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ABSTRACT

The safety of vulnerable road users (VRU) (e.g., pedestrians, bi-
cyclists) can be improved by sharing their position and context
information with vehicles over a wireless communication channel.
However, challenges exist in managing transmission in densely
populated areas with large numbers of VRUs, since these transmis-
sions may overload the wireless channel leading to transmissions
errors and increased battery consumption of the VRU device. This
paper hence proposes a contextual transmission policy to address
the above challenges. The policy leverages the GPS information
available at a personal VRU device to control the message trans-
mission rate for the VRU device. VRUs walking across a street are
deemed highly vulnerable and use a larger message transmission
rate. Others on the sidewalk are less vulnerable and transmitting
fewer messages per time interval. Simulations of a Manhattan VRU
scenario show that even with inaccurate GPS readings, significant
numbers of transmission can be reduced, which results in a reduc-
tion of information age from being 90% of the times less than 1700
msec to 90% of the times less than 710 msec.
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1 INTRODUCTION

Vulnerable Road Users (VRUs) are traffic participants who are at
higher risk for serious injury or death in case of an accident than
car occupants. Examples are pedestrians, pedalcyclists, and road
workers. Among them, pedestrians represent 84% of the 6421 total
United States VRU fatalities during 2015 [22]. Research by the Na-
tional Highway Traffic Safety Administration (NHTSA) also shows
a 10% increase in the VRU fatality rate from 2014 to 2015 [21]. These
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trends and the significant number of accidents motivates the quest
for technology solutions to improve VRU safety.

One line of work to improve VRU safety explores the use of
smartphones or other personal devices to send Personal Safety Mes-
sages (PSM) which inform surrounding vehicles of the presence
and location of VRUs. For example, Tahmasbi et al. [29] developed a
Dedicated Short Range Communications-based collision detection
system wherein a vehicle and a smartphone can directly commu-
nicate. To ensure that approaching vehicles have the most recent
information about a VRU, including its location, speed and heading,
such PSM messages must be sent repeatedly. Specifically, previ-
ous work [28] suggests transmissions of PSMs at rates of up to
5 messages per second. Concerns over the battery consumption
of the VRU device and a congested wireless channel make long
operation at high rates undesirable. In fact, our prior simulation
results [26] from a Manhattan model show that such PSM transmis-
sions could exhaust the capacity of the communication channel and
lead to packet reception errors due to high interference levels. This
raises questions about the performance of communication-based
pedestrian safety technologies in crowded areas in the absence of a
congestion mitigation method.

For vehicle-to-vehicle (V2V) safety messages, prior work has
addressed channel congestion through a congestion control algo-
rithm. It focuses on adjusting the message rate of each vehicle based
on vehicle dynamics or parameters such as Channel Busy Percent-
age (CBP) measurements (e.g.,[15, 19]). The characteristics of PSM
transmissions differ from V2V transmissions, however. First, the
density of pedestrians can be higher than that of vehicles, which
lead to even more congested channels. Second, the risk distribution
for pedestrians is significantly more biased than that for vehicles.
Many VRUs move in inherently more safe locations, such as a side-
walk, where the risk of colliding with a vehicle is very small. Other
pedestrians, for example those crossing the street, are at higher risk
and information about them is significantly more valuable to nearby
vehicles for safety applications. Existing V2V congestion control
algorithms do not account for this and would lead to relatively
uniform reductions in message rate over all pedestrians. Naively
applying them here could lead to unnecessary transmissions from
pedestrians that are safe and potentially too few transmissions from
pedestrian at risk.

To address this challenge, this work proposes a Contextual Trans-
mission Policy (CTP) for VRUs based on a smartphone sensor-based
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classification algorithm to detect when VRUs are on the road. The
CTP is orthogonal to the congestion control algorithms and can
be viewed as a prioritization strategy that maintain high rates for
pedestrians at risk but seeks to reduce unnecessary message trans-
missions from those who can be determined to be at very low risk.
To assess risk, the classifier uses several contextual parameters such
as movement and type of motion but primarily relies on location
of the VRU. It estimates the VRU distance from key crossing points,
locations that are frequently used by pedestrians to cross the street.
Since Global Positioning System (GPS) readings are frequently in-
accurate in urban canyons, where the error is more than tens of
meters, the algorithm uses additional guard zones around these
crossing points based on positioning error estimates. If the VRU
is located sufficiently far away from the crossing point at the road
border, that is outside the guard zone, the VRU is judged at low risk
and assigned a low message rate. The guard zone is determined
adaptively based on GPS error estimates to maximize the reduction
of the unnecessary PSM transmissions while not missing any VRUs
that cross the street.

