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Abstract—The Signal-to-Interference ratio (SIR) has
been highlighted in the literature to be a most efficient
criterion for several methods aiming at reducing the
effects of cochannel interference, e.g. diversity recep-
tion, dynamic channel allocation and power control. In
this paper we address the problem on how to obtain
fast and accurate measurements of this parameter in
a practical context. We develop a general SIR estima-
tion technique for narrow-band cellular systems, that is
based on a signal subspace approach using the sample
covariance matrix of the received signal. Simulation re-
sults for a GSM like system show that the SIR can be
estimated to within an error of 0.3 dB after only 200
ms, or within an error of 0.1 dB after only 0.6 seconds.

I. INTRODUCTION

Several methods and techniques have been developed to
combat the effects of cochannel interference, to increase
system capacity and improve communication quality in cel-
lular radio systems. Many such techniques have used the
Signal to Interference Ratio (SIR) to assess signal quality,
and where it has been assumed that the receivers (base
stations in the uplink and mobile stations in the downlink)
can measure this parameter in real time during operation.

For instance, in the optimum ratio combining of signals
from a diversity antenna, the signals are weighted with
their corresponding SIR value in each branch. Further, in
[13], it has been shown that an SIR-balancing power con-
trol is optimum in the sense that it maximizes the minimum
SIR for a set of transmitters using a narrow-band channel.
Based on this SIR-balancing property, several distributed
power control algorithms have been derived, see e.g. [11].
The SIR parameter can also be used for handoff and dy-
namic channel allocation [2].

However, in contrast to many studies, in which the SIR
criterion is used and assumed to be easily available, little
attention has been devoted to the problem on how to ob-
tain fast and accurate measurements of this parameter in
a practical context.

The SIR estimation problem for analog (e.g. AMPS)
cellular systems has been studied in [7], [12]. In [7], it has
been shown that by separating the received signal into two
components at different frequencies, where the two com-
ponents are known by the receiver, it is possible to get an

estimate of the SIR.

The study in [12] is confined to systems employing QPSK
modulation schemes. It has been demonstrated by numeri-
cal examples, that the average absolute difference between
the in-phase and the quadrature envelopes are correlated to
the SIR, and could, therefore, be used as an SIR estimator.

The methods above have focused on analog cellular sys-
tems, where the delay spread usually is negligible compared
to the symbol duration. The second generation of cellular
systems, e.g. D-AMPS (IS-54) and GSM, employ high bit
rate TDMA schemes, resulting in time dispersive fading
channels. SIR estimators for this type of systems have re-
cently been studied in [1], [3], [4].

The study in [3] presents an estimation method, named
Signal to Variation Power (SVR) estimator, which is based
on the observation that on a short time scale, the signal
from the desired transmitter will have a constant envelope,
whilst the joint interference and noise signal produce oscil-
lations. The SVR estimator has been applied to a DECT
system in [4]. Numerical results reveal that the estimator
suffers from a large bias for interesting values of the SIR.

Another SIR estimation method for TDMA cellular sys-
tems, has been developed in [1]. The algorithm is ap-
plied during the reception of the training sequence in each
TDMA slot, in which case the receiver knows the transmit-
ted sequence, providing an unbiased estimate of the SIR.
The study in [1] has demonstrated by numerical examples,
that the SIR can be estimated to within 2 dB in less than a
second, when using the training and color code sequences in
a D-AMPS cellular system. The method requires, though,
some knowledge of the channel.

In this paper we develop a general SIR estimation tech-
nique for narrow-band cellular systems, that is based on a
signal subspace method, using the sample covariance ma-
trix of the received signal. The method requires essentially
no information about the channel.

In Section II., we introduce the model and describe our
system. In Section III., we outline some theory from lin-
ear algebra and derive the subspace based SIR estimator
method. In Section IV., we evaluate the performance of the
proposed estimator in an hexagonal cellular system using
the GSM frame structure. Finally, we present our conclu-
sions in Section V.



II. SysTEM MODEL

Consider a TDMA cellular radio system and let us focus
on a generic time slot. The transmit filter, the channel,
the matched filter and the sampler in a TDMA system can
be represented by a discrete time transversal filter with a
channel tap spacing equal to the symbol duration [9]. The
number of channel taps, which determines the delay spread,
is environment dependent. The delay spread, due to multi-
path propagation, is more dominant in urban areas where
more objects causing reflections are present, compared to
suburban areas and open terrain. Assume that the effective
number of channel taps is equal to M.

