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Abstract: For a multi-cell CDMA system, we propose a partial
decorrelator that decodes a user by suppressing the in-cell interfer-
ers only. As a result, each user suffers only from inter-cell inter-
ference and enhanced receiver noise. By analysis, we show that in
random CDMA systems the partial decorrelator outperforms the con-
ventional receiver, within the operating regime of the conventional
receiver. By simulation, we show that under perfect power control,
the partial decorrelator yields roughly 1.5 times the capacity of the
conventional system.

Introduction

Although the decorrelator [1] has probably drawn more at-
tention than any other multi-user detector, almost all studies
have been for a single cell CDMA system. In a CDMA sys-
tem with multiple cells all using the same frequency carrier,
the implementation of a decorrelating detector and its perfor-
mance are not well-understood. In a multi-cell environment,
it is difficult for a base station to form the cross-correlation
matrix by acquiring the signature and timing of all users in
other cells. Moreover, the decorrelator exists only when the
number of users is less than the processing gain. Thus it may
not be possible to implement a true decorrelator in a multi-cell
system with many users. For this environment, we propose a
partial decorrelator, (PD) that decodes a user by decorrelating
the in-cell interferers only. With a PD, each user will suffer
from other-cell interference but the implementation of the PD
requires the knowledge of in-cell signatures only.

Similar to the current IS-95 DS/CDMA system, we adopt
an R-CDMA system model in which different bits of a user
are transmitted with random signature waveforms. We also
assume that the time offset of a user is fixed throughout its
transmission. With these assumptions, we compare the PD
and the conventional receiver for an AWGN asynchronous
multi-cell CDMA system.

In a single cell system when the processing gain is very
large and the number of users is less than the processing gain,
[4] shows that under both the conventional receiver and the
decorrelator, the expected value of the signal-to-interference
ratio (SIR) approaches the ratio of the average signal power
to the average total interference power, which we call aver-
age SIR. Since, the bit error rate (BER) is difficult to ana-

lyze for both the PD and the conventional receiver, average
SIR is used in the analysis as a system performance measure.
We verify by simulation that average SIR is a reliable perfor-
mance measure for comparing the performance of the PD and
the conventional receiver.

System Model
In our system model, each bit results in the baseband trans-
mission of a sequence of pulses, p[t]. Each pulse has a dura-
tion of one chip period Tc. These pulses are sent over an ad-
ditive white Gaussian noise channel in which the noise N(t)
has power spectral density σ2.

We assume there are K users in the system with the in-cell
users numbered 1 through K1 and the other-cell users enu-
merated from K1 + 1 to K . The bit transmission time of a
user is T and the processing gain is L = T/Tc. To trans-
mit the ith bit, the jth user employs the following signature
waveform.

s
(i)
j (t) =

L∑
m=1

A
(i)
j (m)

1√
L

p[t − (m − 1)Tc] (1)

where A
(i)
j (m) ∈ {−1, 1} denotes the signature sequence of

user j which is used for transmitting the ith bit. The energy
of the pulse p[t] is normalized so that

∫ T

0 [s(i)
j (t)]2 dt = 1

for all j. Let ∆j denote the delay of the jth user. In the
asynchronous channel, the received signal due to the jth user
at the desired user’s base station is

rj(t) =
+∞∑

i=−∞

√
Ejb

(i)
j s

(i)
j (t − iT − ∆j) (2)

where b
(i)
j ∈ {−1, +1} is the ith bit and Ej is the received

energy of the jth user at the desired user’s base station. We
model the bits and signature sequences as independent, identi-
cally distributed (i.i.d) equally likely binary sequences. From
the total received signal,

R(t) =
K∑

j=1

rj(t) + N(t) (3)

we wish to decode bit 0 of user 1, b
(0)
1 , assuming ∆1 = 0.
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Figure 1: This figure depicts the normalized chip wave-
forms

{
ai

j

}
of the received signal rj(t) of equation (2) for

t ∈ [−nT, (d + 1)T ].

