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Abstract

The optimum bit detector for multiuser CDMA systems
has exponential complexity in the number of users. Many
suboptimum receivers have been developed to achieve good
performance with less complexity. In this work, we ap-
proximate the solution of the optimum multiuser detection
problem using nonlinear programming relaxations. We ob-
serve that some popular suboptimum receivers correspond
to relaxations of the optimal detection problem. In particu-
lar, one approximation method yields to iterative solutions
which correspond to previously proposed heuristic nonlin-
ear detectors. We identify the convergence properties of
these iterative detectors. We also propose a relaxation that
yields a receiver which we call the generalized MMSE detec-
tor. We give a simple iterative implementation of the detec-
tor. Its performance is evaluated and comparisons to other
suboptimum detection schemes are given.

1. Introduction
It has been long known that the matched filter receiver de-

signed for a single user Gaussian channel is not optimum for
the multiple-user CDMA channel [13]. Further, optimum
detection of multiple users’ bits has been shown to be an NP
hard problem [12]. This observation resulted in the devel-
opment of many suboptimum receivers that have reasonable
complexity with near-optimum performance [2, 5, 6, 10].
These suboptimum receivers have been motivated by sev-
eral criteria. Among the most popular linear detectors are
the decorrelator [5] and the MMSE receiver [6]. The decor-
relator suppresses the multiple access interference totally
while enhancing the Gaussian noise and is the optimum de-
tector if the received powers of the users are unknown at the
receiver. The MMSE receiver [6] gives the minimum mean
squared error between the filter output and the transmitted
bit, and also maximizes the output signal to interference ra-
tio. Both detectors are optimum when no noise is present.

Our aim in this study is to approach the optimum mul-
tiuser detection problem from a nonlinear programming

point of view. The original optimum multiuser detection
problem (OMUD) is a 0 − 1 quadratic program for which
there exists no efficient algorithm. The general approach in
the presence of such hardship is to approximate the solution
by working on an easier problem that can be solved effi-
ciently. The easier problem to be solved is a relaxation of
the original problem. The relaxed solution is then mapped
to the solution set of the original problem, ideally arriving
at a near optimum solution.

Using nonlinear programming approach, we see that
some popular suboptimum detectors are relaxed solutions to
the optimum detection problem. This approach helps us un-
derstand the previously unidentified convergence properties
of some known iterative nonlinear detectors. Furthermore,
a new relaxation method is proposed that results in a simple
iterative detector whose performance is then evaluated.

2. OMUD and its Relaxations

We consider a synchronous CDMA system employing
BPSK modulation. The received signal is given by

r(t) =
N∑

i=1

√
qiaisi(t) + n(t) (1)

where N is the number of users, qi and ai are received power
and the transmitted bit (±1 equiprobably) of the ith user and
n(t) is the additive white Gaussian noise (AWGN) process
with power spectral density σ2. The received signal vector
at the output of the matched filters is a sufficient statistic for
the multiuser detection problem and is given by

y = ΓΛa + n (2)

In (2), Γ is the nonnegative definite cross correlation matrix
with Γij =

∫ T

0
si(t)sj(t)dt, Λ is a diagonal matrix contain-

ing the users’ received amplitudes Λii =
√

qi, a is the vector
containing the information bits of the users and n is a zero
mean Gaussian random vector with auto covariance matrix
E[nn�] = σ2Γ.



The aim of multiuser detection is to recover the informa-
tion bits, a. The solution of the optimum multiuser detec-
tion problem (OMUD) [11] employs the maximum likeli-
hood estimate a given y. Specifically,

a∗ = arg min
a∈{−1,1}N

a�Ra − 2a�Λy (3)

where R = ΛΓΛ with Rij =
√

qi
√

qjΓij .
Although it has been shown recently that certain special

R structures allow construction of polynomial time algo-
rithms to find the optimum solution [9], the problem for gen-
eral correlation matrices remains NP hard and one can find
the optimum a only by exhaustive search of 2N candidate
vectors.