Let {a;} denote the sequence of transmitted symbols.
The j** received symbol can now be expressed as,

M
ri =Y hi(f)aji (1)
=1

where the index j is used to describe the channel tap co-
efficient, h;(j), that may vary in time. We further assume
that we employ a modulation scheme, e.g. a PSK modula-
tion method, with the property that E[a;] = 0 where a; is
a data symbol.

Note that FDMA cellular systems can also be incorpo-
rated into our model. In such systems the delay spread usu-
ally is negligible compared to the symbol duration, which
corresponds to a transversal filter with M = 1.

If the channel does not vary significantly over L+ M — 1
consecutive symbols, we can form an observation vector, y,
of length L as follows,

y = Ah (2)

where the channel taps are represented by the vector h =

[h1,...,ha]T, and where 7 denotes the transpose of x.
The matrix A is a L x M Toeplitz matrix formed

by any subsequence of consecutive transmitted sym-

bols. For sake of illustration, let the subsequence be
{ay,as2, - ,ap+r-1}. Then the matrix A has the follow-
ing form,
apnr e a2 ajq
ap4+1 as a2
A = lai;] = , ()
AM+L—1 ar+1 ar

where y = [ras -+ rarer—1]" . Since we also will work with
a sequence of observation vectors, let y(k) denote the k"
observation vector formed according to (2), i.e.,

y(k) = A(k)h(k) . (4)

Let us now expand the model to also include in the re-
ceived signal, the signals from N; number of interferers,
and the receiver noise. The received signal from each of the

interfering transmitters can be expressed as in (4). Hence,
we obtain,

Nr
y(k) = Ao(k)ho(k) + > An(k)ho(k) + n(k) ,  (5)

where the index 0 is associated with the desired transmit-
ter. The receiver noise n(k) is modeled as an independent,
zero-mean, complex Gaussian random process with second-
order moments

En(k)n" (D] = o} Iou

where ' denotes the Hermitian transpose of @, o%; is the
noise power, 0; represents the Kronecker delta function,
and I is the identity matrix.

We confine our framework to the case when Aq(k) con-
sists of symbols that are known by the receiver. In TDMA
cellular systems, every burst of symbols within a time slot is
equipped with a training sequence to be used for purposes
such as base station identification, symbol synchronization
and estimation of channel characteristics. The training se-
quence consists of a known pattern of symbols, and is there-
fore used in this study to form the matrix Ag. From now
on, let the index k in (5) denote the k" observation vec-
tor formed by the symbols obtained during the reception
of the training sequence in the k" time slot. The train-
ing sequence is identical for all time slots, which yields
Ag(k) = Ao VEk .

We further assume that the received signals from the in-
terferers are uncorrelated and mutually uncorrelated. This
assumption is motivated by the following reason. In the
GSM and D-AMPS cellular systems, the base stations are
not synchronized. This implies that the time slots from
any of the cochannel interferers may be received anywhere
within the time slot received from the desired transmitter.
Further, the training sequence is short compared to the
entire length of a time slot. Therefore, it is reasonable to
assume that the received symbols from the interferers, dur-
ing the reception of the training sequence from the desired
transmitter, originate from data symbols. From the as-
sumption that the data symbols , excluding the symbols in
the training sequence, for all transmitters are uncorrelated
and mutually uncorrelated, the assumption stated above
follows directly.

From (5), (6) and the assumptions above, the SIR, -,
can be written as follows. For notational convenience, let
h% (k) denote the the j*" channel tap for the n'" interferer
in the k** observation vector. Then, we have

E[h{ (k)AL (k) Ao (k)ho(k)]
E | hE () AT (k) S0 A (k)R (k)| + 0%

Elhg (k) Ag' (k) Ao(W)ho(k)] 0%
Yoty 02 3L E (IR (R)12] + 0%

(7)
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where o2 is the power of the transmitted symbols, 0% is
the power of the desired signal and o7, denotes the in-
terference plus noise power.

Study now the covariance matrix, R, of the observation
vectors, that will be used in the next section to derive the
subspace based SIR estimator. The matrix R can be ex-
pressed as,

R = Elyk)y" (k)] = AoE[hoh1AY +

Nr
+ > EBlAn(k)hn(R)RY (k) AT (k)] + o} T

= A HoA{ + o7 T, (8)

where we have assumed that the channel taps are uncorre-
lated, i.e., E[hIh7] =0, Vi # j.