Chip Matched Filter

We apply chip matched filtering to implement both the con-
ventional receiver and the PD. The received signal R(t) of
equation (3) is sent through a chip matched filter and sampled
at the chip rate. The bit b

(0)
1 will be processed by employ-

ing an observation window of length n + d + 1 bits, where
n is the number of bits into the past and d is the number of
bits into the future. The vector of chip matched filter output
samples in [−nT, (d + 1)T ] is R = [R1, · · · , RM ]� where
M = (n + d + 1)L. For a rectangular chip waveform, the
mth chip sample is

Rm =
∫ −nT+mTc

−nT+(m−1)Tc

r(t) dt m = 1, . . . , M (4)

In equation (4), Rm is a function of the parameters of the
asynchronous DS/CDMA system. In the observation window
[−nT, (d + 1)T ], an interfering user j transmits M + 1 chips
or partial chips while user 1 transmits exactly M chips. For
notational convenience, we denote by am

j the mth chip of user
j in the observation window [−nT, (d + 1)T ]. The chips am

j

are depicted Figure 1 where it is shown that for j �= 1, chips
a1

j and aM+1
j are truncated at the left and right boundaries of

the observation window. To model an R-DS/CDMA system,
we assume

{
am

j

}
is an i.i.d equally likely ±1/

√
L sequence.

Since all users transmit asynchronously, during the obser-
vation window [−nT, (d + 1)T ], user 1 transmits the (n +
d + 1) bits, {b(i)

1 |i = −n, . . . , d}, while an interfering user

j transmits the (n + d + 2) bits {b(i)
j |i = −n − 1, . . . , d}.

Among those (n + d + 2) interfering bits, b
(−n−1)
j and b

(d)
j

are partial bits which are truncated at the left boundary −nT
and the right boundary (d + 1)T respectively. We can write
the total received signal as R =

∑K
j=1 rj + N where

rj =
d∑

i=−n−1

b
(i)
j

√
EjS̄

(i)
j j �= 1 (5)

is the contribution of the jth interfering user and N is an M ×
1 Gaussian noise vector with cross-correlation matrix σ 2TcI.
Note that S̄(i)

j is an M × 1 vector that represents an effective
chip waveform for bit i of user j over the observation window.

We will now characterize S̄(i)
j in terms of the users’ de-

lays ∆j . Without loss of generality, we can assume ∆j ∈
[0, T ), and we can write ∆j = (ej + δj)Tc, where ej ∈
{0, 1, . . . , L − 1} and δj ∈ [0, 1). In addition, we adopt the
notation Ok for a k element row vector of zeros, δ̄j = 1− δj ,
and the row vector aj(l, m) = [al

j , . . . , a
m
j ] in order to ex-

press S̄(i)
j as follows.

1. Consider i = −n− 1. If ej = 0, then

S̄(i)
j = δj [aj(1, 1),OM−1]

� (6)

If ej > 0, then let ēj = ej + 1 and M̄ = M − ej and

S̄(i)
j = δj

[
aj(1, ēj),OM̄−1

]� + δ̄j [aj(2, ēj),OM̄ ]�

2. When i = −n + x for x ∈ {0, . . . , n + d − 1}, let
Vx = ej + xL and Wx = M − ej − (x + 1)L so that

S̄(i)
j = δ̄j [OVx , aj(V́x, V̂x),OWx ]�

+ δj [OVx+1, aj(Vx + 2, V̄x + L),OWx−1]�

3. When i = d, we define H = (n + d)L + ej + 1 and

S̄(i)
j = δ̄j[OH−1, aj(H + 1, M + 1)]�

+ δj [OH , aj(H + 1, M)]� (7)

For user 1, we have e1 = τ1 = 0 and as a consequence,

r1 = b
(0)
1

√
E1S

(0)
1 + r̄1 (8)

where the in-cell interference from user 1’s other bits is

r̄1 =
−1∑

i=−n

b
(i)
1

√
E1S

(i)
1 +

d∑
i=1

b
(i)
1

√
E1S

(i)
1 (9)

Furthermore, we can write

S(i)
1 = [Ovi , a1(vi + 1, vi + L),OM−vi−L]� (10)

where vi = (n+i)L. The total received signal vector R is the
sum of the desired signal Rd, the intra-cell interference Ri,
and the other-cell interference Ro. That is,

R =
K∑

j=1

rj + N = Rd + Ri + Ro + N (11)

Note that Rd = b
(0)
1

√
E1S

(0)
1 while Ri = r̄1 +

∑K1
j=2 rj .

Lastly, the other-cell interference is Ro =
∑K

j=K1+1 rj .



