisfied with equality, and the lowest possible pp is
obtained: pp = K/N. Therefore, using (11), in the synchronous case, the bound on the
common achievable SIR target is

1
< 19
b K/N —1 (19)
which is equivalent to the user capacity expression
Kyl (20)
N 8

given in [5] where this problem was originally solved.

Theorems 1 and 2 apply to K > N case. When K < N, the bound in Theorem 1 is
loose, the K2/N bound cannot be achieved, and Theorem 2 loses its applicability. When
K < N, the equivalent of (16) in Theorem 1 is

TSC > K (21)

In this case, the equivalent of Theorem 2 is the following: if the sequences {s;}, are
such that the equality holds in (21) then > ,(s/s;)> =1 for k =1,--- , K. That is, all of
the row-sums of R are equal to 1, and therefore, pr = 1. The implication of this result,
from (11), is that any (arbitrarily large) common SIR target, [, is feasible with sufficient
transmitter power.

4 The Asynchronous Problem

In this section, we derive asynchronous versions of Theorems 1 and 2. The following two
theorems guarantee that the signature sequences that minimize the TSAC are those that
minimize pg.

Theorem 3 For any delay profile, the total squared asynchronous correlation satisfies

K K
[ -

TSAC=Y "> Ru> ‘WQ (22)

k=1 =1

Theorem 4 (The Asynchronous Uniformly-Good Property) If the sequences {sy}5_| are
such that the equality holds in (22) then

K K
;Rkl:ﬁ kzlv"'vl( (23)



We will continue our derivation similar to the synchronous case. For this asynchronous
CDMA system, Theorem 3 combined with (14) says that

PR 2 == (24)

Similar to the synchronous case, our aim is to minimize pr, and we cannot do better than
to choose signature sequences that achieve (24) with equality. Theorem 4 says that when
the signature sequences are chosen such that the TSAC is minimized, i.e., the bound on
the TSAC is satisfied by equality, then all of the row-sums are equal, and they are all
equal to K/N. Since the row-sums sandwich pg, (24) is also satisfied with equality, and
the lowest possible pg is obtained: ppr = K/N. Therefore, using (11), the bound on the
common achievable SIR target, in this asynchronous case, is

1

g < K/N -1 (25)

which is the same as the bound (19) found in the synchronous case.

Similar to the synchronous case, Theorems 3 and 4 apply to the K > N case. When
K < N, the bound in Theorem 3 is loose, the K?/N bound cannot be achieved, and
Theorem 4 loses its applicability. When K < N, the equivalent of (22) in Theorem 3 is

TSAC > K (26)

The bound is achieved with equality when Ay satisfies Ay, = 0 for all £ and [. In this
case, the equivalent of Theorem 4 is the following: if the sequences {s; }2_| are such that
the equality holds in (26) then ), Ry = 1 for k =1,--- , K. That is, all of the row-sums
of R are equal to 1, and therefore, pr = 1. The implication of this result, from (11), as
in the synchronous case, is that any (arbitrarily large) common SIR target, 3, is feasible.

We will next show that the optimum received powers of the users are equal. First,
we set the received power of each user k to be

0.2

1+1/8—-K/N

Pk =P 7"'7[( (27)

and then we show that this selection guarantees that all users have SIRs equal to § when
the signature sequences of the users are chosen to satisfy (22) with equality in Theorem 3.
Note that p > 0 as long as K, N and (3 satisfy the user capacity inequality (25). From
(6), the SIR of the kth user is

p _ p
p(Zl;ék Ag)+o2 p(X, Ru—1) + o2

If the signature sequences satisfy (22) with equality in Theorem 3, then using (23) in
Theorem 4, we can write (28) as

SIR,, = (28)

P
p(K/N —1)+ o?

SIR; = (29)
It is now straightforward to show that when (27) is inserted into (29), we have SIRy, = (.

As stated earlier, in general, using the matched filter as we have done in this section
for the asynchronous case and in the previous section in the treatment of the synchronous
case is suboptimum. However, an important observation in the original solution for the



optimum signature sequences in the synchronous case in [5] was that once the optimum
signature sequences were chosen, the MMSE receiver filters reduce to scaled matched
filters. As stated in the following theorem, when we choose the optimum signature
sequences in the asynchronous case, i.e., the signature sequences that minimize the TSAC,
then the M-shot MMSE receiver filters, for M > 1, corresponding to those signature
sequences reduce to be scaled matched filters.