In this work, we will concentrate on cases where the sig-
natures of the users are independent and Γ and hence R are
positive definite. In this case, the objective (3) is strictly
convex in a and has a well defined unique minimizer over a
convex set. Thus, we can find solutions by relaxing the con-
straint set –which in the original problem contains only the
corners of the unit hypercube– such that the resulting “re-
laxed” constraint set is convex. Figure 1 shows the differ-
ent relaxed constraint sets for the two-user case. Note that
the requirement is that for each relaxation the relaxed con-
straint set contains the feasible set of the original problem.
The solution can then be mapped to the feasible set of the
original problem by taking the sign of each component of
the relaxed solution vector (bits are equiprobably ±1).

3. Decorrelator

We first consider the simplest relaxation, where the fea-
sible set is relaxed to contain the N dimensional space RN .

min
a∈RN

a�Ra − 2a�Λy (4)

This problem has a unique minimum at

â = R−1Λy = a + Λ−1Γ−1n (5)

Taking the sign of the solution vector yields the well known
decorrelating detector [5].

4. Soft Interference Cancellation

The constraint set of the optimum multiuser detection
problem (3) consists of the corner points of the unit hyper-
cube. An effective approximation method is to relax the
constraint set to cover to whole hypercube and use nonlin-
ear programming algorithms to find the solution of the new
convex programming problem [3]. The relaxed problem is:

a∗ = arg min
a∈[−1,1]N

a�Ra − 2a�Λy (6)

The above optimization yields the optimum detector under
certain conditions. Consider the case where the transmit
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Figure 1. Relaxed constraint sets for the two user system
which yield the following detectors: I - Soft Interference
Canceller (Section 4), I+II - Generalized MMSE (Section
5), I+II+III - Decorrelator (Section3)

powers {pi} of the users are known but the uplink gains,
hi ∈ [0, 1]N , are random, i.e. the receiver only knows that
the received power of user i is in [0, pi]. Defining Υ and H
as the diagonal matrices with Υii =

√
pi and Hii =

√
hi

(
√

qi =
√

pi

√
hi), the joint maximum likelihood estimation

problem for the uplink gains and the bits becomes

min
ai∈{−1,1},hi∈[0,1]∀i

a�HΥΓΥHa − 2a�HΥy

Defining ãi = ai

√
hi and R̃ = ΥΓΥ yields the optimiza-

tion problem

ã∗ = arg min
ã∈[−1,1]N

ã�R̃ã − 2ã�Υy (7)

which is identical to (6). The joint maximum likelihood es-
timates of the uplink gains and the information bits are:

√
h∗

i = |ã∗
i | a∗

i = sgn(ã∗
i ) i = 1, ..., N (8)

Now we consider the implementation of the receiver
given by (6). Since the optimization is a convex minimiza-
tion over a convex set, the unique fixed point is the mini-
mum. However, the optimum point does not have a closed
form and one should use iterative methods to get to the so-
lution. One class of iterative methods that can be used are
the constrained gradient methods. Further, the simplicity of
the constraint set, i.e. the fact that it has a cartesian product
form, enables us to define special iterative projection algo-
rithms [1]. In particular, the following two algorithms, the
nonlinear Gauss-Seidel and the nonlinear Jacobi algorithms
respectively, converge to the minimum of (6) under certain



conditions. Let g(a1, ..., aN) = a�Ra − 2a�Λy denote
the function to be minimized. In the Gauss-Seidel iteration,
ai(t + 1) is found by

arg min
x∈[−1,1]

g(a1(t + 1), · · · , x, ai+1(t), · · · , aN (t)) (9)

while in the Jacobi iterations, ai(t + 1) is

arg min
x∈[−1,1]

g(a1(t), · · · , x, ai+1(t), · · · , aN(t)) (10)

respectively, where t is the stage (iteration) index. Both al-
gorithms optimize one variable at a time to get to the opti-
mum point of (6); however (9) uses the current stage esti-
mates of some of the users while (10) allows a parallel im-
plementation. Through a straightforward derivation, it can
be shown that the above iterations yield the following two-
step algorithms. For each user i, the first step for the Gauss-
Seidel iteration is,

x̂(t + 1) =

1
√

qi

⎛
⎝yi −

i−1∑
j=1

√
qjΓjiaj(t + 1) −

N∑
j=i+1

√
qjΓjiaj(t)

⎞
⎠ (11)

and the first step for the Jacobi iteration is,

x̂(t + 1) =
1

√
qi

⎛
⎝yi −

N∑
j=1,j �=i

√
qjΓjiaj(t)

⎞
⎠ (12)