While CTP is compatible with different communication archi-
tectures, the simulation implementation and evaluation assumes
Dedicated Short Range Communication (DSRC) technology, which
enables low-latency message transmissions. A full implementation
could build on smartphone prototypes capable of transmitting PSMs
that have been demonstrated by industry [2]. The contributions of
this work can be summarized as follows:

e Introducing a contextual transmission policy that adjusts
transmissions rate for VRUs primarily based on their location
and can tolerate GPS positioning inaccuracies

o Evaluating the risk classification accuracy of the algorithm
in a Manhattan-derived simulation model

e Examining the reduction in PSM transmissions and improve-
ments in pedestrian-to-vehicle communication performance
by applying the contextual transmission policy in a Manhat-
tan simulation scenario

2 BACKGROUND

Recent activities from the Intelligent Transportation System (ITS)
community demonstrated growing interests in using wireless com-
munication to improve the safety of VRUs. For example, the Volpe
National Transportation System Center (NTSC) analyzed the na-
tional crash database and prioritized pre-crash scenarios that lead
up to traffic accidents involving pedestrians and vehicles [3]. The

project helps lay the foundation to develop new wireless communication-

based pedestrian-to-vehicle (P2V) cooperative safety applications.
Meanwhile, the US Department of Transportation (USDoT) funded
the city of Tampa in Florida through its Connected Vehicle Pilot pro-
gram to explore a proof-of-concept P2V solution [5]. The goal of the
effort is to provide a safer traveling experience for pedestrians at in-
tersections. Further, a working group of the Society of Automotive
Engineers (SAE) recently worked to publish a P2V communication
standard J2945/9 [27] which defines a set of preliminary technical
specifications for using the Dedicated Short Range Communica-
tion (DSRC) technology to transmit PSMs. This standard will serve
as a guidance for manufactures to build devices supporting P2V
communications in the U.S.

2.1 Challenges

While the above activities help advance the P2V communication
technology, the majority of the ITS community in the past decade
has focused on inter-vehicle communications and P2V is still at an
early stage. Several technical challenges remain to be addressed be-
fore such technology can be deployed. For example, the DSRC com-
munity aims for lane-level accuracy in its messages but the localiza-
tion technology required to provide at least lane-level accuracy [27]
is not available to today’s portable devices (e.g. smartphones), which
will likely be the main type of equipment transmitting PSMs. This
affects the performance of any P2V communication-based warning
system that needs relative position between a VRU and approaching
vehicles to assess risks of having a traffic accident. This calls for
further work on P2V algorithms that are less dependent on precise
positioning information.

Another technical challenge, as reported in [26], is high channel
usage which is caused by an overwhelming amount of VRU devices
transmitting PSMs through a channel of limited bandwidth. The
overloaded channel results in significant transmission errors for
PSMs and may degrade the networking performance for all other
types of messages sharing the same wireless medium. However, it is
nontrivial to address this scalability challenge for PSM transmission
by simply applying congestion control algorithms from the V2V
cooperative safety community which has extensively investigated
the scalabiilty issue for Basic Safety Message (BSM) transmissions.
The primary reasons are twofold:

First, a VRU device usually has a limited capacity of battery,
making it undesirable to transmit PSMs at a high message rate all the
time, in other words, regardless if a VRU is exposed to a possibility
of a traffic accident. This is different with V2V communications
that are not subject to energy constraint and could transmit BSMs
independent of the presence of a vehicle crash threat. As a result,
the developed V2V congestion control algorithms, which allow
vehicles to always transmit BSMs at a large rate when the channel
is not deemed congested, do not directly suit management of PSM
transmission.

Second, VRU experiences a set of safety contexts for which
the V2V congestion control algorithms may not have an appropri-
ate wireless resource allocation when channel is overused. More
specifically, popular V2V congestion control solutions emphasize
fairness when allocating wireless resource to vehicles [15, 19, 25].
This leads vehicles with equal chances to transmit BSMs since it
is both important to hear others and to be heard on the road. For
PSM transmissions, however, VRUs have no interests in hearing
each other for road safety purpose. They instead need to be known
by vehicles. Their vulnerability with respect to oncoming vehicles,
as compared to fairness, could be a better metric based on which
wireless resources allocation can be determined, particularly since
the risk of collision with a vehicle is very unevenly distributed for
pedestrians (located in-street vs sidewalk, for example).