III. SuBSPACE BASED SIR ESTIMATOR

Consider the situation where each observation vector,
y(k), is of length L, such that L > M. The main prob-
lem that we are confronted with is to separate the desired
signal and the interference plus noise signal from the ob-
servation vector in (5). We solve this problem by making
an eigenvector decomposition of the covariance matrix in
(8).

Let the channel tap covariance matrix Hy in (8) have
rank d. The rank d may be less than the number of chan-
nel taps, M, if the channel taps are coherent, i.e., if they
are identical up to amplitude scaling and phase shift. This,
however, will not affect our SIR estimation method. Since
for all practical cases the matrix Ay has full rank, the co-
variance matrix of the desired signal, AOHOAOH, is pos-
itive semi-definite and has rank d, where d < M < L.
This implies that the observation space, of dimension L
and spanned by the columns of the matrix R, can be par-
titioned into a signal subspace spanned by the columns of
Ay, and into an interference plus noise subspace where only
the power of the interference plus noise is found. This forms
the basis of all signal subspace techniques.

Hence, the covariance matrix R can be expressed in
terms of its eigenvector decomposition,

R=UzZU" (9)

where U = [ey,...,er] consists of the orthonormal eigen-
vectors of R. The diagonal matrix, ¥ =diag(});), contains
the corresponding eigenvalues, where A\; > Ay > ... > AL.
The eigenvalues of R have the following structure,

w1
2

where o5, is the power (variance) of the desired signal along
the i'" eigenvector. From (10), we realize that the d largest
eigenvalues in 3 correspond to the signal subspace. Thus,
if we know the dimension d, then the signal subspace can be

0% +of N, if i=1,....d (10)
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identified. With this at hand and (10), we can obtain the
powers of the desired signal and the interference plus noise,
respectively. This is the basic idea with our estimation
technique. How to find the dimension of the signal subspace
is described below.

The true covariance matrix R is of course not known and
has to be estimated. Since we want to track time variations
of the SIR, we form a moving average or Bartlett estimate of
the covariance matrix from the K most recent observation
vectors. Let n denote the nt" observation vector, after
which we would like to obtain an estimate of the SIR. Then
we have,

Ry== S k). (D

k=n—K+1
It has been shown, e.g. [8], that the eigenvalues of the
sample covariance matrix in (11) is a maximum likelihood
estimate of the eigenvalues of the true covariance matrix
R.

Almost all existing approaches to the determination of

the dimension of the signal subspace are based on the ob-
servation that the smallest eigenvalue of the covariance ma-
trix has multiplicity L — d. We have tested two informa-
tion theoretic approaches, both proposed in [10], the An
Information Criterion (AIC), and the Minimum Descrip-
tive Length (MDL) principle. It turned out that the MDL
criterion obtained by far the best performance, and was,
consequently, chosen for this task. Strong consistency of
the MDL method has been proved in [14].
_ To describe the MDL estimation method, let M > >
Az denote the eigenvalues of the sample covariance ma-
trix in (11). Further, define the sphericity test function,
Tsph (m)7 as

_ 1 ZiL:mﬂ A
)

i=m+1

Tsph(m)

(12)

1 )
N-m
and the MDL objective function, Fyipr,(m), as

Funr (m) = K (L —m) log[Tspn(m)] + %m(QL — m)log(K) -

(13)
The dimension of the signal subspace is estimated as [10]

d = argmin Fyipr,(m) . (14)

From (10),(11) and (14), we now obtain our Subspace
Based (SB) SIR estimator, 4.
Subspace Based SIR Estimator

(1) Make an eigenvector decomposition of the sample co-
variance matrix R,



(2) Estimate the current dimension of the signal subspace,
d, using (12),(13) and (14).

(3) Estimate the interference power according to,

1 L
A2 N
014N = 5 Aj
N r—d Z ’
j=d+1

and the signal power according to,

d
&% = (ZA]') —d&%JrN .

j=1
(4) The estimate of the SIR is then obtained as
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where the factor 1/L accounts for the fact that we have
L samples (symbols) of the received signal within each
observation vector.

