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Abstract

For single cell synchronous code division multiple access (CDMA) systems, both the informa-
tion theoretic capacity and the network capacity have been identi�ed. In both cases, it was
shown that if the number of users, N , is no more than the processing gain, L, then orthogonal
signatures are optimal while if N > L, then signatures which satisfy the Welch bound on the to-
tal squared correlation with equality (called WBE sequences) are optimal. This paper presents
an algorithm which iteratively updates the signatures in a distributed fashion, starting from an
initial set of signatures. Under mild conditions on the initial set of signatures, we prove that the
algorithm converges to a set of orthogonal signatures if N � L and to a WBE set if N > L. At
each step, the algorithm replaces one signature from the set with the normalized linear MMSE
receiver �lter corresponding to that signature. Since the MMSE �lter can be obtained by a
distributed algorithm for each user, the algorithm is amenable to distributed implementation.

1 Introduction

In CDMA systems, users modulate their information streams with high frequency wave-
forms called CDMA codes or signature sequences. The signature waveform of user i,
denoted by si(t), is non-zero only in the bit interval [0; Tb] and is normalized to unit
energy, i.e.,

R Tb
0 s2i (t)dt = 1. The received base band signal at the base station is

r(t) =
NX
i=1

p
pibisi(t) + n(t) (1)

where pi and bi are the received power and the information bit of user i, and n(t) is the
additive white Gaussian noise (AWGN) with zero mean and power spectral density �2.

We de�ne the chip waveform to be  (t), t 2 [0; Tc] and 0 elsewhere, where Tc is the
chip duration. Thus f (t � iTc); i = 0; : : : ; L � 1g, where L = Tb=Tc is the processing
gain, is a basis for the signal space. This allows us to represent the signature sequences
of the users with L dimensional vectors. We will use si to denote the signature sequence
of user i. We de�ne an L � N matrix S which contains the signature sequences of all
users in its columns, i.e., S = [s1; s2; � � � ; sN ] and a N �N diagonal matrix P whose ith
diagonal element is pi. In terms of signal vectors, the received signal can be written as

r =
NX
i=1

p
pibisi + n (2)

where n is a Gaussian random vector with E
h
nn>

i
= �2IL, where IL is the L � L

identity matrix.
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The capacity of a single cell synchronous CDMA system has been studied in two
di�erent contexts. In [1,2], the information theoretic capacity region of a CDMA channel
is

C =
\

J�f1;���;Ng

8<
:(R1; � � � ; RN ) : 0 �

X
j2J

Rj � 1

2
log

h
det

�
IL + ��2SJP JS

>
J

�i9=
; (3)

where SJ is the L� jJ j matrix which is obtained from S by striking out the columns of
S whose indices do not belong to the subset J , and P J is a jJ j � jJ j diagonal matrix
which is obtained from P by striking out the rows and columns of P whose indices do
not belong to the subset J .

An important measure of overall information capacity of a multiaccess channel is the
sum capacity

Csum = max
(R1;���;RN )2C

NX
i=1

Ri (4)

From (3), the sum capacity of a CDMA channel is

Csum =
1

2
log

h
det

�
IL + ��2SPS>

�i
(5)

When the powers of the users are the same, pi = p for all i, (5) reduces to

Csum =
1

2
log

�
det

�
IL +

p

�2
SS

>
��

=
1

2
log

�
det

�
IN +

p

�2
S
>
S

��
(6)

where the last equality follows from the fact that for any two matricesAK�M and BM�K,

det (IK +AB) = det (IM +BA) (7)

Clearly, the sum capacity depends on the signature sequence set being used. It was
shown in [2] that the sum capacity for equal received powers is maximized if the signature
sequences are chosen such that if N � L,

S
>
S = IN (8)

and if N > L,

SS
> =

N

L
IL (9)

The signature sequence sets satisfying (8) contain N orthogonal signature sequences in L
dimensional vector space. When N � L, N such sequences can be found. The sequence
sets satisfying (9) are named Welch Bound Equality (WBE) sequence sets in [2] because
they satisfy the Welch's bound on the sum of the squares of the cross correlations of unit
energy sequences with equality.