The second step for both algorithms is

ai(t + 1) =

⎧⎨
⎩

−1, x̂(t + 1) < −1
x̂(t + 1), −1 ≤ x̂(t + 1) ≤ 1
1, x̂(t + 1) > 1

(13)

At each stage, to get the estimate of each user’s bit, both re-
ceivers use soft estimates of the bits to reconstruct the inter-
ference and subtract this estimate from the user’s matched
filter output, scale the result by the amplitude of the user and
project onto [−1, 1]. The difference between the two is that
while the Gauss-Seidel algorithm uses the available current
stage estimates of the users, i.e. feedback from a group of
users whose bit estimates are already computed, the Jacobi
algorithm uses only bit estimates from the previous stage.

Convergence of the Gauss-Seidel algorithm is easily es-
tablished using Proposition 3.9 of Section 3.3 of [1] which
says that if the convex function to be optimized is strictly
convex in each of its variables and the constraint set has a
Cartesian product form, the algorithm will converge to the
unique minimum. Since we have a positive definite Γ, the
function g(a) is convex in a and is strictly convex in each
variable when the values of the other components of a are
held constant. The convex set X = [−1, 1]N is in Cartesian
product form. The convexity of g(a) ensures the uniqueness
of the convergence point which is the global minimum.

Corollary 1 For a CDMA system with linearly independent
signature sequences, the Gauss-Seidel algorithm (the suc-
cessive soft interference canceller) always converges to the
minimizer of (6).

Establishing the convergence for the Jacobi algorithm re-
quires a little more effort. Convergence can be guaran-
teed under certain contraction assumptions as indicated by
Proposition 3.10 of Section 3.3 of [1] which is given below.

Theorem 1 Let g : RN → R be continuously differen-
tiable, let γ be a positive scalar, and suppose that the map-
ping T : X → RN , defined by T (x) = x − γ∇g(x), is a
contraction with respect to the block maximum norm ‖x‖ =
maxi ‖xi‖i/wi, where each ‖ · ‖i is the Euclidean norm on
Rni and each wi is a positive scalar. Then, there exists a
unique vector x∗ which minimizes g over X . Furthermore,
the sequence x(t) generated by either of the Gauss-Seidel
and the Jacobi algorithms converges to x∗ geometrically.

The necessary and sufficient condition for T (x) to be a con-
traction mapping for our problem such that Theorem 1 is
valid can be shown to be

‖I − γR‖w
∞ < 1 (14)

where, for any matrix A, ‖A‖w
∞ = maxi

1
wi

∑
j |Aij |wj .

For a small enough γ, (14) is equivalent to

max
i

⎛
⎝Rii −

∑
j �=i

|Rij |
wj

wi

⎞
⎠ > 0 (15)

Define the matrix Γ̄ with Γ̄ij = |Γij |, if i �= j, and Γ̄ii = 0.
Then, it can be shown that for some w̄, (15) is equivalent to

‖Γ̄‖w̄
∞ < 1 (16)

For a given Γ, it may be difficult to check this condition for
all possible w̄ values. The following equivalent condition
that is independent of the particular norm can be found by
using Corollary 6.2 in Section 2.6 of [1].

ρ(Γ̄) < 1 (17)

where ρ(A) denotes the maximum eigenvalue of A.
It is interesting to note that conditions (16) and (17) are

satisfied for a system where users’ signatures are shifted ver-
sions of a basic m-sequence. In this case, Γij = −1/G,
i �= j, and ρ(Γ̄) = (N − 1)/G. ρ(Γ̄) < 1 as long as
N ≤ G which by definition is the case. Note that choosing
wi = 1 for all i, (16) reduces to a diagonal dominance con-
dition which is a sufficient condition for convergence and is
also equivalent to (N−1)/G < 1 for m-sequences. Thus, if
m-sequences are used, both Jacobi and Gauss-Seidel algo-
rithms, i.e., parallel and successive interference cancellers,
converge to the minimizer of (6).