In the next section we evaluate the performance of the
signal subspace SIR estimator in (15). We compare its
performance against the performance of the Interference
Projection (IP) SIR estimator proposed in [1]. The basic
idea with the IP estimator is to divide the observation vec-
tor in (5) into short observation vectors of length 2M . The
power of the interference plus noise is then estimated by
projecting the observation vectors into the null spaces of
the submatrices, that are formed from the partitioning of
Ajp. Since the total signal power easily can be estimated,
this method provides an estimate of the SIR. It is impor-
tant to note that the interference projection estimator, in
contrast to the estimator in (15), requires the knowledge of
the current number of channel taps M.

IV. NUMERICAL EXAMPLES

The SIR estimators are evaluated numerically in an
hexagonal cellular system, using the TDMA frame struc-
ture in the GSM specification. A TDMA frame for one car-
rier in GSM consists of eight time slots, where each time
slot, in turn, contains a burst of 148 symbols (bits). In
the middle of the burst, the training sequence consisting
of 26 symbols (bits) is included. The frame rate is 216.69
frames/s. We employ a BPSK modulation scheme with
transmitted symbols a; € {—1,1}. The carrier frequency is
the same as in GSM, f. =900 M Hz.

We confine the simulations to the downlink and consider
the mobile receiver located in the center cell in the hexag-
onal cellular system, where the radius of a cell is 1 km.
We use a fixed channel allocation scheme with reuse dis-
tance 3. The starting position of the mobile receiver is
uniformly distributed over the cell area. The mobile moves

with a constant speed in a direction uniformly distributed
in [0, 27].
The channel tap, h;(k), is modeled as,
hi(k) =

U(KTy)s(kTy) fi(KTp)e 2= (16)

where Ty = 4.615 ms is the frame duration and T, =
3.69 us is the symbol time. The distance dependent path
loss in (16), [(t), is modeled as, I(t) = d(t)~*, where d(t) is
the distance between the transmitter and the receiver. The
shadow fading factor, s(t), is assumed to be log-normally
distributed with a mean of 0 dB, and a log-standard de-
viation of oy = 8 dB. The shadow fading is further as-
sumed to have the time correlation function proposed in
[5], which has been derived based on field experimental
data. If z(t) = (10/0y) log,o s(t), then

Elz(t +7)2(t)] = e V7/X | (17)

where v is the velocity of the mobile user. The parameter
X is the effective correlation distance of the shadow fading,
and is assumed to be 43 m.

The Rayleigh fading factor, f;(t), is obtained from a ray-
tracing propagation package, which provides a time corre-
lated Rayleigh fading process as described in [6]. For simu-
lation purposes, the number of channel taps is taken to be
M =2.

The received powers are determined as follows. The re-
ceiver noise is assumed to be 107> W (=150 dB). All
interferers use the same transmitter power. The received
interference level is set to be 20 dB above the noise floor,
and the signal power is adjusted so that a pre-determined
SIR level is obtained in the receiver.

To evaluate the performance of the two estimators we
use, as performance measure, the expected absolute error,
E[ly —4|], where v is the true SIR and 4 is the estimated
SIR value. Under every estimation algorithm we take 2000
independent trials.

Figure 1 depicts the expected absolute error as a func-
tion of the number of observation vectors, K (the averag-
ing length), expressed in seconds. K = 1 is equivalent to
4.615 ms. Figure 1 shows the performance for different mo-
bile speeds when one interferer is active. Similarly, Figure
2 shows the performance when six interferers are active.

We find that, with the use of the subspace based es-
timator, the SIR can be estimated to within an error of
0.3 dB after only 200 ms, or alternatively, within an error
of 0.1 dB after 0.6 s.

We also observe that the SB estimator is robust against
variations in mobile speeds and number of interferers, in
contrast to the IP estimator.

Further, the SB estimator outperforms the IP estimator
for almost all lengths of averaging. It is only when few
observation vectors are available that the IP method pro-
vides better estimates. This is due to the fact that the IP
technique obtains more than one vector sample within each
received training sequence.
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Fig. 1. The expected absolute error in dB as a function of the obser-
vation interval. The true SIR = 5 dB and the number of interferers
Ny =1.

We have also studied the performance for different values
of the SIR. Both estimators were found to be insensitive to
SIR variations.

