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Abstract— This work considers a power control algorithm for
cellular communications systems in which a user’s link quality
objective, as measured by signal to interference ratio (SIR), varies
with its transmitter power. In particular, as increased interference
or reduced uplink gain leads a mobile to raise its transmitter
power, that mobile lowers its SIR target. In this way, the
likelihood of an infeasible power control problem in which users’
transmitter powers rise to maximum is reduced. This graceful
degradation of the SIR is termed soft dropping. Convergence
proofs for a soft dropping power control algorithm are outlined.
Simulation results demonstrate performance improvements over
fixed target SIR algorithms.

I. INTRODUCTION

In power control for cellular communications, analytical
methods have derived convergence results for iterative power
control algorithms that meet SIR requirements. [1]–[12] On
occasion, it is not possible for every user to meet its SIR
target. In this case when the power control problem is infea-
sible, transmitter powers will diverge or, in the presence of
maximum power constraints, some users will reach maximum
transmitter power without achieving the target SIR [11]–[14].
This can result in dropped connections or additional handoffs
to neighboring base stations.

In this work, target SIR is not a fixed value, but a variable
one that ranges from maximum Γ̄ to minimum Γ̂. In particular,
as a mobile raises its transmitted power, in response to either
increased interference or reduced uplink gain, that mobile will
lower its SIR target. That is, as we would normally approach
an infeasible power control problem in which transmitter
powers rapidly escalate, the variable target SIR algorithm
encourages a user to aim for a lower SIR target to increase
the likelihood that all users can be supported. Since a user’s
target SIR gradually decreases as its transmitter power rises,
we call this approach soft dropping.

The use of variable SIR targets has been studied by
simulation in [15] where it is found that the approach can
yield significant performance improvements. In this work, a
convergence proof for a soft dropping power control algorithm
that enforces both minimum and maximum transmitter power
constraints will be given. In addition, simulation studies of
soft dropping will be presented for a system similar to GSM.

II. SOFT DROPPING INTERFERENCE CONSTRAINTS

We will consider the uplink of a cellular communication
system of n users in which signals of other users can be
modeled as interfering signals. Let pj denote the transmitter
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Fig. 1. The variable SIR target Γj(pj)

power of user j, and hkj denote the propagation gain of user
j to base k. At base k, the received signal power from user j
is hkjpj while the interference is

∑
i�=j hkipi +N0 where N0

denotes the receiver noise power at base k. Hence under power
vector p = [p1, · · · , pn], the SIR of user j at its assigned base
station aj can be written as

γj(p) =
pj

Ij(p)
(1)

where

Ij(p) =

∑
i�=j hajipi + N0

hajj
(2)

Although we describe the users’ link SIRs in the context of a
fixed assignment of users to base stations, we will see that the
soft dropping approach is applicable whenever each user’s SIR
can be expressed in the form of (1) for a standard interference
function I(p) = [I1(p), · · · , In(p)]; see [12].

In a fixed target power control algorithm, each user itera-
tively adjusts its power in order to find a power vector p such
that for every user j, γj(p) ≥ Γj . In the soft dropping power
control algorithm, the SIR requirement of user j must satisfy

γj(p) ≥ Γj(pj) (3)

In this case, Γj(pj), the target SIR of user j, is varied
according to the user’s transmitter power pj as depicted in
Figure 1. Note that at all times, each user j aims for a target
SIR that is above a dropping threshold Γ(d)

j For pj ≤ q̄j , user
j attempts to maintain a high quality connection by aiming
for a target SIR Γj . For q̂j ≤ pj ≤ pmax

j , user j aims for
an acceptable target SIR Γ̂j . Note that Γj ≥ Γ̂j ≥ Γd. For
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q̄j < pj < q̂j , user j aims for a target SIR Γ(v)
j (pj) that

trades SIR for transmitter power linearly in dB.
In [6], [7], it is observed that a fixed SIR target iterative

algorithm can be written as

pj(t + 1) =
(

Γj

γj(p(t))

)βj

pj(t) (4)

where βj is an arbitrary constant satisfying 0 < βj ≤ 1. That
is, when user j has SIR γj(p) that is less than Γj , user j
raises its transmitter power. Conversely, when the SIR of user
j is above the target Γj , user j lowers its power. The effect of
the exponent βj can be seen by expressing the power control
iteration in logarithmic terms. From (4), we can write

log pj(t + 1) = (1 − βj) log pj(t) + βj log (ΓjIj(p(t))) (5)

For 0 < βj < 1, we see that in dB, user j chooses a
weighted average of its current transmitter power p j(t) and
the necessary power ΓjIj(p(t)) for SIR Γj . Typically, we will
see in simulations that small βj results in slow convergence
of the power control algorithm.