In general, it takes more than one iteration for either
algorithm to converge and thus the resulting receivers are
multi-stage receivers. Multi-stage receivers are familiar in
multiuser detection. [10] proposes using hard decision bit
estimates to reconstruct and subtract the interference for
each user. The receiver is implemented in a parallel fash-
ion as in (12) and is not convergent. [8] proposes a class
of receivers based on the SAGE algorithm, one of which is
the successive multistage receiver (11) and argues that the
SAGE based hard decision multistage receiver is conver-
gent even when its parallel counterpart is not. The soft de-
cision versions of these multistage receivers, i.e. (11) and
(12), are proposed in [8] and [14]. They are termed as re-
ceivers with linear clippers. By representing these receivers
in the form of iterative nonlinear programming algorithms,
we have shown that both these soft decision receivers, i.e.
the parallel and the successive soft multi-stage interference
cancellers, if they converge, converge to the same point
which is the minimizer of (6). Typically, Gauss-Seidel type
iterations have faster convergence since they use the newest
estimates. On the other hand, Jacobi type iterations can be
executed in a completely parallel fashion since they do not
require feedback from the current stage estimate of any user.
Note that, if Theorem 1 is valid, any combination of the two
algorithms also converges to the minimum of (6), i.e. some
users can use the successive soft multi-stage receivers and
others can use the parallel soft multi-stage receivers.

It is worthwhile to note that, one can implement the
decorrelator given by (5) iteratively. Gauss-Seidel and Ja-
cobi algorithms that converge to (5) can be found to be the
algorithms derived in this section without the second stage
[−1, 1] clippers. The convergence conditions are identical
to those discussed in this section. It is also possible to de-
rive Gauss-Seidel and Jacobi iterations that converge to the
MMSE detector [6] which estimates the bits by taking the
sign of ā = (Γ + σ2Λ−2)−1y. It can be shown that the
resulting algorithms differ from (11) and (12) only in the
scaling factor. Specifically, one has to replace 1/

√
qi with√

qi/(qi + σ2).
Finally, we should emphasize that the implementations

discussed here are not the unique way of solving for the min-
imizer of (6). There are other nonlinear programming meth-
ods that yield iterative algorithms whose bit error rate per-
formance matches that of the soft interference cancellers.

5. Generalized MMSE Detector
The constraint on each ai ∈ {−1, 1} is equivalent to

a2
i = 1 which implies aT a = N at any feasible point for

OMUD. Relaxing this set to aT a ≤ N results in:

min
a�a≤N

a�Ra − 2a�Λy (18)

Since (18) minimizes of a convex function over a convex
set, it has a unique minimum and iterative algorithms such as

gradient descent can be employed to find this minimum [7].
Further, the convex duality theorem [7, Theorem 14.6] en-
sures that no duality gap exists and one can solve for the dual
problem instead. Since (18) has a single constraint, there is
only one dual variable. Thus, a simpler iterative algorithm
can be found by solving the dual problem as outlined below.

The Lagrangian dual function can be expressed as

L(a, λ) = a�Ra − 2a�Λy + λ(a�a − N) (19)

which is to be maximized over a and λ ≥ 0. Solving for a
in terms of λ and substituting back we arrive at:

max
λ≥0

−y�Λ(R + λI)−1Λy − λN (20)

which is a one-dimensional optimization problem and can
be solved with a variety of iterative algorithms [7]. A sim-
ple unconstrained gradient descent algorithm is guaranteed
to converge for a small enough step size µ which can then
be projected onto the positive axis. The algorithm is

λ̄(t + 1) = λ̄(t) + µ(y�Λ(R + λ̄(t)I)−2Λy − N) (21)

which converges to λ̄. The maximizer of (20) is given by

λ∗ = max(0, λ̄) (22)

Then, the unique minimizer of (18) can be found to be

a∗ = (R + λ∗I)−1Λy = Λ−1(Γ + λ∗Λ−2)−1y (23)

The form of this solution whose sign is the estimate of the bit
vector is also familiar because of its similarity to the MMSE
detector [6]. We term the relaxation (18) the generalized
MMSE (GMMSE) solution. When λ∗ = σ2, (23) reduces
to the MMSE detector. Note that finding the GMMSE so-
lution results in a nonlinear multiuser detector in contrast to
the MMSE detector. On the other hand, the knowledge of
the noise power value (σ2) is not necessary for the GMMSE
detector whereas the MMSE detector requires this knowl-
edge if training or blind adaptation is not desired [4, 6].

The GMMSE detector is also an iterative detector since
λ∗ has to be found iteratively. However, since the iterations
are in one dimension, they are expected to converge quickly
compared to multidimensional algorithms.