2.2 A Contextual Approach

The above analysis highlights the need to pursue a new PSM-
oriented congestion control solution. A promising research direc-
tion is to understand VRU safety context and focus transmission
of PSMs more on the critical moments where such a message is



necessary. This direction, given the above discussion, could enable
an algorithm to reduce both battery consumption for a VRU device
and congestion on the wireless channel. In our previous work [26],
we have demonstrated that if the pedestrian’s contextual informa-
tion can be collected accurately, it could help significantly reduce
the communication traffic load over the channel.

To extract pedestrian’s contextual information, prior work has
focused on using data from smartphone’s built-in sensors. Our
previous work [13, 16, 17] have studied the feasibility and limita-
tions of using built-in sensors to identify pedestrian risk scenarios.
In [16], we analyzed the performance of positioning and inertial
sensing techniques for in-street pedestrian detection in both rural
and urban scenarios. Further in [13], we demonstrated the data ob-
tained from multiple sensors (e.g. GPS, gyroscope, compass, etc.) on
the smartphone can be explored to detect pedestrian’s movements,
such as turning left or right, and then predict when the pedestrians
are about to cross the street. However, both work identified that
the performance of the proposed detection techniques can get po-
tentially affected by the high-rise buildings in the urban area due
to large errors in the positioning.

To tackle the positioning challenges, we created a new detection
technique based on shoe mounted inertial sensors which can char-
acterize pedestrian’s on-ramp walking and the process of stepping
down from a street curb without fine-grained GPS information [17].
Although the performance of the system was demonstrated encour-
aging, the requirement of additional shoe-mounted inertial sensor
may limit the large-scale deployment of the system.

Tang et al. [30] proposed an algorithm to detect street crossing
attempts of pedestrians by using images from their smartphone cam-
era. The algorithm detects distracted pedestrians who cross a street
while using a phone, e.g. texting. However, this algorithm requires
pedestrians to hold their smartphones while walking, which may
not be the case in many situations. Bujari et al. presented in [11] an
algorithm which leverages the accelerometer on the smartphon to
detect street-crossing events after pedestrians waited for the green
phase of a traffic light. The algorithm was cost effective. However,
unpredictable human behavior lead to a high false positive and
negative rates.

This paper pursues an approach that relies on the sensory data
on the smartphone to extract pedestrian’s contextual information
without any special interaction between the smartphone and the
pedestrian. The information is further used to develop a CTP that
sends PSMs for a pedestrian based on his/her perceived safety level.
Our design goal for the CTP is to reduce the transmission of PSMs as
much as possible without compromising the safety of a pedestrian.

3 CONTEXTUAL TRANSMISSION POLICY

The key idea of the proposed CTP is to track multiple context clues
that indicate that a smartphone user is not currently a vulnerable
road user and to reduce or eliminate personal safety message trans-
mission in this case. In particular, the design focuses on the key
challenge of identifying the many smartphone users who are in
relatively safe location on sidewalks or in pedestrian zones even
when the positioning data available to the smartphone is affected
by errors on the order of tens of meters, as frequently the case in ur-
ban canyons. It accomplishes this through a map of common street

crossing points, where pedestrians walk onto the street, and an
adaptive guard zone around these crossing points that is adjusted
based on the positioning error estimate.

3.1 Idealized Candidate CTP

For the sake of clarity, let us first ignore possible measurements
errors and consider a CTP for operation under ideal conditions.

The first context rule of the algorithm eliminates transmissions
when the smartphone remains stationary for a longer period of
time tg, a time interval which would be configured on the order
of several minutes. Vulnerable road users usually move and very
rarely sit or remain stationary for an extended period of time. In
contrast, smartphone users inside buildings, restaurants, or cafes
may sit or put aside their smartphone for longer periods of time.
Modern smartphone contain low-power inertial sensors that can
efficiently track such movement, further motivates this baseline
rule.