Performance Comparison

For bit b
(0)
1 , the conventional receiver output is

Rcd = S(0)
1

�
R =

√
E1b

(0)
1 + Rcd

i + Rcd
o + ncd (12)

In equation (12), ncd is a Gaussian random variable with mean
zero and variance σ2

0 = σ2Tc. The term Rcd
i = (S(0)

1 )�Ri

denotes the in-cell interference and Rcd
o = (S(0)

1 )�Ro is the
other-cell interference. We denote the second moments of the
in-cell and other-cell interference by

σ2
1 = E

[(
Rcd

i

)2
]

σ2
2 = E

[(
Rcd

o

)2
]

(13)

Note that σ2
1 and σ2

2 represent the average in-cell and other-
cell interference power observed at the output of the conven-
tional receiver of user 1.

Ignoring the other-cell interference, we follow the working
principles of the asynchronous multi-rate decorrelator (AMD)
of reference [3] to implement the PD. In the other words,
while treating the multiuser interference from other cells as a
background noise, the PD decodes b

(0)
1 by orthogonalizing all

the in-cell interfering signatures within the observation win-
dow [−nT, (d + 1)T ]. Over this window, we use Sn,d to de-
note the set of in-cell interfering signatures. Let Φ1 be the
PD filter that decodes b

(0)
1 . Reference [3] finds Φ1 by apply-

ing Gram-Schmidt orthogonalization on the interfering users’
signature sequences Sn,d. When S(0)

1 is a linear combination

of the signatures in Sn,d, Φ1 = 0. Let A be the event that S(0)
1

is linearly independent of Sl ∈ Sn,d. We use Ac to denote the
complement.

Let us first consider the non-trivial event A. In this case,
the output of Φ1 will be

Rpd = Φ�
1 r =

√
ζn,dE1b

(0)
1 + Rpd

o + npd (14)

where npd is a Gaussian random variable with mean zero and
variance σ̂2

0 = σ2Tc. The term R
pd
o = Φ�

1 Ro denotes the
other-cell interference and ζn,d = (Φ�

1 S(0)
1 )2 is the asymp-

totic efficiency [1] of the PD for decoding the bit b
(0)
1 when

Ro = 0. Note that when the event Ac occurs, Φ1 = 0 and
hence Rpd = 0. In this case, the AWGN variance at the PD
output will be trivially zero. Otherwise, the AWGN variance
σ̂2

0 at the PD output will equal σ2
0 . In either case, we have

σ̂2
0 ≤ σ2

0 . We denote the second moment of Rpd
o as σ2

3 . The
term σ2

3 denotes the average other-cell interfering powers ob-
served by user 1 under the PD system.

If SIRcd and SIRpd denote average SIR of user 1 under the
conventional detector and the PD system respectively, then

SIRcd =
E1

σ2
1 + σ2

2 + σ2
0

SIRpd =
E[ζn,d]E1

σ2
3 + σ̂2

0

(15)

Let us denote the ratio
(
σ2

2 + σ2
0

)
/σ2

1 as F . In a conventional
multi-cell DS/CDMA system, σ2

2/σ2
1 ≈ 0.55 [5]. This fact

suggests that the parameter F is a constant and in an interfer-
ence limited system, its value would be approximately 0.55.

Our goal is to compare the capacity of the PD with that
of the conventional receiver. Therefore, we would like to de-
velop an upper bound on the number of in-cell users, K 1 as
a function of function system parameters for which SIR cd ≤
SIRpd. To develop the desired upper bound on K 1, we need to
prove the following two lemmas.

Lemma 1 In R-CDMA systems, for n, d ≥ 0,

E[ζn,d] ≥ E[ζ0,0] ≥ 1 − 2 (K1 − 1) /L (16)

Proof: Reference [3] proves that ζn,d is monotonic increas-
ing function of n, d, so that for n, d ≥ 0, ζn,d ≥ ζ0,0. Note
that ζ0,0 is the asymptotic efficiency [1] of the one-shot decor-
relator operating with the observation window [0, T ] and zero
inter-cell interference. Within the observation window [0, T ],
b
(0)
1 experiences interference from two bits of an interfering

user j. As a consequence, the number of elements of Sn,d for
the observation window [0, T ] is 2(K1−1). Let 2(K1−1) in-
cell interfering signatures of size L×1 generate K ′

1 orthonor-
mal basis vectors {Fj}. Since Sl ∈ Sn,d consists of random
signatures

{
ai

j

}
, K ′

1 will be a random variable. Furthermore,
for given Sn,d, if all Sl ∈ Sn,d are linearly independent, then
K ′

1 = 2 (K1 − 1), otherwise, K ′
1 < 2 (K1 − 1). Since in

either case K ′
1 ≤ 2 (K1 − 1), we have E[K ′

1] ≤ 2 (K1 − 1).
For given Sn,d, we can write ζ0,0 as follows.