In [3], the network capacity of a CDMA system is de�ned in terms of the maximum
number of admissible users. Given the processing gain L and a common Signal to In-
terference Ratio (SIR) target �, N users are said to be admissible if there exist positive
powers pi and signature sequences si such that each user has an SIR at least as large
as the target SIR �. The network capacity was found for two kinds of linear receiver
structures in [3]: matched �lters and MinimumMean Squared Error (MMSE) �lters [4,5].
The MMSE �lter for the kth user, ck, minimizes the MSE between the bit and the �lter



output of user k

MSEk = E
h
(r>ck � bk)

2
i
= c

>
kBck � 2

p
pkc

>
k sk + 1 (10)

where B =
PN

j=1 pjsjs
>
j + �2IL = SPS

> + �2IL. The MMSE �lter for the kth user is

ck = argmin
ck

MSEk =
p
piB

�1
sk (11)

Note that the MMSE solution can also be written as

ck =

p
pk (Ak + �2IL)

�1
sk

1 + pks>k (Ak + �2IL)
�1
sk

(12)

where Ak =
P

j 6=k pjsjs
>
j .

It was found in [3] that the network capacity of a CDMA system with MMSE receivers
satis�es

N < L

 
1 +

1

�

!
(13)

It was shown in [3] that the network capacity with MMSE receivers is maximized if the
signature sequence set is chosen to satisfy (8) if N � L and (9) if N > L, and if the
received powers of the users are chosen to be the same.

It was also shown in [3] that when the matched �lters are used as the receivers, the
network capacity is again given by (13) and the maximum is achieved by equal powers
and signature sequence sets satisfying (8) and (9) for N � L and N > L, respectively.
As was observed in [3], this result is expected because once the signature set is chosen to
satisfy (8) and (9), for N � L and N > L, respectively, the MMSE receivers are scaled
matched �lters.

Although it is known that the sequences which satisfy (8) forN � L and (9) forN > L
maximize the capacity of a single cell CDMA system, no simple algorithmic scheme is
known to construct these sequence sets for general N and L. Note that when N � L,
a simple Gram-Schmidt orthogonalization procedure would yield N orthogonal vectors
starting with N linearly independent vectors. For N > L, no such simple construction
scheme exists.

2 WBE Sequences and a Simple Observation

Welch developed lower bounds for the 2kth power of the maximum correlation among
a set of N unit energy sequences [6]. These lower bounds on the 2kth powers of the
maximum correlation were actually obtained from a lower bound on the sum of the 2kth
powers of the correlations of a sequence set.

NX
i=1

NX
j=1

(s>i sj)
2k � N2 

L + k � 1

k

! (14)

When k = 1, Welch's bound reduces to

NX
i=1

NX
j=1

(s>i sj)
2 � N2

L
(15)



For a simpler derivation of the bound (15), see [7, 8]. Note that sequence sets satisfying
(9) satisfy the bound in (15) with equality.

Consider a set of vectors, si, i = 1; � � � ; N used as signature sequences by N users.
Assume that the signals of the users at the base station are received by matched �lters
and pi = p, for all i. In this case, the mean squared error for the ith user is

MSEi = E
��
r
>
si � bi

�2�
= s

>
i Bsi � 2

p
ps>i si + 1 (16)

where r is the received signal given in (2) and B = p
PN

j=1 sjs
>
j + �2IL. The total mean

squared error in the system is

MSE =
NX
i=1

MSEi =
NX
i=1

s
>
i

0
@p NX

j=1

sjs
>
j + �2IL

1
A si � 2

p
p

NX
i=1

s
>
i si +N

= p
NX
i=1

NX
j=1

(s>i sj)
2 � (2

p
p� �2)

X
i

s
>
i si +N (17)

De�ning total squared correlation (TSC) as

TSC =
NX
i=1

NX
j=1

(s>i sj)
2 (18)

we observe that

MSE = pTSC� (2
p
p� �2)

NX
i=1

s
>
i si +N (19)

Since the signature sequences are restricted to be of unit energy,

MSE = pTSC + (1 + �2 � 2
p
p)N (20)

and minimizing TSC subject to s>i si = 1 is equivalent to minimizing MSE subject to
the same condition. Since the sequence sets satisfying (8) for N � L, and (9) for N > L
minimize the TSC, they minimize the MSE as well. In other words, orthogonal sequences
for N � L and WBE sequences for N > L are the global optimal solutions of the following
two equivalent problems

min TSC min MSE
s. t. s>i si = 1 i = 1; : : : ; N s. t. s>i si = 1 i = 1; : : : ; N

(21)

In the following we will show that if we replace any one of the N sequences in a set
with the normalized MMSE �lter corresponding to that sequence, the resulting set of
sequences will have a smaller TSC. This simple observation will constitute the basis for
the iterative algorithm we will propose in the next section.