When motion is detected, the transmission policy uses inertial
techniques to determine the type of motion (walking, running,
bicycle, in-vehicles, train) using algorithms as discussed in prior
work [25]. The CTP will transmit PSMs when walking, running,
and bicycle transportation modes are detected but not for vehicle
or train occupants, which are not considered vulnerable road users
(and vehicles are expected to have their own DSRC transmitters).
When running or bicycle modes are detected, the transmitter can
remain in higher-risk mode (i.e. more frequent transmission) due
to the higher speeds involved and the shorter duration of such
activities compared to time spent walking.

The primary challenge then lies in assessing risk in the walking
context. The walking context may be further refined by using in-
door/outdoor classification techniques [24], in which case transmis-
sions can be disabled indoors. These algorithms generally consume
more power than movement detection, which motivates their use
as a secondary algorithm that is only periodically active when a
user is walking. Note though that complete deactivation of indoor
transmissions may create risks in indoor parking garages.

Ideally, the walking context should also be further refined by
using in-street context information, since the majority of pedestri-
ans usually moves in relatively safe sidewalk or pedestrian plaza
locations. With ideal sensor and map information, the CTP could
use the VRU’s location to examine if the VRU is located on the
road simply by comparing the most recent GPS location Lj,es¢
reported by the smartphone, with the borders of nearby sidewalks
and streets. To perform such a comparison, L;,;.s; would need to
be accurate to about one meter. Moreover, a carefully calibrated map
is required, where boarders of streets and sidewalks are accurately
marked. There are two primary challenges with the aforementioned
method: 1) Many electronic maps define streets only with their cen-
terline and do not precisely delineate sidewalks. 2) GPS sensors
on smartphones exhibit tens of meters of error in urban canyons.
Therefore, a direct comparison between Lj,;s; and road-sidewalk
borders is unlikely to work. Since no sufficiently accurate in-street
detection algorithm exist that can operate in dense urban areas and
only rely on smartphone sensors, we focus the remainder of the
discussion on this aspect.



3.2 CTP with Walking Risk Assessment

Without access to the detailed map and accurate location of VRUs,
the proposed design uses a proximity heuristic, to compare VRU’s
noisy GPS location with the locations where VRUs frequently cross
the street. Such crossing points, C;, can be manually marked on a
map stored in the phone, or can be potentially determined auto-
matically by overhearing the positions reported in others’ PSMs
over a longer span of time. The rationale is that if a pedestrian is
in proximity of any such crossing point, there is a higher chance
of crossing the street. Conversely, if the pedestrian is sufficiently
far away from these crossing points and the risk of a mid-block or
random crossing is low, the frequency of PSM transmissions can
be reduced. Generally, the algorithm is intended to be conservative,
it errs on the side of classifying pedestrians as HighVulnerable
while still located on the sidewalk rather than putting vulnerable
pedestrians in danger by misclassifying them as safe.

More precisely, as shown in Algorithm 1, the CTP’s main part
(line 3-13) executes only if the VRU is moving/walking (line 1).
Otherwise, the VRU is marked LowVulnerable. In our work, the
accelerometer on smartphones is used to analyze VRU movement
which, once detected, triggers the algorithm to update the proxim-
ity threshold drp, (line 2), as discussed later. Then, the classifier
algorithm calculates a distance d; between the latest reported lo-
cation Lj,.s; and each nearby crossing location C; from the map,
where i = 1,2..N and N is the number crossing points stored in
the phone’s map within a predefined radius around the device. If
the condition d; < drpp, is satisfied for at least one i, then the VRU
is marked as HighVulnerable, otherwise as LowVulnerable.

Algorithm 1: CTP Algorithm
Data: Ci, Ligsests €rTL-latest> Wmax

Result: Vulnerability level
1 if VRUIsMoving then

2 drpy — maximum(a X errp_jgrest> Wmax)
3 foreach Crossing point C; do

4 d; « distance between L;;;.s; and C;
5 if d; < drp, then

6 mark this VRU as HighVulnerable
7 return

8 end

9 end

10 if RandomCrossingDetection then

11 mark this VRU as HighVulnerable

12 return

13 end

14 end

15 mark this VRU as LowVulnerable

16 return

The key to addressing positioning inaccuracies lies in the choice
of the threshold drp, which defines a guard zone around the cross-
ing points. While a fixed, conservative drj, would simplify the
algorithm, we consider an adaptive threshold to address the chang-
ing GPS error magnitude over time. The algorithm monitors the

GPS error errj_ja;es; reported by the smartphone! and multiplies
it with a safety coefficient o to obtain drj,. Note though that the
street-width wp,4x should be a lower bound for drp,,. The maxi-
mum nearby street width wy,4x can be obtained from maps such
as OpenStreetMap [23] or could potentially be calculated using
differences between nearby crossing points C;.