Similar to (4), a variable SIR target iteration can be ex-
pressed as

pj(t + 1) = T (pj(t)) =
(

Γj(pj)
γj(p)

)βj

pj (6)

At this point, it is not clear that the iteration (6) will converge.
In particular, it is easy to imagine oscillatory effects in which
user j has low transmitted power and aims for high SIR, lead-
ing user j to have high power and aim for low SIR resulting
in low transmitter power. As we shall see, convergence results
for the iteration (6) will depend on the careful choice of the
βj .

Finally, it will be desirable to consider minimum and max-
imum power limits pmin and pmax. We define the constrained
iteration T ∗(p) by

T ∗
j (p) = max

{
pmin

j , min
{
pmax

j , Tj(p)
}}

(7)

In this case, pmin ≤ T ∗(p) ≤ pmax. Whenever the iteration
function T (p) would require a power over the maximum or
under the minimum, the power chosen is constrained. We will
show that the constrained variable SIR target power control
iteration

p(t + 1) = T ∗(p(t)) (8)

will always converge to a unique fixed point at which each
user’s variable SIR target will be met subject to the minimum
and maximum power constraints.

III. STANDARD INTERFERENCE FUNCTIONS

To verify convergence of the iteration (8), we will use the
approach of [12] which analyzes power control algorithms of
the form

p(t + 1) = I(p(t)) (9)

For the uplink of a variety of single channel cellular systems,
the interference function I(p) was shown to be standard in
the following sense.

Definition 1: I(p) is a standard interference function if for
all p ≥ 0, the following properties are satisfied.

• (Positivity) I(p) > 0
• (Monotonicity) If p ≥ p′, then I(p) ≥ I(p′)
• (Scalability) For all α > 1, αI(p) > I(αp)

Given a standard interference function I(p), the iteration (9)
was defined as the standard power control algorithm. When
p ≥ I(p), we say that p is a feasible power vector. In [12],
the following claim was verified.

Theorem 1: If there exists a power vector p ′ satisfying
p′ ≥ I(p′), then starting from any initial power vector p, the
standard power control iteration converges to a unique fixed
point p∗ such that p∗ ≤ p′ for any feasible power vector p ′.
We will also need results regarding the componentwise mini-
mum and maximum of two interference functions. Specifically,
given two standard interference functions I(p) and I ′(p), we
define Imax(p) and Imin(p) by

Imax
j (p) = max

{
Ij(p), I ′

j(p)
}

Imin
j (p) = min

{
Ij(p), I ′

j(p)
}

The following claim is readily verified.
Theorem 2: If I(p) and I ′(p) are monotone and scalable,

then Imin(p) and Imax(p) are monotone and scalable.
Note that when I(p) = r where r is a positive constant vector,
it is trivially true that I(p) is a standard interference function.
Thus, Theorem 2 has the following corollary,

Corollary 1: For positive power vectors pmin and pmax and
a scalable and monotone interference function I(p), I ′′(p)
defined by

I ′′j (p) = max
(
pmin

j , min
(
pmax

j , Ij(p)
))

is a standard interference function. Since pmax ≥ I ′′(pmax),
the iteration p(t+1) = I ′′(p(t)) always converges to a unique
fixed point.
The consequence of Corollary 1 is that if T (p) from (6)
meets the requirements of a standard interference function,
the iteration (8) is guaranteed to converge.

IV. SOFT DROPPING CONVERGENCE

In this section, we analyze the synchronous constrained
power control iteration (8) in which users repeatedly adjust
their transmitter powers to meet the variable target SIR con-
straints (3). From Figure 1, the variable target SIR Γj(pj) can
be written

Γj(pj) =

⎧⎪⎨
⎪⎩

Γj pj ≤ q̄j

Γ(v)
j (pj) q̄j < pj < q̂j

Γ̂j pj ≥ q̂j

(10)

From (6) and (10), we can write

Tj(p) =

⎧⎪⎨
⎪⎩

T j(p) pj ≤ q̄j

T
(v)
j (p) q̄j < pj < q̂j

T̂j(p) pj ≥ q̂j

(11)