6. Results and Discussion

Since the probability of bit error expressions are not an-
alytically tractable for arbitrary number of users and itera-
tions, we have simulated the bit error performance of the de-
tectors investigated in this work. The first system simulated
is an N = 7 user system with processing gain G = 7 that
uses m-sequences. Figure 2 shows the probability of bit er-
ror for one user when that user has 0 dB SNR and all the in-
terferers have a common SNR that is varied. All iterative
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Figure 2. Comparison of error probabilities of near-
optimum multiuser detectors: Near-far scenario (Desired
user at 0 dB SNR). G = 7, N = 7, M-sequences.

detectors (multistage soft cancellers and the GMMSE) are
evaluated at their convergence points. The soft interference
cancellers ((11), (12), (13)) have almost invariable perfor-
mance versus interference strength. We note that the perfor-
mance of the GMMSE detector is similar to that of the linear
MMSE detector. In particular, we observe that the GMMSE
detector has the same trend of approaching the decorrelator
performance as the MMSE detector as the interference dom-
inates the noise. We have also simulated an N = 4 user sys-
tem with processing gain G = 7 that uses Gold sequences
and observed similar results (Figure 3).

In this paper, we have shown that many popular sub-
optimum detectors are devices that attempt to approximate
the solution of the joint minimum bit error rate detector
(OMUD). Although it is analytically hard to characterize ex-
actly how closely they approximate the OMUD cost func-
tion, we have observed that they achieve near-optimum cost
values. Consequently, the near-optimum bit error rate per-
formances of these detectors are not surprising. We have
identified the convergence conditions of multistage soft in-
terference cancellers. We have also proposed and devised a
simple iterative nonlinear detector with similar performance
to the MMSE detector. It can be used in scenarios where
adaptive or blind adaptive detection is not suitable –say due
to delay constraints– and the ambient noise power is un-
known.

References

[1] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Com-
putation. Prentice-Hall, 1989.

0 5 10 15 20 25 30
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Interferers’ SNRs

B
E
R
 
o
f
 
t
h
e
 
d
e
s
i
r
e
d
 
u
s
e
r Decorrelator

MMSE        
Gen. MMSE   
Soft IC     
OMUD        
Single User 

Figure 3. Comparison of error probabilities of near-
optimum multiuser detectors: Near-far scenario (Desired
user at 6 dB SNR). G = 7, N = 4, Gold sequences.

[2] A. Duel-Hallen. Decorrelating decision-feedback multiuser
detector for synchronous code-division multiple-access
channels. IEEE Trans. Comm., 41(2):285–290, 1993.

[3] P. Hansen. Methods of nonlinear 0-1 programming. Annals
of Discrete Mathematics 5: Discrete Optimization II, 1979.
Noth Holland.

[4] M. Honig, U. Madhow, and S. Verdú. Blind adaptive mul-
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[5] R. Lupas and S. Verdú. Linear multiuser detectors for syn-
chronous code-division multiple-access channels. IEEE
Trans. Info.Th., 35(1):123–136, 1989.

[6] U. Madhow and M. L. Honig. MMSE interference sup-
pression for direct-sequence spread-spectrum CDMA. IEEE
Trans. Comm., 42(12):3178–3188, 1994.

[7] S. G. Nash and A. Sofer. Linear and Nonlinear Program-
ming. Preprint, 1995.

[8] L. B. Nelson and H. V. Poor. Iterative multiuser receivers
for CDMA channels: An EM-based approach. IEEE Trans.
Comm., 44(12):1700–1710, 1996.

[9] S. Ulukus and R. D. Yates. Optimum multiuser detec-
tion is tractable for synchronous CDMA systems using m-
sequences. IEEE Comm. Letters, 2(4):89–91, 1998.

[10] M. K. Varanasi and B. Aazhang. Multistage detection
in asynchronous code-division multiple-access communica-
tions. IEEE Trans. Comm., 38(4):509–519, 1990.
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[13] S. Verdú. Multiuser Detection. Cambridge U. Press, 1998.
[14] X. Zhang and D. Brady. Asymptotic multiuser efficiencies

for decision-directed multiuser detectors. IEEE Trans. Info.
Th., 44(2):502–515, 1998.