To accommodate possible mid-block crossing and stepping into
the street at other random locations, the algorithm can incorporate
additional heuristics (line 10-13). First, stepping off a curb results
in larger acceleration measurements than regular steps [17]. Sec-
ond, in areas with sidewalks, stepping off the curb other than at
an intersection is often preceded by a change in direction, which
can be monitored using inertial sensors on phones. The algorithm
should revert to HighVulnerable classification when such condi-
tions are detected. This is indicated in the algorithm with the
RandomCrossingDetection condition (line 10).

4 EVALUATION

We study the risk classification accuracy and the impact of the
CTP algorithm on network performance using a simulation model
spanning several blocks around Times Square in Manhattan with
pedestrian movements generated using the SUMO traffic generator.

4.1 Evaluation Metrics

To measure how well the proposed CTP classifier can detect the
VRUs crossing streets, we select Recall and Specificity metrics.
Recall is defined as:

TruePositives
Recall = — - 1)
TruePositives + FalseNegatives

A greater Recall value indicates that more pedestrians who are
crossing the street have been correctly classified as HighVulnerable.
To err on the side of safety we choose a minimum threshold of 95%
for Recall. Parameter choices that led to Recall values below this
threshold, were not further evaluated.

Instead of Precision, Specificity is considered the secondary cri-
terion. Specificity, or the true negative rate, directly represents the
ratio of outcomes that correctly classifies VRUs on the sidewalk,
which better reflects our goals. The Specificity is defined as:

TrueNegatives

()

A greater Specificity value indicates a higher true negative rate,
i.e. more pedestrians who are safely walking on the sidewalk were
correctly classified as such. Higher Specificity means that more
unnecessary PSM transmissions can be avoided. Specificity is there-
fore another indirect indicator of energy efficiency.

Specificity =
pecificity TrueNegatives + FalsePositives

4.1.1  Network Performance. We evaluate the impact on network
performance in terms of the channel busy percentage, packet error
rate, and information age. Since we focus safety applications, the
PER and Information Age calculation only considers transmissions
where the transmitter is actually at risk (in the street) as determined
by ground truth simulator data.

! Android, for example, provides the getAccuracy () method, which returns a floating
point number indicating the radius of 68% confidence for the phone’s position [7].



Channel Busy Percentage (CBP) rises with channel load and
very high CBP is undesirable because it degrades communication
performance due to higher chances of collision. It is defined in Eq.
3.

tBusy

CBP = (3

tCBPwindow
where IcBpyindow i the CBP measurement window and tpysy is
the time period during which the channel is considered as busy by
the simulator.

The Packet Error Rate (PER) combines errors due to low received
signals (large distance) and due to collisions. To allow separating
these, we calculate PER separately for different transmitter-receiver
distances using 30m distance bins. In our simulations, the PER is
calculated based on the transmissions carried out in Times Square
area (the red box in Figure 2). That is, if the transmitter is within the
red box the transmission is accounted for, regardless of the receiver
location.

The Information Age reflects how fresh the pedestrian’s informa-
tion is at the receiver [18]. The information age is the time since the
last successfully received message, which contains the last position
update from the pedestrian. To illustrate this, Figure 1 shows a time
diagram for communication between two transceivers. The infor-
mation age increases linearly with time and resets to zero every
time a message is successfully received. The simulator samples in-
formation age periodically, illustrated by samples 1-4 shown on the
right side of Y axis. We further calculate the cumulative distribution
function (CDF) of these values over all transmitter-receiver pairs
where the transmitter is a VRU located on the street and transmitter-
receiver distance is less than 150 meters. Information age increase
when unnecessary transmission lead to channel congestion due to
the associated collisions. It also increases when an in-street VRU
is misclassified since this reduces the message rate of that node. It
therefore reflects overall CTP performance.