ζ0,0 = 1 −
K′

1∑
j=1

(
F�

j S(0)
1

)2

= 1 −
K′

1∑
j=1

F�
j S(0)

1

(
S(0)

1

)�
Fj

Since E[S(0)
1 S(0)

1

�
] = (1/L)IL and F�

j Fj = 1, taking the

expectation with respect to S(0)
1 on both sides of the above

equation yields

E
S

(0)
1

[ζ0,0] = 1 − K ′
1/L (17)

We will now take expectation with respect to K ′
1 on both sides

of equation (17). Since E[K ′
1] ≤ 2 (K1 − 1), we will then get

E[ζ0,0] = 1 − E[K ′
1]/L ≥ 1 − 2 (K1 − 1) /L (18)

For all n, d ≥ 1, ζn,d ≥ ζ0,0, implying E[ζn,d] ≥ E[ζ0,0],
from which the claim follows. �

The near-far resistance [1] of the decorrelator is the same as its
asymptotic efficiency and is equal to the near-far resistance of
the LMMSE receiver. We observe that the lower bound (18) is
the same as that for the average near-far resistance of the one



shot LMMSE receiver derived in [2]. In addition, Lemma 1
shows that for n, d ≥ 0, the lower bound of E[ζ0,0] is also a
lower bound to E[ζn,d]. Now we will state the second lemma
with proof.

Lemma 2 In chip synchronous R-CDMA systems, the second
moment of the inter-cell interference is higher under the con-
ventional system than the PD system, i.e., σ2

2 ≥ σ2
3 .

Proof: For the sake of simplicity, we use Φ̂1 to denote the
receiver filter that is applied to R to decode b

(0)
1 . That is,

Φ̂1 = S(0)
1 for the conventional detector or Φ̂1 = Φ1 for

the partial decorrelator. If R̄o is the other-cell interference
observed at the desired receiver filter output, then equation
(11) implies

R̄o = Φ̂�
1 Ro =

K∑
j=K1+1

Φ̂�
1 rj (19)

Squaring equation (19), we obtain

R̄2
o = Φ̂�

1 RoR�
o Φ̂1 =

K∑
j=K1+1

K∑
k=K1+1

Φ̂�
1 rjr�k Φ̂1 (20)

Using equation (5) with equation (20), we write

R̄2
o =

K∑
j=K1+1

K∑
k=K1+1

d∑
l=−n−1

d∑
i=−n−1

r̂(i, l, j, k) (21)

where

r̂(i, l, j, k) = b
(l)
j b

(i)
k

√
E

(l)
j

√
E

(i)
k Φ̂�

1 S̄(l)
j (S̄(i)

k )�Φ̂1 (22)

Since the transmitted bits are an iid equally likely ±1 se-
quence, taking the expectation with respect to transmitted bits
on both sides of the above equation, we obtain

Eb(R̄2
o) =

K∑
j=K1+1

d∑
i=−n−1

E
(i)
j Φ̂�

1 S̄(i)
j (S̄(i)

j )�Φ̂1 (23)

Recall that when the event A occurs, for the partial decor-
relator, ||Φ̂1||2 = 1, otherwise, ||Φ̂1||2 = 0. However, for
the conventional receiver, ||Φ̂1||2 = 1 always. We assume
the event A occurs with probability Pr[A] = p. Let CM be
an M × M symmetric matrix whose (l, m)th element is 1 if
|l−m| = 1 and 0 otherwise. To calculate the second moment
of R̄o given event A, we take the expectation with respect to
signatures S̄(i)

j . Note that

d∑
i=−n−1

E
S̄

(i)
j

[
S̄(i)

j (S̄(i)
j )�

]

=
(1 − δj)

2 + δ2
j

L
IM +

δj (1 − δj)
L

CM (24)

This implies

d∑
i=−n−1

Φ̂�
1 E

S̄
(i)
j

[
S̄(i)

j (S̄(i)
j )�

]
Φ̂1 =

(1 − δj)
2 + δ2

j

L
Φ̂�

1 Φ̂1 +
δj (1 − δj)

L
Φ̂�

1 CM Φ̂1 (25)

Using ||Φ̂1||2 = 1, and δj = 0 with the above equation, for
the chip synchronous system, we obtain the second moment
of the inter-cell interference given the event A as follows.

