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This report describes the approach, implementation and experiments 
done for parallelizing sorting application using multiprocessors on 
cluster by message passing tool (MPI) and by using POSIX  
multithreading (Pthreads). Benchmarking using 1MB sort and Minute 
sort were done .Pivot optimization techniques are also discussed for 
worst case scenarios in quicksort. 
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1. Project Motivation and goals 
 

 
Sorting is one of the fundamental problems of computer science, and parallel algorithms 
for sorting have been studied since the beginning of parallel computing. Batcher’s -depth 
bitonic sorting network [3] was one of the first methods proposed. Since then many 
different parallel sorting algorithms have been proposed. 
 
Some of the most common applications of sorting have been Sort a list of names, 
Organize an MP3 library, Display Google PageRank results. Some other applications like 
finding the median, finding the closest pair, binary search in a database, finding duplicates 
in a mailing list could also make use of efficient sorting algorithms to improve the 
performance. 
 
Sorting is an important part of high-performance multiprocessing. It is also a core utility for 
database systems in organizing and indexing data. Sorting may be requested explicitly by 
users through the use of Order By clause. 
 
 
Dramatic improvements in sorting have been made in the last few years, largely due to 
increased attention to interactions with multiprocessor computer architecture [2]. Improved 
results for sorting using multiprocessors shown by researchers [Sort Benchmark Home 
Page] was one of the main reason for choosing a project topic in the field of parallel 
sorting. 
 
Parallel quicksort and Parallel Soritng by Regular Sampling (PSRS) are two of the most 
common techniques adopted for parallel sorting. Because of its low memory requirements, 
parallel Quicksort can sort data sets twice the size that sample sort could under the same 
system memory restrictions [1], hence I chose quicksort as the technique for sorting. 
 
The goal of the project as described in the project proposal is benchmarking the parallel 
implementation of quicksort using MPI and Pthreads and optimizing pivot selection. 
 

 

 

2. Background Material 
 

                        

Quicksort is a well-known sorting algorithm developed by C. A. R. Hoare that, on average, 
makes O(nlogn) comparisons to sort n items. 

 

The implementation details for a simple quicksort as explained by Anany Levitin in his 
book Design and Analysis of Algorithms [4] are: 

1.   Choose a pivot element, usually by just picking the last element out of the sorting area. 
 
2.   Iterate through the elements to be sorted, moving numbers smaller than the pivot to a 
position on its left, and numbers larger than the pivot to a position on its right, by swapping 
elements. After that the sorting area is divided into two subareas: the left one contains all 
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numbers smaller than the pivot element and the right one contains all numbers larger than 
the pivot element. The pivot is now place in its sorted position 
 
3.   Go to step 1 for the left and right subareas (if there is more than one element left in 
that area) 

The key thing to note is that this implementation is nothing but a divide and conquer 
strategy where a problem is divided into subproblems that are of the same form as the 
larger problem. Each subproblem can be recursively solved using the same technique. 

Once partititon is done, different sections of the list can be sorted in parallel. If we have p 
processors, we can divide a list of n elements into p sublists in Θ(n) average time, then 
sort each of these in Θ ((n/p)log(n/p)) average time.  A pseudocode and diagram 
explaining the recursion are shown below: 
 
 

quicksort( void *a, int low, int high ) 

  { 

  int pivot; 

  /* Termination condition! */ 

  if ( high > low ) 

    { 

    pivot = partition( a, low, high ); 

    quicksort( a, low, pivot-1 ); 

    quicksort( a, pivot+1, high ); 

    } 

  } 
 

 

 

 

                                                 Low               Pivot              High 
                                                              
                                                          Initial Step - First Partition 
    

 

       

             Low       pivot        High               pivot                  High 

                                                          Recursive steps  

                                    Figure 1. Basic Quicksort diagrammatic representation  

 

 

 

   < pivot                     > pivot 

 < pivot                  > pivot > pivot 
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3.       Approach taken for MPI and Pthreads: 

       Two different approaches were taken for implementation in MPI and Pthreads 
optimizing the parallel implementation keeping in mind that MPI uses message passing 
and Pthreads use shared memory. 
For MPI the goal was to reduce message passing making sure that communication was 
kept to minimum and hence computation to communication ratio would remain high. For 
Pthreads, since memory is shared the goal was to have less critical sections and barriers 
in the implementation. 
 
3.1      Approach for MPI 
 
Each process is given a section of the sequence of data to be sorted. This is done by 
performing a scatter operation by the master process. Each process works on its 
subsequence individually using the quicksort algorithm explained in section 2 and sends 
its sorted sub sequence for merge. 
 
The major advantage of this technique is that communication time is kept low by sending 
only a subsequence to each process. But this is not an optimized solution. The 
disadvantages of such a technique are as follows: 
 
 ---   Load balancing is not achieved since a particular process may finish its sorting        
       process and wait for merge operation while other processes are still sorting their   
       subsequences. This leads to idle process time and is not efficient. 
 