Note that we have depicted the performance when
the sample covariance matrix is formed starting from
“scratch”,i.e. by starting with no observation vectors avail-
able. As soon as we have obtained a first estimate of the
SIR, we can start tracking the time variations of the SIR
according to (11). This implies that, during the connection
of call (neglecting an initial phase of approximately half a
second), we will be able to follow the true SIR within an
error of less than 0.1 dB, when the SB estimator is used.

V. CONCLUSIONS

The SIR has been found to be a most efficient criterion
for several radio resource management algorithms, that are
designed to combat the effects of cochannel interference. In
this paper we have studied the practical problem of obtain-
ing accurate real time measurements of this parameter for
narrow-band cellular systems. We have derived an SIR
estimation method, that is based on an eigenvector decom-
position of the sample covariance matrix of the received
signal.

It has been shown by numerical examples that the sub-
space based SIR estimator is able to estimate the true SIR
within an error of 0.3 dB after only 200 ms, or within an
error of 0.1 dB after only 0.6 seconds. Further, the estima-
tor has been demonstrated to outperform the interference
projection estimator, previously proposed in [1].

Since the subspace based method has the ability to track
variations in the channel characteristics, in terms of the ac-
tual number of channel taps, this makes it to an attractive
SIR estimation technique for time dispersive fading chan-
nels.

Number of interferers=6, SIR=5dB
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Fig. 2. The expected absolute error in dB as a function of the obser-
vation interval. The true SIR = 5 dB and the number of interferers
Ny =6.

REFERENCES

[1] M. D. Austin and G. L. Stiiber. “In-Service Signal Quality
Estimation for TDMA Cellular Systems”. In Proc. PIMRC’95,
pp. 836-840, Toronto, Canada, Sep. 1995.

[2] R. Beck and H. Panzer. “Strategies for Handover and Dynamic
Channel Allocation in Micro-Cellular Mobile Radio Cellular
Systems”. In Proc. IEEE 39th Vehicular Technology Confer-
ence, pp. 742-748, San Francisco, CA., May 1989.

[3] A. L. Branddo, L. B. Lopez and D. C. McLernon. “Cochan-
nel Interference Estimation for M-ary PSK Modulated Signals”
Wireless Personal Communications, Vol. 1, No. 1, pp. 23-32,
1994.

[4] A. L. Brandao, L. B. Lopez and D. C. McLernon.
Assessment for Pre-Detection Diversity Switching”.
PIMRC’95, pp. 577-581, Toronto, Canada, Sep. 1995.

[5] M. Gudmundson. “Correlation Model for Shadow Fading in
Mobile Radio Systems”. Electronic Letters, Vol. 27, No. 23, pp.
2145-2146. Nov. 1991.

[6] W. Jakes. Microwave Mobile Communications. John Wiley and
Sons, 1974.

[7] S. Kozono. “Co-channel Interference Measurement Method for
Mobile Communication”. IEEE Trans. on Vehicular Technol-
ogy, Vol. VT-36, pp. 7-13, 1987.

[8] R. Muirhead. Aspects of Multivariate Statistical Theory. New
York: John Wiley and Sons, 1982.

[9] J. Proakis. Digital Communications. McGraw-Hill, second ed.,
1989.

[10] M. Wax and T. Kailath. “Detection of Signals by Information
Theoretic Criteria”. IEEE Trans. on ASSP, ASSP-33(2), pp.
387-392, Apr. 1985.

[11] R.D. Yates. “A Framework for Uplink Power Control in Cellular
Radio Systems”. IEEE JSAC, Vol. 13, No. 7, Sep. 1995.

[12] S. Yoshida, A. Hirai, G. L. Tan, H. Zhou and T. Takeuchi.
“In-Service Monitoring of Multipath Delay-Spread and C/I for
QPSK Signal”. In Proc. IEEE }2nd Vehicular Technology Con-
ference, pp. 592-595, Denver, CO., Apr. 1992.

[13] J. Zander. “Performance of Optimum Transmitter Power Con-
trol in Cellular Radio Systems”. IEEE Trans. on Vehicular
Technology, Vol. 41, No. 1, Feb. 1992.

[14] L. C. Zhao, P. R. Krishnaiah and Z. D. Bai. “On Detection of
the Number of Signals in Presence of White Noise”. Journal of
Multivariate Analysis, 20:1:1-25, 1986.

“Quality
In Proc.