E
[
R̄2

o|A
]

= E
S̄

(i)
j

[
Eb(R̄2

o)
]

=
K∑

j=K1+1

Ej

L
(26)

We will now consider the event Ac. Given the event Ac,
||Φ1||2 = 0 and for the PD, E

[
R̄2

o|Ac
]

is trivially zero. How-
ever, E

[
R̄2

o|Ac
]

for the conventional receiver is the same as
equation (26). Combining these facts with equation (26), we
obtain

σ2
3 = pE

[
R̄2

o|A
] ≤

K∑
j=K1+1

Ej

L
= σ2

2 (27)

�

Applying the fact σ̂2
0 ≤ σ2

0 with lemmas 1 and 2 in equation
(15), we prove the following theorem.

Theorem 1 In chip synchronous R-CDMA systems, K1 <
L/[2(1+F )]+1 implies that the PD provides higher average
SIR than the conventional receiver.

In an interference limited CDMA system, F ≈ 0.55. In this
case, when K1/L < 0.3125, the PD will be better. However,
for conventional systems, K1/L ≈ 0.2. This suggests that
within the operating regime of the conventional receiver, the
PD will outperform the conventional receiver. Furthermore,
note that Theorem 1 is based on the lower bound on E[ζ 0,0] in
Lemma 1. Since for n, d > 0, E[ζn,d] ≥ E[ζ0,0], one could
expect the PD with n, d ≥ 1 to outperform the conventional
receiver even when the number of in-cell users will be greater
than L/[2(1 + F )] + 1.

Empirical Results

To compare the performance of the PD with the conven-
tional receiver, a simulation study was performed with an
asynchronous multi-cell DS/CDMA system of seven contigu-
ous hexagonal cells. The area of each cell was approxi-
mately π10002 meters2 which is the area of a circle of radius
ro = 1000 meters. The cell which was in the middle of seven
cells was the cell of interest. It was assumed that a mobile
was uniformly distributed within its own cell. This assump-
tion yielded a probability density function f(r) = 2r/r 2

0 for
the distance of a user from its own base station. The number
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Figure 2: Relative performance of the PD is plotted as func-
tion of K1/L.
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Figure 3: Bit error rate of user 1 is shown as a function of
K1/L under the PD and the conventional systems.

of in-cell users is 1/7th of the total number of users in the sys-
tem. We used a path loss exponent = 4. The height of the
base station was 30 meters so that the uplink channel gain of
user j to its own base station, hj was 1/

(
r2 + 302

)2
. The

system processing gain was 20 and chips were asynchronous.
Perfect power control was assumed, i.e., every user has the
same received power at its own base station and its SNR was
9.8dB which yields BER 10−3 in a single user channel. The
observation window of the PD was n = d = 1. In each itera-
tion of our simulation, the received signal of equation (3) was
passed through a chip matched filter and sampled at the chip
rate. The sampled vector of length (n + d + 1)L = 60 was
then processed by both the conventional receiver and the PD
to recover the desired transmitted bit.

Recall that Lemma 2 claims σ2
3 ≤ σ2

2 for chip synchronous
systems. A similar result was observed in our simulations for

the chip asynchronous system. Space constraints force us to
omit that result.

In a CDMA system, BER is the performance measure of
interest. Since for the PD and the conventional receiver, BER
is hard to analyze, in our analysis we use the average SIR
(i.e., the ratio of the average signal power to the average in-
terference power) as the system performance measure. Our
simulation results showed that SIRcd ≤ SIRpd is equivalent
to BERcd

1 ≥ BERpd
1 , where BERcd

1 is the BER of user 1 un-
der the conventional system and BERpd

1 is the BER of user 1
under the PD system; see Figure 2.

The BER requirement of a conventional system is approx-
imately 10−2 which is obtained at K1/L ≈ 0.2. Our simu-
lation result, also agreed with this previous observation; see
Figure 3. Here, we also found that the PD’s performance at
K1/L = 0.3 is the same as the performance of the conven-
tional receiver at K1/L = 0.2. This result suggests that the
PD yields 50% capacity gain over the conventional receiver.
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