---   Merge operations performed for each sorted subsequence is also computationally   
       expensive as explained in section 4.1.1  
   
Hence a different approach is taken for pthreads where shared memory provides us with 
an alternative of avoiding the merge operations. 
 
3.2      Approach for Pthreads 
 
While each MPI process selects first element of its subsequence as pivot and does sorting 
on its subsequence, in Pthreads a global pivot is selected and each thread compares its 
values with this global pivot and finds values in its subsequence less than this pivot. Once 
this is done, total values less than the global pivot are found and hence   
the global pivot is sent to its sorted position.  
 
The major advantage here is that load balancing is obtained since the threads are working 
on the same sequence simultaneously. Merge operation is also not required like in MPI 
but disadvantage is   
  
-----   Finding total values less than the global pivot and updating it becomes a critical 
section in the code and hence mutex locks are required which slow the process. The 
swapping of global pivot to its original position is also a critical section and hence 
synchronizing operation barrier is required in both cases. 
 
 
 
 
 



  6 

4.       Implementation 
 
All implementations and experiments are done by sorting integer values generated by a 
random function.  Once sorting process finishes sorted values are saved in a result file to 
check for correctness of code. Size of integer is considered as 4 bytes since a sizeof (int) 
operation reveals that int is 4 bytes on the cluster. 
 
To sort n numbers, random numbers are created and saved in an array as follows: 
 

srandom(clock()); 

for(i=0;i<n;i++) 

    data[i] = random(); 

 

 

 

4.1     Implementation of MPI code 

 

 
Size of array that each slave has to work on is calculated by master process and this size 
is Broadcast to slaves. Each slave allocates memory enough to accept data of the 
specified size. A scatter operation is then executed by master and each slave receives 
data equal to its assigned size. Code snippet shown below shows how this is done 
 
 

 

MPI_Bcast(&s,1,MPI_INT,0,MPI_COMM_WORLD);     /* --- Broadcast size of 

array that each                             

                                                      slave has to sort -

-- */ 

chunk = (int *)malloc(s*sizeof(int)); 

MPI_Scatter(data,s,MPI_INT,chunk,s,MPI_INT,0,MPI_COMM_WORLD);    /* ---  

Scatter the values  

                                                            from array to 

the slaves --- */ 

 

elapsedtime(id,"Scattered data:"); 

myqsort(chunk,0,s-1);                             /* --- call to sort 

function  --- */ 

elapsedtime(id,"Sorted data:"); 

    

 

Here elapsedtime is a function that displays time. In the above case time spent for data 
scatter and for sorting are found out. 

 

4.1.1    Merge function 

   Consider that v1 and v2 are 2 sorted  subsequences with number of values n1 and n2  
respectively. Then the  merge function compares values  one by one and saves the lower 

value in an array result[ ] 
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Here the best case for merge would be when all values  
of one sequence are lower than all the vales of the other. 
The time complexity would be  Θ(n1 +1) or Θ(n2+1) 
since after a pass through one array it will just copy the  
values of the other array and append to the first. 

 
The worst case performance would be when alternating  
values of the 2 subarrays are lower. i.e v1[1] < v2[1], 
v2[1] < v1[2], v1[2] < v2[2] and so on. In this case the  
time complexity would be Θ(n1+ n2).  
 

 

 

 

                                                                                        

                                                                                                   Figure 2. Merge function code 

 

4.1.2   Tree Based Merge Implementation: 

A simple method of merging of all sorted subsequences would have been, a simple gather 
implementation where the master gathers the sorted subsequences and merges them. But 
this would degrade the performance. If there are n elements to sort and p processes, then 
each slave sorts (n/p) values and master gathers the sorted subsequences. Master now 
has p sorted subsequences and it will have to call merge operation (p-1) times. Hence a 
time complexity of Θ ((p-1) (n1+n2)). 

But with the tree based merge, each process sends its sorted subsequence to its neighbor 
and a merge operation is performed at each step. This reduces the time complexity to 
Θ((log p )(n1+n2)) as shown in the diagram below. Code snippet for this tree 
implementation is also attached. 

 

while(i<n1 && j<n2) 

  if(v1[i]<v2[j]) 

  { 

   result[k] = v1[i]; 

   i++; k++; 

  } 

  else 

  { 

   result[k] = v2[j]; 

   j++; k++; 

  } 

 if(i==n1) 

  while(j<n2) 

  { 

   result[k] = v2[j]; 

   j++; k++; 

  } 

 else 

  while(i<n1) 

  { 

   result[k] = v1[i]; 

   i++; k++; 

             } 
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Figure 4. Code for tree based merge implementation 

 

 
4.1.3   MPI Setup Time 
 
For timing analysis, MPI set up time is also calculated as follows 
MPI_Init(&argc,&argv); 

MPI_Comm_rank(MPI_COMM_WORLD,&id); 

MPI_Comm_size(MPI_COMM_WORLD,&p); 

 

elapsedtime(id,"MPI setup complete:"); 
 

Once MPI is initialize time is calculated. For smaller number of processes, this time is 
negligible but as number of processes increases this time becomes substantial part of 
execution time. 
  