We �rst separate the terms that depend on a particular signature sequence, sk, in the
TSC expression

TSC = (s>k sk)
2 + 2s>k

0
@X
j 6=k

sjs
>
j

1
A sk +X

i6=k

X
j 6=k

(s>i sj)
2 (22)

Since we will always restrict ourselves to unit energy signature sequences, i.e., s>k sk = 1,



we can add 2a2s>k sk and subtract 2a2 in the above expression to get

TSC = (s>k sk)
2 + 2s>k

0
@X
j 6=k

sjs
>
j + a2IL

1
A sk +X

i6=k

X
j 6=k

(s>i sj)
2 � 2a2 (23)

Let us replace the signature sequence of user k with the unit energy vector

ck =
(Ak + a2IL)

�1
skh

s>k (Ak + a2IL)
�2
sk

i1=2 (24)

where Ak =
P

j 6=k sjs
>
j . Thus we map the set of signature sequences S to a new set of

signatures
�S = [s1; s2; � � � ; sk�1; ck; sk+1; � � � ; sN ] (25)

Note that ck is the normalized MMSE �lter for user k. Also note that this MMSE �lter is
a generalized one; ck is the normalized MMSE �lter for user k in a CDMA system where
all other users transmit with signature sequences sj where j 6= k, all users have received
powers pi = 1 and the variance of the AWGN is a2. It will be apparent in what follows
that any generalized normalized MMSE �lter will be as good as any other in terms of
constructing optimum sequences.

The total squared correlation of set S is

TSC = (s>k sk)
2 + 2s>k

�
Ak + a2IL

�
sk + C � 2a2 (26)

where C =
P

i6=k

P
j 6=k(s

>
i sj)

2 represents the squared correlation terms that are not af-
fected by the update: sk ! ck. Equations (23) and (24) imply that the modi�ed signature
set �S has total squared correlation

TSC = (c>k ck)
2 + 2

s>k (Ak + a2IL)
�1
sk

s>k (Ak + a2IL)
�2
sk

+ C � 2a2 (27)

Note that by the nature of the mapping in (24), c>k ck = s>k sk = 1. The following theorem
veri�es that replacing a particular sequence with its normalized MMSE receiver cannot
increase the total squared correlation of the set. In other words, in terms of the TSC (or
MSE) criteria, �S is a better set of signature sequences than S.

Theorem 1 If any signature sk is replaced with the normalized MMSE receiver for that
vector, ck, the total squared correlation decreases: TSC � TSC. The inequality is satis�ed
with equality, i.e., TSC = TSC, i� ck = sk.

Due to space limitations, the proof of Theorem 1 and all other proofs will be omitted
here. They can be found in [9].

3 An Iterative Algorithm

We observed in the previous section that given a set of unit energy vectors, if any one of
these vectors is replaced with the corresponding normalized MMSE vector, then the TSC
of the set decreases. We start with N unit length vectors S(0) = [s1(0); � � � ; sN(0)] at
time 0. At iteration (n+1) the algorithm replaces the vectors S(n) = [s1(n); � � � ; sN(n)]
with their corresponding normalized MMSE �lters one by one, and yields S(n + 1) =
[s1(n + 1); � � � ; sN(n + 1)]. A complete iteration includes N intermediate steps. At the



kth intermediate step in iteration (n + 1), the �rst (k � 1) vectors have already been
updated and the current vector set is

Sk�1(n + 1) = [s1(n+ 1); � � � ; sk�1(n+ 1); sk(n); sk+1(n); � � � ; sN (n)] (28)

The kth vector is then updated according to

sk(n+ 1) =
(Ak(n+ 1) + a2IL)

�1
sk(n)h

s>k (n) (Ak(n + 1) + a2IL)
�2
sk(n)

i1=2 (29)

to yield the vector set

Sk(n+ 1) = [s1(n + 1); � � �sk�1(n+ 1); sk(n+ 1); sk+1(n); � � � ; sN(n)] (30)

The matrix Ak(n+ 1) in (29) is given as

Ak(n+ 1) =
X
j<k

sj(n+ 1)s>j (n+ 1) +
X
j>k

sj(n)s
>
j (n) (31)

4 Convergence of the Proposed Algorithm

Let TSCk(n) denote the TSC of the set Sk(n) after the kth intermediate step in iteration
n. In addition, let TSC(n) denote the TSC at the end of iteration n for set S(n). As a
consequence of Theorem 1 we have

TSCk+1(n) � TSCk(n) for k = 0; � � � ; N � 1; n � 0 (32)

By recursive application of (32) we have

TSC(n+ 1) � TSC(n) (33)