From (1) and (6), we observe that

T j(p) = Γ
βj

p
1−βj

j I
βj

j (p) (12)

T̂j(p) = Γ̂βjp
1−βj

j I
βj

j (p) (13)
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To identify T (v)(p), we observe from Figure 1 that the slope
of Γ(v)

j (pj) equals −δj where

δj =
log(Γj/Γ̂j)
log(q̂j/q̄j)

(14)

From (6), (11) and (14), it can be verified that

T
(v)
j (p) = Γ

βj

j q̄
βjδj

j p
1−βj(1+δj)
j I

βj

j (p) (15)

To prove convergence of the iteration (8), we will need the
following lemma.

Lemma 1: If I(p) is standard, then I ′(p) defined by
I ′j(p) = cjp

µj

j I
βj

j (p) is scalable and monotone if for all j,
cj > 0, βj > 0, µj ≥ 0, and µj + βj ≤ 1.
From Lemma 1, we have the following corollary.

Theorem 3: If 0 ≤ βj ≤ (1 + δj)−1 for all j, the
interference functions T̂ (p), T (v)(p) and T (p) are all scalable
and monotone.

Further, we observe that

T
(v)
j (p) ≤ T j(p) iff pj ≥ q̄j (16)

T
(v)
j (p) ≤ T̂j(p) iff pj ≥ q̂j (17)

From (11), this implies that the iteration function T (p) can
be written as

Tj(p) = max[T̂j(p), min[T j(p), T (v)
j (p)]] (18)

By Theorem 2, we see that T ′(p) defined by T ′
j(p) =

min[T j(p), T (v)
j (p)] is scalable and monotone and thus

Tj(p) = max[T̂j(p), T ′
j(p)] is also scalable and monotone.

This result implies the following corollary.
Corollary 2: The constrained iteration function T ∗(p) de-

fined by (7) is a standard interference function.
Thus, the power constrained iteration (8) always converges
to a unique fixed point at which each user transmits with
the minimum possible transmitted power subject to variable
target SIR requirements and minimum and maximum power
constraints.

V. SIMULATION MODEL

The convergence analysis of Section I is valid for a single
channel system. In this section, we will study the performance
of an asynchronous, distributed Soft Dropping Power Control
algorithm in a channelized system by simulation of a two
dimensional macro-cellular system. Base station assignment
and dynamic channel allocation scheme alongwith Received
signal strength index (RSSI) based handoff schemes and least
interference dynamic channel allocation algorithms are also
simulated. To assess the performance improvement of soft
dropping, we compare with the ordinary fixed target power
control algorithm.

For a two dimensional macro cellular system, we assume
a Manhattan-like road grid which is formed into a torus-like
structure to avoid edge effects. B = 48 base stations (BS)
are spaced uniformly 2000 m apart vertically and 1500m
horizontally; see Figure 2. A nominal hexagonal cell geometry
can be assumed depending on the path gain. A common set
of M = 30 channels are available at each base station.

A mobile’s speed follows a truncated Gaussian distribution
with mean speed of 90 km/hr and standard deviation of 15
km/hr, truncated at a minimum speed of 60 km/hr and maxi-
mum speed of 120km/hr. The new call arrivals are uniformly
distributed over all roads and the two directions along the road
are equally likely. Traffic is allowed only along the grid lines,
to avoid complexity. Free flowing highway traffic is assumed,
in other words each mobile moves along the road unaware of
any other mobile on the same path. The velocity of the mobile
remains fixed throughout the duration of a call.
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Fig. 2. Two-dimensional macro-cell environment

The new call arrival process is an independent Poisson
process with mean arrival rate λ calls per second. Call dura-
tions are independent exponential random variables with mean
1/µ=120 sec. With B base stations, the normalized traffic load
is ρ = λ/(µMB) erlangs/cell/channel. The radio link gain
includes both a propagation loss model of order α = 4 and
shadow fading. That is, the link gain hkj from the user j at a
distance dkj to base k in units of dB is

10 loghkj = −10α log dkj + Sj(dkj) (19)

where Sj(dkj), the position dependent shadow fading factor,
is modeled as a zero mean Gaussian random variable with
standard deviation σ=6 dB. The shadow fading at each base
station is modeled as an independent spatial process with
exponential autocorrelation

RSj (∆dkj) = σ2e−∆d/D (20)

We assume that every base station transmits a pilot tone
at a constant power level. The new user listens to all the
bases and is assigned to the base with the strongest received
pilot. At that base, the new user is assigned to the channel
with the least interference. We consider an admission control
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based on SIR threshold, Γnew, as described in [16]. A new
call is accepted only if the assigned channel h can provide an
estimated minimum SIR that is not less than Γnew.