Information Age sampling Intervals
L B e B e e

At

Information Age Samples

v
Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx
Time

Figure 1: Communication between two transceivers and In-
formation Age sampling over time

We also report the total number of transmissions by all the VRU
devices during 85 seconds of simulation, which is approximately
proportional to the energy overhead of these techniques. The pro-
posed CTP, VRU devices neither need to communicate with each
other nor receive information from vehicles. They can operate in
TX-only mode, fall back into power-save modes immediately after
each transmission.

4.2 Simulation Setup

The proposed classifier and its impact on network performance is
evaluated by using the ns-3 simulator [4]. To generate more accurate
results, the simulator is modified to implement frame capture [6, 12].
PSMs are broadcasted over one-hop on a 10 MHz channel at 5.9
GHz band. As for the path loss model, different models are used
depending on the link type between the transmitter and receiver
at the time of the communication. If there is no building between
the pair, a log distance model plus Nakagami fading is used. If at
least one building is in between, but the locations of the pair are
on different legs of the same intersection, then the proposed loss
model of [20] is used. Finally, if the pair are located on parallel street
with at least one building in between them, then it is assumed that
the packet is lost due to the attenuation from the structure of the
building. More detail can be found in [26]. Table 1 shows important
simulation parameters.

Table 1: Simulation parameters

Parameter Value
tCBPwindow 200 msec
CWhnin 15
AIFSN 2
Packet size 316 bytes
Data rate 6 Mbps
Transmission power 20 dBm
Noise floor -98 dBm
Energy detection threshold -85 dBm
Channel bandwidth 10 MHz
GPS error model Gaussian dist.
p=20m
Simulation time 90 sec

Since the performance of the proposed classifier depends on the
position information reported by the GPS devices, an urban canyon
environment is considered as the simulation scenario due to its
challenging signal propagation situation for GPS signals. Figure 2
shows the neighborhood around Times Square in New York city.
The movements of cars, pedestrians, and bicyclists are simulated
by SUMO [9]. The aforementioned model has been extended from
work [26] in that the mobility traces are simulated for every road
way highlighted in blue while retaining the focus on high node
density around Times Square. Another reason for choosing Times
Square neighborhood is its high density of pedestrians in the area
which helps to evaluate network performance under a near worst-
case network load.

The generated scenario includes approximately 400 vehicles,
2300 pedestrians, and 30 bicycles across 7th avenue, 45 Street and
Broadway. Note that only pedestrians and vehicles which are out-
doors are modeled, that is people inside buildings, and vehicles
parked in parking areas are not transmitting and receiving PSMs.
Also, we do not evaluate mid-block and random crossings because
it is not supported by the SUMO mobility simulator used in this
work and we do not yet have suitable location traces.



Figure 2: Simulation scenario map - Times Square, NY, USA

4.3 Algorithms and Baselines

Our CTP algorithm assigns 1Hz as PSM message rate to pedestrians
which are classified as LowVulnerable, i.e. located on sidewalk, and
5Hz to pedestrians which are determined to be HighVulnerable.

We compare the achieved performance by the proposed CTP,
with an ideal oracle classifier that relies on accurate simulator
information and maps to determine whether a VRU is located in
the street or on a sidewalk. In addition, a baseline algorithm where
all pedestrians transmit PSMs at 5Hz is used.

4.4 GPS Error Model

The implemented GPS error model in this work is using a magni-
tude positioning error with Gaussian distribution with mean of 20
meters, and angle of the error with uniform distribution between
0-360 degrees. The error samples are assumed uncorrelated. While
not ideal for the urban canyon environment, this model provides a
first approximation of expected errors. GPS measurements in urban
canyons are distorted because of attenuation, multipath, and shad-
owing effects. Multipath occurs when signals from satellites bounce
off buildings and reach the receiver’s antenna via different paths
where the traveling times for those paths are longer than that of the
Line-Of-Sight (LOS) path. Attenuation and shadowing can block
the LOS path. GPS error distribution under LOS reportedly follow
a normal distribution or Rayleigh distribution with no correlation
between samples [1]. Under Non-Line-Of-Sight (NLOS) the error
depends mostly on the obstructions’ structures [10]. Related studies
report 20 meters average and up to 40 meters GPS error for urban
environments [14, 17]. Real GPS measurement will be incorporated
in future work.