Note that for N � L, TSC is lower bounded by N , and in general (including the case
N > L) TSC is lower bounded by N2=L from Welch's bound. Therefore the monotoni-
cally decreasing sequence TSC(n) converges to a �nite number. For N � L, if TSC(n)
converges to N , then S(n) converges to a set of N orthogonal sequences, and for N > L
if TSC(n) converges to N2=L then S(n) converges to a set of WBE sequences. Note that

TSC(n+ 1) = TSCN (n+ 1) � TSCN�1(n+ 1) � � � � � TSC1(n+ 1) � TSC(n) (34)

Thus, at the �xed point where TSC(n+ 1) = TSC(n) we should have

TSC(n + 1) = TSCN(n+ 1) = TSCN�1(n+ 1) = � � � = TSC1(n+ 1) = TSC(n) (35)

From Theorem 1, this occurs i� sk(n + 1) = sk(n) for all k. Thus at the �xed point we
must have S(n+ 1) = S(n).

Let us denote the �xed point set of vectors as S = [s1; � � � ; sN ]. Let B = SS
>+a2IL.

From two alternative notations for the MMSE operation in (11) and (12), we will choose
to use that given in (11). The �xed point S satis�es

Bsi = �isi for i = 1; � � � ; N (36)

In the following two subsections, we will investigate the properties of the �xed point
for the cases N � L and N > L separately. We will identify the conditions under which



we can guarantee that the �xed point is actually a set of orthogonal vectors for N � L
and a set of WBE sequences for N > L. We will need the following claim.

Lemma 1 If the signature sk is replaced by ck, at step k of iteration n, then

(a) det(S>
k+1(n)Sk+1(n)) � det(S>

k (n)Sk(n))

(b) det(Sk+1(n)S
>
k+1(n)) � det(Sk(n)S

>
k (n))

Lemma 1(a) implies that if det
�
S
>(0)S(0)

�
> 0, i.e., S>(0)S(0) is invertible, then at

the �xed point det
�
S
>
S

�
> 0, i.e., S>

S is invertible. Similarly, Lemma 1(b) says that if

det
�
S(0)S>(0)

�
> 0, i.e., S(0)S>(0) is invertible, then at the �xed point, det

�
SS

>
�
>

0, i.e., SS> is invertible.

4.1 Properties of the Fixed Point: N � L

Multiplying the equality in (36) for user i with s>j from left we obtain

s
>
j Bsi = �is

>
j si for i = 1; � � � ; N ; j = 1; � � � ; N (37)

Inserting B = SS
> + a2IL into (37) and writing it in a matrix form we get

S
>
�
SS

> + a2IL
�
S = S

>
S� (38)

where � is an N �N diagonal matrix with �i as its ith diagonal element. Equation (38)
can be written as �

S
>
S

�2
+ a2S>

S = S
>
S� (39)

If the algorithm is started withN linearly independent vectors S(0), then by Lemma 1(a),
S
>
S will be invertible. Multiplying both sides of (39) with (S>

S)�1 yields

S
>
S + a2IN = � (40)

Thus, S>
S is a diagonal matrix. By the nature of the algorithm s>i si = 1 for all i, and

the diagonal elements of S>
S are all unity. Therefore, at the �xed point for N � L we

have S>
S = IN . Note from (40) that at the �xed point all �i have the same value.

Therefore, for N � L, if the algorithm is started with N linearly independent sig-
nature sequences, the proposed algorithm converges to an orthonormal set of signature
sequences.

4.2 Properties of the Fixed point: N > L

Multiplying (36) for user i with s>j from left, and multiplying the same equation for user
j with s>i from left, we obtain the following two equations

s
>
j Bsi = �is

>
j si and s

>
i Bsj = �js

>
i sj (41)

Since B is symmetric, we must have

�is
>
j si = �js

>
i sj (42)

Thus, if s>j si 6= 0, then �i = �j. If the signature sequence set at the �xed point is not
split into two or more orthogonal subsets, then we are guaranteed to have �i = � for all



i. Note that some vectors may be orthogonal to each other but as long as we do not have
an orthogonal splitting of the vector set into two or more, we can still conclude that all �i
have the same value. As we will see below, we can guarantee that the signature sequence
set does not get split into orthogonal subsets at the �xed point by imposing quite mild
conditions on the initial set of signature sequences, S(0). Without going into the details
of these conditions, let us assume that they are satis�ed and �i = � for all i. Thus

s
>
j Bsi = �s>j si for i = 1; � � � ; N ; j = 1; � � � ; N (43)

Similar to the case of N � L, inserting B = SS
> + a2IL into (43) and writing it in a

matrix form we get
S
>
�
SS

> + a2IL
�
S = �S>

S (44)

Multiplying both sides of (44) from left by S and from right by S> yields

�
SS

>
�3

+ a2
�
SS

>
�2

= �
�
SS

>
�2

(45)

By Lemma 1(b), SS> is invertible if the rank of S(0) is L. In this case, multiplying both
sides of (45) by (SS>)�2 yields

SS
> + a2IL = �IL (46)

Thus, SS> = �IL. Note that trace(SS
>) = trace(S>

S) = N , since s>i si = 1 for all i.
Since trace(�IL) = �L, we have � = N=L and SS> = (N=L)IL.