 

 

4.2    Implementation of Pthreads 
 

Each thread finds the number of values less than and greater than the global pivot within 
its section of the sequence. Then using these values a total count of values less than the 
pivot is made. This is implemented as follows 
 
 

 

step = 1; 

 while(step<p) 

 { 

  if(id%(2*step)==0) 

  { 

   if(id+step<p) 

   { 

    MPI_Recv(&m,1,MPI_INT,id+step,0,MPI_COMM_WORLD,&status); 

    other = (int *)malloc(m*sizeof(int)); 

    MPI_Recv(other,m,MPI_INT,id+step,0,MPI_COMM_WORLD,&status); 

    elapsedtime(id,"Got merge data:"); 

    chunk = merge(chunk,s,other,m); 

    elapsedtime(id,"Merged data:"); 

    s = s+m; 

   }  

  } 

  else 

  { 

   int near = id-step; 

   MPI_Send(&s,1,MPI_INT,near,0,MPI_COMM_WORLD); 

   MPI_Send(chunk,s,MPI_INT,near,0,MPI_COMM_WORLD); 

   elapsedtime(id,"Sent merge data:"); 

   break; 

  } 

  step = step*2; 
 } 
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for (i=my_start_index; i<my_start_index + my_length; i++) 

 { 

  if (a[i] < head -> pivot) 

   less ++; 

  else 

   greater ++; 

 } 

 

pthread_mutex_lock(&(head->sum_lock)); 

head -> less_than += less;               /* ---  Critical section  -       

                                          Each thread updates the              

                                         global value less_than  --- */ 

pthread_mutex_unlock(&(head->sum_lock)); 

 

barrier(&(head -> barrier2), head -> numthreads);  /* -- Barrier call      

                                                     to wait for all     

                                                    threads to update    

                                                  value less_than ---*/ 

 

 

Total count of values less than pivot is made by adding each threads value of less. Since it 
is a critical section and simultaneous access by multiple threads should not be allowed, 
hence it is put under mutex locks. Once a Total count of values less than pivot is made 
this value is used to put pivot in appropriate position. This action should not take place 
until all threads have updated the value less_than, hence a barrier is used here which 
ensures that only updated value of less_than is not used for further operations. 
 

 

4.2.1 Pthread Setup Time 
 

Similar to MPI, Pthread set up time is also calculated 
 
 

for (i=0; i<NUM_THREADS; i++) 

{ 

    pthread_create(&sort_threads[i], NULL, sort_thread,(void *) 

&workspace[i]); 

} 

void *sort_thread(void *ptr) 

{ 

barrier(&(head -> barrier1), head -> numthreads); 

(void)pthread_once(&once_ctr, once_rtn);  

        

 

Here once the main program calls pthread _create all threads start executing the routine 
sort_thread. Here a barrier call ensures all threads have been created and started 
executing routine sort_thread. At this time pthread_once function is called which allows 
only one thread to call routine once_rtn. The only task of this once_rtn routine is to display 
time. Hence pthread set up time will be obtained. This part was only included for time 
analysis. 
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5.       Experiments and results: 

  

8.1 Benchmark Experiment: (1 MB sort) 
 
 

Initial goal of the project was to have a benchmark with 1TB sort but I later realized dealing 
with such huge numbers was not feasible on the cluster.  
 
To sort 1 MB, N (the number of integers to sort) is set to 250000. [Since size of 1 int is 4 
bytes] and the number of processes were varied for MPI and number of threads were 
varied for pthreads. Code used for this experiment are seq_qsort.c, mpi_qsort.c and 
pthreads_qsort.c. For each execution a result file is generated which stores the sorted 
values. The file can be used to check for correctness of the programs. Values obtained for 
the experiments are as follows. 
Execution time for sequential program is 0.24 seconds. 
 

 

QuickSort Time for 1MB data - Keeping problem size constant, 
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Figure 5. Experiment readings and graph for 1MB quicksort using MPI, Pthreads and Sequential code 

 

 

Here minimum execution time for MPI and Pthreads is obtained at approximately 10 
processes / threads after which increasing processes increases execution time. This is 
because as the number of processes increases communication time increases and hence 
computation to communication ratio begins to decrease. 
 