5 RESULTS

We begin with risk classification accuracy and then examine the
impact on network performance. Note that all results have been
obtained from five simulation runs with different mobility traces,
each 90 seconds simulation runtime. The results are furthers av-
eraged across all five runs where 5 seconds of transient state of
each simulation has been excluded from the metric calculation. The
error bars are showing the minimum and maximum values obtained
across different simulation runs.

Figure 3 shows comparison between the Recall metric and the
Specificity metric for the proposed proximity-based classifier for
different drp,, configurations. A trivial fixed proximity threshold is
also examined, where drp, = 10m in order to show the drawbacks
of such approach. To plot this figure, the classifier decision is exam-
ined every 200 msec for all the VRU devices in the simulation. Then
Recall and Specificity are calculated and collected for each interval.
At the end, the collected values are further averaged across the
simulation duration.
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Figure 3: Classifier evaluation

Note that 68% confidence for the reported GPS error by the de-
vice is not modeled when generating GPS errors in the simulations.
Therefore, the CTP algorithm is simulated where & = 1 and = 2.
Moreover, in order to show the impact of movement monitoring
before marking a VRU as HighVulnerable, two cases are considered
for simulation. The first case is where the CTP considers the move-
ment as the prerequisite to be marked as HighVulnerable, labeled as
+Moving, and when it overlooks the movement. All these configu-
ration options result in four variations of CTP. These configurations
are further compared with baseline and the Oracle Solution. Each
figure includes a red bar/curve representing the Oracle solution as
well as a bar/curve for the baseline where applicable.

The left side of Figure 3 shows the comparison of classifier’s
Recall. As expected, the Oracle solution has 100% Recall. The out-
lier, however, is the configuration where drj,, = 10m. In this case,
shown by the yellow bar, almost 25% of VRUs on the road are
marked as virtually safe by mistake. The result is not greater than
the threshold described in 4.1, as this type of wrong classification
potentially puts the VRU’s safety in jeopardy. Moreover, even if
better results can be achieved by further optimizing the predefined
fixed threshold, this solution is not reliable since in some challeng-
ing scenarios, e.g. in an urban canyon, GPS errors are time-varying
and can be biased for several tens of meters [14]. Therefore, a con-
stant threshold based solution, i.e. drp, = 10m, is incompetent in
these scenarios and is not considered for further analysis.

As discussed earlier, we consider the Recall value of 95% as the
minimum performance, which all of the four adaptive approaches
can meet. This indicates that most of the VRUs who are cross-
ing the street have been correctly identified by the proposed CTP
classifier as HighVulnerable. The second priority is to reduce the
cases where VRUs in virtually safe situations are misclassified as



HighVulnerable, i.e. VRUs located on the sidewalk are wrongly
identified as in-street. Looking at the right side of Figure 3, we
observe the configuration where & = 1 and movement monitoring
is applied, outperforms the other configurations with a degraded
Recall value of 1-4%. The simulations results show that our classifier
is able to achieve more 96% Recall and 75% Specificity.
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Figure 4: Channel load indicators; a) Channel Busy Percent-
age, and b) The number of transmitted PSMs during the sim-
ulation

Figure 4a shows the average CBP for different configurations of
the proposed CTP. The CBP values are measured every 200 msec at
the center of 7th avenue and 45th street intersection, and then are
averaged over the simulation duration. Figure 4b shows the total
number of transmissions sent by all the VRU devices in the simula-
tion. We observe that although the total number of transmissions
sent by VRUs differs from one configuration to another, the CBP
values remain close to each other. For example, the difference of
CBP values between baseline 5Hz and adaptive threshold using
reported GPS as dryp,, is only 2%, but latter sends 50% more PSMs.
This is because when the channel load is high, CBP values are no
longer linearly (or near-linearly) proportional to the number of
transmissions on the channel. Therefore, in these high channel
load scenarios, the number of transmissions is a better indicator
than the CBP for energy consumption. In general, the proposed
CTP solution can reduce the number of transmissions by 15%-58%
depending on the different configuration and different trade-off ob-
jectives. However, due to the very dense scenario of this work, the
wireless channel is over-saturated and even reducing transmissions
by half does not mitigate the CBP as much.