Recursive application of the following Lemma veri�es that for N > L, a signature
set which is not split into orthogonal subsets at time 0 cannot be split into orthogonal
subsets at any time n, including the �xed point.

Lemma 2 For N > L, S(n) has two or more orthogonal subsets i� S(n� 1) has two or
more orthogonal subsets.

Therefore, for N > L, if the algorithm is started with N signature sequences, L of
which are linearly independent, and if the initial set of vectors are chosen such that it
does not include two or more orthogonal subsets then the proposed algorithm converges
to a set of WBE signature sequences.

5 Optimum Orthogonal Partitioning

We have observed that for N > L, our proof of convergence to WBE sequences requires
that the initial signatures not be partitioned into orthogonal subsets. When S(0) can be
partitioned into orthogonal subsets S 0(0) and S00(0), we can view the signal subsets as
belonging to orthogonal systems. The MMSE iteration preserves orthogonality among
systems. Although TSC in this case still decreases monotonically, the algorithm is not
guaranteed to converge to a WBE set and the TSC does not decrease to N2=L. Note that
within each orthogonal system, the signatures converge to either an orthogonal or WBE
signature set depending on the number of users and the rank of each set. Denoting the
TSC achieved by not partitioning the available bandwidth by TSC1 and the TSC achieved
by bandwidth partitioning by TSC2, we can show that TSC1 � TSC2 [10]. Thus, we
can conclude that orthogonal partitioning is suboptimal in general. But under certain
conditions TSC1 = TSC2 and an orthogonal splitting can actually be as good as non-
splitting. Note that the processing gain L is proportional to the available bandwidth. For
a �xed bandwidth W , we can either have a signature sequence set with processing gain
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Figure 1: Minimum and maximum eigenvalues of matrix S>(n)S(n), and TSC(n).

L, or two orthogonal signature sequence sets with processing gains L1 and L2 = L� L1

with N1 and N2 users, corresponding to bandwidth partitions W1 and W2 = W �W1.
It can be shown [9,10] that only in two cases orthogonal partitioning of the signature

sequence set yields equally good solutions as not partitioning: if N � L, any partitioning
is as good as the optimal one as long as both spaces have enough dimensionality to
assign orthogonal signature sequences to the users; and if N > L, we must have the
equal loading condition N1=L1 = N=L.

6 Simulation Results

In this section we present some simple simulation results to verify our analysis. We
take the processing gain to be L = 10. The initial signature sequences are created
randomly. In all the �gures, N updates take place between iterations n and (n + 1). In
each update ith user's signature sequence is replaced with the corresponding normalized
MMSE �lter, for i = 1; � � � ; N . Figure 1 shows the minimum and maximum eigenvalues
of the matrix S>(n)S(n), and TSC(n) as a function of the iteration index for number
of users N = 5; 10. As expected, the minimum and maximum eigenvalues of S>(n)S(n)
converge to 1 implying that the matrix converges to S>

S = IN , and the TSC converges
to N since N � L.

Figure 2 shows the minimum and maximum eigenvalues of the matrix S(n)S>(n) and
TSC(n) for number of users N = 20; 30; 40; 50. As expected, the minimum and maximum
eigenvalues of the matrix S(n)S>(n) converge toN=L implying that the matrix converges
to SS> = (N=L)IL, and the TSC converges to N2=L, since in these cases N > L.

7 Conclusions

Recently it was shown that in order to maximize the capacity of a single cell synchronous
CDMA system, if N � L then N orthonormal sequences, and if N > L then WBE
sequences should be used as signature sequences. In this paper we proposed an algorithm
which iteratively updates the signature sequences of the users one at a time and converges
to the optimum signature sequence sets. The algorithm replaces one user's signature
sequence with the normalized MMSE �lter of that user at each update. Since the MMSE
receiver can be constructed in a distributed fashion, the proposed algorithm can be
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Figure 2: Minimum and maximum eigenvalues of matrix S>(n)S(n), and TSC(n).

implemented distributedly. In this case, each user updates its own signature sequence by
making some local measurements and the whole signature sequence set converges to an
optimum one.
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