 

 

5.2     Speedup analysis 
 

Speedup = Execution time using best sequential algorithm 

                  Execution time using a multiprocessor using p processes 

 

 

Number of 
processes 

Pthread 
execution 
time (sec) 

MPI 
execution 
time (sec) 

5 0.23 0.11 

7 0.19 0.1 

9 0.18 0.08 

11 0.16 0.06 

13 0.16 0.1 

15 0.16 0.15 
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       Figure 6.   Speedup plot for varying problem size and varying number of processes                                                

 
As mentioned in the previous analysis, minimum execution time is obtained at 
approximately 10 processes and hence speedup is maximum at that value. 
 
 
5.3     Execution time split up into different phases of the program 
 
To analyse the time spent in different phases of the program, I executed the MPI program 
for 5, 10 and 15 processes and time spent in each phase of the program execution was 
found out.  

 
  5 processes 10 processes 15 processes 

MPI Set up Time 0.01 0.07 0.11 

Generate random numbers 0.04 0.03 0.03 

Communication time 0.02 0.03 0.08 

Sorting time / Computation time 0.07 0.04 0.03 

 

 

 
Figure 7.  Plot for time spent in each phase of the program 
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From the above plots, we can see that for 5 processes time sent for sorting or computation 
time is maximum while for 15 processes time spent for communication is more. One 
important thing to note is that as processes are increased MPI set up time also increases 
drastically. Hence to have any substantial speedup, it is important that problem size 
increases with number of processes. 
 
 
6    Optimizations 
 
6.1    Benchmark Minute Sort  - Optimizing chunk size 
 
One of the most standard benchmarks for sorting is Minute Sort (number of bytes sorted in 
1 minute) 
 
For implementing this, I created chunks of data. For experiment 1, chunk size of 100KB 
was selected. The sequential code sorts this 100KB, stores the sorted values in result file 
and then checks if 1 minute has elapsed. If execution time has passed 1 minute execution 
stops, if not then another chunk of 100 KB is sorted. In MPI at the completion of sorting of 
each chunk, the master process checks if 1 minute has elapsed, and broadcasts a 
termination flag to all slaves if 1 minute has elapsed, else program execution continues. 
Similar experiment was done for chunk size of 500KB and 1 MB. Codes attached for 
minute sort are seq_minute.c and mpi_minute.c .  
 
 
 
Sequential execution -  118.9 MB sorted in 1 minute with chunk size of 100KB 
                                      113 MB sorted in 1 minute with chunk size of 500KB 
                                      114 MB sorted in 1 minute with chunk size of 1 MB 
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                                                  Figure 7.  Minute Sort plot – Verifying optimum chunk size 
 

Number 
of 
processes 

Chunk 
size - 
100KB 

Chunk 
size - 
500KB 

Chunk 
size - 
1MB 

       5 147.1 148 149 

10 152 155 153 

15 152.3 159 154 

20 153.9 162 155 

25 154.5 164.5 157 

30 156 154 155 

35 149 152 155 

40 146.6 150.2 153 
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From the above plot, we can see that maximum data can be sorted with chunk size of 500 
KB and 25 processes (165 MB).  
 
 
6.2    Pivot Optimization 
 
Average case efficiency for quicksort is Θ(nlogn) but worst case efficiency is Θ(n2) [4]. The 
worst case condition for quicksort is when the sequence is already sorted. Techniques to 
improve performance in this worst case have been suggested by many researchers: 
One possible solution that is adopted for my project is to choose the median value as pivot 
to improve the worst case performance. I conducted three experiments and compared the 
outcomes. 

  
Experiment 1 – First element as pivot and input  
                         to quicksort is a random   
                         sequence  
Experiment 2 – First element as pivot and input  
                          to quicksort is a sorted sequence 
Experiment 3 – Middle element as pivot and      
                          input to quicksort is a sorted   
                          sequence 
 
The results are as shown: 
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   Figure 8.  Pivot optimization plot for Worst case scenario for quicksort 

Number 
of 
processes 

Random 
Input - 
First 
element 
as pivot 

Sorted 
input - 
First 
element 
as pivot 

Sorted 
input - 
Middle 
element 
as pivot 

5 0.07 14.16 0.45 

10 0.08 6.15 0.25 

15 0.08 2.77 0.21 

20 0.07 1.52 0.19 

25 0.16 1 0.18 

30 0.17 0.74 0.18 
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Clearly, we can see that selecting middle element as pivot improves worst case 
performance considerably. Some other pivot optimization techniques like median of 3 pivot 
select, randomized pivot select can also be tested. 
 
 
7.        Conclusion 
      
I successfully implemented the parallel quicksort program using MPI and Pthreads and 
performed benchmarking like Megabyte sort and minute sort on the implementation. 
The project gave me a chance to gain insight into some of the techniques that can be used 
for message passing cluster architectures and shared memory architectures. The speedup 
obtained using parallel implementation suggests that such parallel methods should be 
incorporated into real world applications which require sorting. 
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