If a terminal finds that the RSSI (path gain) of a neighboring
base station is hys higher than that the user is presently
connected to, it will attempt an intercell handoff to that base
station. An intercell handoff attempt fails if the base station
is unable to find an unoccupied channel or it does not have
sufficient power to achieve the target SIR on the allocated
channel. The call is dropped if the SIR remains below the
threshold for longer than the outage duration t out whether it is
able to perform an intercell handoff or not.

Although the theoretical properties of a the soft dropping
algorithm appear desirable, a practical implementation is of
prime importance. Thus we have attempted to simulate the
power control iteration in a GSM environment for Class 5
mobile stations. In other words, the transmitter power of
every user is asynchronously changed by 2 dB at a rate
of 10 iterations/sec depending on the current quality of its
connection. Further, each user is subject to minimum and
maximum power constraints.

The two set of limits, each for target SIR and uplink power
for soft dropping are crucial to the performance of the system.
The soft dropping upper limit SIR is Γj = 20 dB and the lower
limit is Γ̂j = 17 dB. For the fixed target algorithm, the target
is set at 20 dB. In all cases, the dropping threshold is set at
Γd = 16 dB. Other simulation parameters are summarized in
Table I.

h Height of antenna 50 m
M No. of channels in each cell 30
D Shadow Fading correlation dist. 50 m
N0 Receiver Noise Power -150 dBm

pmax Maximum transmitter power 0.8 W
pmin Minimum transmitter power 19.9 mW
tout Outage duration 5 sec
Γnew New call SIR threshold 21 dB
q̂j Soft dropping upper power limit -1 dB

TABLE I

OTHER SIMULATION PARAMETERS

VI. RESULTS AND ANALYSIS

The system performance is measured in terms of the fol-
lowing parameters

Pb = new calls blocked/call arrivals (21)

Pd = dropped calls/accepted calls (22)

Since dropping an existing call is believed to be more detri-
mental than blocking a new call, we have also considered a
weighted service denial rate Pb +10Pd. We will also examine
the mean uplink transmitter power level as another figure of
merit.

Figures 3 and 4 examine the impact RSSI hysteresis for
soft dropping with qj = −15 dB. Consistent with [16], it
is found that a small RSSI leads to more handoffs back and
forth between two adjacent bases while large hysteresis delays
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Fig. 3. Avg. power level in dB (Hys = 0, 3, 6 dB)
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Fig. 4. Pd vs. traffic (hys = 0, 3, 6 dB)

the handoff until the mobile is relatively close to the new
base. hence, when an MS employing large hysteresis attempts
a handover, it is more likely to succeed. However, larger
hysteresis causes power levels to be higher than necessary.
These effects can be observed in Figure 4 which shows the
reduction in dropped calls and Figure 3 which displays the
increase in the average power level with increase in RSSI
hysteresis.

Figures 5 through 7 compare the soft dropping algorithm
with a varying lower limit (qj= -5 dB, -11 dB, -15 dB) on
transmitted power. to the fixed target scheme. In Figure 5, We
can clearly observe the improvement in power consumption
when compared to a fixed target. We observe there exists
a trade-off in the selection of the lower limit on power
qj . Reducing qj leads to a considerable reduction in the
transmitter power levels; however, it is also responsible for
overall deterioration in call quality The decrease in power
levels can be attributed to the fact that fewer users will aim
for the upper limit SIR Γj . This tends to reduce the level
of co-channel interference in the system. The result is that a
relatively more calls are admitted to the system (Figure 6) but
fewer calls are dropped (Figure 7).

We have seen that soft dropping can provide noticeable
prformance improvements even in a GSM environment where
the power control is relatively slow and coarse. The general
approach of soft dropping can be applied to almost any power
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Fig. 5. Avg. power level in dB with lower limit qj = −5,−11,−15 dB)
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Fig. 6. Pb vs. traffic (qj= -5, -11, -15 dB)

controlled system. We expect that in other environments,
notably IS-95, the improvements may be even more dramatic.
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