Theorem 5 If the sequences {s;}h | are such that the equality holds in (22) then the
M-shot MMSE filters for all users reduce to corresponding scaled matched filters.

5 TSAC Reduction: Iterative Algorithms

Following the closed-form expressions for the signature sequence sets maximizing the
information theoretic sum capacity [6,7] and user capacity [5], references [12-14] intro-
duced the iterative adaptation of signature sequences for synchronous CDMA systems.
Since the optimum signature sequences minimize the TSC in the synchronous case, the
algorithm presented in [12-14] was designed to decrease (more precisely, not to increase)
the TSC at each iteration of the algorithm. Since we have shown in the previous section
that the optimum signature sequences minimize the TSAC in the asynchronous case, we
will design algorithms which decrease the TSAC at each iteration. To this end, we will
first separate the terms that depend on the signature sequence of the kth user in the
TSAC. Using the TSAC definition (15) and the definition of R as R = A 41, along with
the definition of A in (5), we can express the TSAC as

TSAC = (S;—Sk)z + QS;— (Z §kl§];rl + gmé,l}) Sk + Yk (30)
12k
where we used notation Sy = Téklsl and 8§, = Tg“sl, to represent the left and right

signatures of the {th asynchronous user with respect to the kth user. We also used the

fact that A is symmetric in deriving (30) from the definition of TSAC in (15). In (30),
Ye = Z Z Rkl (31)
£k itk

denotes the squared asynchronous correlation terms that do not depend on s;. Let us

define B, as
B, =) (susy +8ufy) (32)
I£k

Therefore the TSAC in (30) can be written as
TSAC = (S;—Sk)z + QS;—BkSk + Yk (33)

In order to minimize the TSAC, we are looking for updates of the signature sequence
of the kth user from s to some ¢ that is guaranteed to decrease (not to increase) the

TSAC. Let us denote the TSAC after the s, — ¢ update as TSAC. Then,

TSAC = (C;—Ck)z + ZCJIBka + Yk (34)



Restricting the new (updated) signature sequence of the kth user to be of unit energy as

well, i.e., ¢/ ¢, = 1, we note that TSAC < TSAC iff

c,IBkck S S;—Bksk (35)

Although there are many possible s, — c¢; updates that would guarantee that (35)
holds, we will propose two of them here. The two similar updates used in the syn-
chronous CDMA context were given in [12-14] and in [17]. We call the first update the
asynchronous MMSE update which is given as

(Bk + CLQIN)_l Sk
[S];r (Bk + CLQIN)_2 Sk]

(36)

Cr = 1/2

and we call the second update the asynchronous eigen update which is defined as the
normalized version of the eigenvector of By corresponding to its smallest eigenvalue. The
proof that the asynchronous eigen update decreases the TSAC follows from the Rayleigh
quotient applied to the matrix By [16]. The proof that the asynchronous MMSE update
decreases the TSAC can be carried out in a very similar fashion to the proof that the

MMSE update decreases the TSC in [12-14].

6 Further Remarks

Due to space limitations, we were unable to provide proofs of our theorems in this paper.
The derivations of the bounds in the proofs of Theorems 3 and 4 describe the conditions
that the signature sequences must satisfy in order for them to achieve the lower bound
on the TSAC. In a synchronous CDMA system, the optimum (WBE) sequences must
satisly SST = (K/N)Iy, where S is a matrix containing the signature sequences of
the users in its columns. That is, the optimum signature sequences must satisfy three
sets of conditions: (1) each column of S must have unit length, (2) rows of S must
be orthogonal to each other, and (3) each row of S must have equal length (a length of
/K /N). These conditions were identified in [10,11] in re-deriving the Welch’s bound, but
the existence of sequences satisfying these conditions was first addressed in [5]. Similar
to [10,11] in the synchronous case, currently, in the asynchronous case, we have derived
the conditions that the optimum signature sequences should satisfy, however, we have
not addressed the issue of existence of such sequences. Similarly, we have proved that
the optimum signature sequences should achieve a lower bound on TSAC and provided
two algorithms that monotonically decrease TSAC; however we have not proved that the
algorithms proposed here are guaranteed to converge to the desired lower bound starting
from an arbitrary set. We can report however that, through a large number of numerical
experiments with randomly generated initial signature sequence sets, we have observed
that the TSAC reduction algorithms we have proposed here have always converged to
signature sequences with TSAC = K?/N. That is, we have observed not only the
existence of such sequence sets, but also the convergence of the proposed algorithms
to these sets.
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