Figure 5 shows the age of information contained as discussed
in 4.1. The Information Age is sampled every 10 msec and the
calculation is limited to the cases where the transmitter is a VRU
in the street and is less than 150m away from the receiver. The
observation is that with Oracle solution, about 90% of age samples
are less than 440 ms. However, baseline 5Hz algorithm provides
1700 msec for the same criteria. As our CTP solutions, for the
CTP configuration, where @ = 1 and the movement condition is
considered, 90% of samples are less than 710 msec.

Such improvement when CTP is used is primarily because of
the unnecessary transmission reduction that consequently reduces
the packet collision on the wireless channel. Figure 6 shows the
calculated PER for in-street VRUs. The comparison between differ-
ent CTP configurations and the baseline algorithms shows that our
CTP solution with the configuration with @ = 1 and the movement
condition checker can improve the PER up to 18%.
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Figure 5: Information Age comparison for in-street VRUs
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Figure 6: Packet Error Ratio comparison for in-street VRUs

Since the distribution of GPS errors could potentially affect the
results, a question may arise about the impact of the general accu-
racy of the GPS locations provided by smartphones on the proposed
CTP algorithm performance. Table 2 presents the impact of the GPS
accuracy on the CTP algorithm where the « = 1 and movement
checker is employed. The general observation is that the perfor-
mance of the classifier is preserved with different levels of GPS
accuracy assumptions. However, for the configuration that the re-
ported GPS error is not compared with the maximum width of
nearby streets in the process of adjusting drp, (look at the two
rightmost columns), the Recall is degraded and the Specificity is im-
proved as more accurate GPS locations provided. The main reason
for this change is that the extremely low drp,, values would not sat-
isfy the distance comparison of line 5 in Algorithm 1. Consequently,
many in-street VRUs are misclassified as LowVulnerable.

Table 2: Impact of GPS accuracy on CTP classifier perfor-
mance

Comparing with Street Width?
Classifier Conf. | perr yes no

Recall | Spec. | Recall | Spec.
a =1& Mov. 20m | 96.90 | 75.61 | 95.88 | 76.75
a =1 & Mov. 10m | 98.69 | 79.53 | 91.86 | 87.73
a=1& Mov. 5m | 9893 | 78.68 | 79.89 | 93.62




6 DISCUSSION AND FUTURE WORK

Further Congestion Mitigation. Note that after applying CTP
the chosen message transmission rate can be further regulated
through a channel congestion control mechanism. CTP primarily
separates smartphones into distinct priority classes. The message
rates assigned to each class could then be adjusted to the current
channel load. To achieve this goal, one possible future step would
be examining weighted message rate based congestion control
algorithms such as Bansal and Kenney’s work [8], on top of the
presented classifier. This could result in further improvements in
network performance metrics.

Bicyclists with Smartphones. In future, some bicycles could
also be equipped with a dedicated VRU device which can be ac-
tivated when moving instead of simply relying on the bicyclist’s
smartphone to transmit PSMs. One remaining challenge would be
avoiding duplicate transmissions from both the smartphone and
the bicycle device. This can be resolved at the cost of higher en-
ergy consumption by making smartphones periodically listening
to the channel and monitoring it for matching movement profiles,
i.e. speed, heading, and location.

Energy Trade-offs. In our current design, smartphones are
not assumed to listen to the channel to save energy. This allow
their wireless chipsets to enter sleep mode while not transmitting.
However, there is a trade-off in that it also causes the smartphone
to miss information, for example about the presence of vehicles,
which could also enable energy management techniques such as not
transmitting when no vehicles are nearby. In the current simulation
scenario, this would not have been effective since the scenario is
so dense that there are a lot of cars in the communication range of
every VRU in the scenario. More generally, though, this remains
an interesting topic for future work.

7 CONCLUSIONS

In this paper, we argued that the safety of Vulnerable Road Users
(VRU), in particularly pedestrians, depends on their location more
than their speed and designed a Contextual Transmission Policy
(CTP) to account for this. While the overall CTP relies on multiple
forms of context, we have focused on risk classification of pedes-
trians that are walking outdoors. To give priority to VRU’s in the
street, the CTP identifies potential in-street VRUs with a classifier
that checks for proximity to common crossing points and can also
incorporate additional crossing detection heuristics. VRUs that are
potentially in the street maintain a higher message rate while those
determined to be relatively safe off-street use reduced message
rates. Simulation results show classifier accuracy of more than 96%
Recall and 75% Specificity and an improvement in information age
from less than 1700 msec to less than 710 msec in 90% of the times.
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