

T

 ECE566_Puneet_Kataria_Project
Introduction to Parallel and Distributed Computing

PARALLEL QUICKSORT
IMPLEMENTATION

USING MPI AND
PTHREADS

This report describes the approach, implementation and experiments
done for parallelizing sorting application using multiprocessors on
cluster by message passing tool (MPI) and by using POSIX
multithreading (Pthreads). Benchmarking using 1MB sort and Minute
sort were done .Pivot optimization techniques are also discussed for
worst case scenarios in quicksort.

SUBMITTED BY:

PUNEET KATARIA
RUID – 117004233
puneet25685@gmail.com

2008

10 Dec, 2008

 2

TABLE OF CONTENTS:

1 Project Motivation and goals…………………………………………………………………….3
2 Background Material…………………………………………………………………………......3
3 Approach taken for MPI and Pthreads…………………………………………………………5

3.1 Approach for MPI………………………………………………………………………….5

3.2 Approach for Pthreads……………………………………………………………………5
4. Implementation……………………………………………………………………………………6

4.1 Implementation of MPI code…………………………………………………………......6
4.1.1 Merge function……………………………………………………………………...6
4.1.2 Tree Based Merge Implementation………………………………………………7
4.1.3 MPI Setup Time…………………………………………………………………….8

4.2 Implementation of Pthreads………………………………………………………………8
4.2.1 Pthread Setup Time………………………………………………………………..9

5 Experiments and results………………………………………………………………………..10
5.1 Benchmark Experiment: (1 MB sort)…………………………………………………..10
5.2 Speedup analysis………………………………………………………………………..10
5.3 Execution time split up into different phases of the program………………………..11

6 Optimizations…………………………………………………………………………………….12
6.1 Benchmark Minute Sort - Optimizing chunk size……………………………………...12
6.2 Pivot Optimization…………………………………………………………………………13

7 Conclusion………………………………………………………………………………………14
8 References………………………………………………………………………………………14

 3

1. Project Motivation and goals

Sorting is one of the fundamental problems of computer science, and parallel algorithms
for sorting have been studied since the beginning of parallel computing. Batcher’s -depth
bitonic sorting network [3] was one of the first methods proposed. Since then many
different parallel sorting algorithms have been proposed.

Some of the most common applications of sorting have been Sort a list of names,
Organize an MP3 library, Display Google PageRank results. Some other applications like
finding the median, finding the closest pair, binary search in a database, finding duplicates
in a mailing list could also make use of efficient sorting algorithms to improve the
performance.

Sorting is an important part of high-performance multiprocessing. It is also a core utility for
database systems in organizing and indexing data. Sorting may be requested explicitly by
users through the use of Order By clause.

Dramatic improvements in sorting have been made in the last few years, largely due to
increased attention to interactions with multiprocessor computer architecture [2]. Improved
results for sorting using multiprocessors shown by researchers [Sort Benchmark Home
Page] was one of the main reason for choosing a project topic in the field of parallel
sorting.

Parallel quicksort and Parallel Soritng by Regular Sampling (PSRS) are two of the most
common techniques adopted for parallel sorting. Because of its low memory requirements,
parallel Quicksort can sort data sets twice the size that sample sort could under the same
system memory restrictions [1], hence I chose quicksort as the technique for sorting.

The goal of the project as described in the project proposal is benchmarking the parallel
implementation of quicksort using MPI and Pthreads and optimizing pivot selection.

2. Background Material

Quicksort is a well-known sorting algorithm developed by C. A. R. Hoare that, on average,
makes O(nlogn) comparisons to sort n items.

The implementation details for a simple quicksort as explained by Anany Levitin in his
book Design and Analysis of Algorithms [4] are:

1. Choose a pivot element, usually by just picking the last element out of the sorting area.

2. Iterate through the elements to be sorted, moving numbers smaller than the pivot to a
position on its left, and numbers larger than the pivot to a position on its right, by swapping
elements. After that the sorting area is divided into two subareas: the left one contains all

 4

numbers smaller than the pivot element and the right one contains all numbers larger than
the pivot element. The pivot is now place in its sorted position

3. Go to step 1 for the left and right subareas (if there is more than one element left in
that area)

The key thing to note is that this implementation is nothing but a divide and conquer
strategy where a problem is divided into subproblems that are of the same form as the
larger problem. Each subproblem can be recursively solved using the same technique.

Once partititon is done, different sections of the list can be sorted in parallel. If we have p
processors, we can divide a list of n elements into p sublists in Θ(n) average time, then
sort each of these in Θ ((n/p)log(n/p)) average time. A pseudocode and diagram
explaining the recursion are shown below:

quicksort(void *a, int low, int high)

 {

 int pivot;

 /* Termination condition! */

 if (high > low)

 {

 pivot = partition(a, low, high);

 quicksort(a, low, pivot-1);

 quicksort(a, pivot+1, high);

 }

 }

 Low Pivot High

 Initial Step - First Partition

 Low pivot High pivot High

 Recursive steps

 Figure 1. Basic Quicksort diagrammatic representation

 < pivot > pivot

 < pivot > pivot > pivot

 5

3. Approach taken for MPI and Pthreads:

 Two different approaches were taken for implementation in MPI and Pthreads
optimizing the parallel implementation keeping in mind that MPI uses message passing
and Pthreads use shared memory.
For MPI the goal was to reduce message passing making sure that communication was
kept to minimum and hence computation to communication ratio would remain high. For
Pthreads, since memory is shared the goal was to have less critical sections and barriers
in the implementation.

3.1 Approach for MPI

Each process is given a section of the sequence of data to be sorted. This is done by
performing a scatter operation by the master process. Each process works on its
subsequence individually using the quicksort algorithm explained in section 2 and sends
its sorted sub sequence for merge.

The major advantage of this technique is that communication time is kept low by sending
only a subsequence to each process. But this is not an optimized solution. The
disadvantages of such a technique are as follows:

 --- Load balancing is not achieved since a particular process may finish its sorting
 process and wait for merge operation while other processes are still sorting their
 subsequences. This leads to idle process time and is not efficient.

--- Merge operations performed for each sorted subsequence is also computationally
 expensive as explained in section 4.1.1

Hence a different approach is taken for pthreads where shared memory provides us with
an alternative of avoiding the merge operations.

3.2 Approach for Pthreads

While each MPI process selects first element of its subsequence as pivot and does sorting
on its subsequence, in Pthreads a global pivot is selected and each thread compares its
values with this global pivot and finds values in its subsequence less than this pivot. Once
this is done, total values less than the global pivot are found and hence
the global pivot is sent to its sorted position.

The major advantage here is that load balancing is obtained since the threads are working
on the same sequence simultaneously. Merge operation is also not required like in MPI
but disadvantage is

----- Finding total values less than the global pivot and updating it becomes a critical
section in the code and hence mutex locks are required which slow the process. The
swapping of global pivot to its original position is also a critical section and hence
synchronizing operation barrier is required in both cases.

 6

4. Implementation

All implementations and experiments are done by sorting integer values generated by a
random function. Once sorting process finishes sorted values are saved in a result file to
check for correctness of code. Size of integer is considered as 4 bytes since a sizeof (int)
operation reveals that int is 4 bytes on the cluster.

To sort n numbers, random numbers are created and saved in an array as follows:

srandom(clock());

for(i=0;i<n;i++)

 data[i] = random();

4.1 Implementation of MPI code

Size of array that each slave has to work on is calculated by master process and this size
is Broadcast to slaves. Each slave allocates memory enough to accept data of the
specified size. A scatter operation is then executed by master and each slave receives
data equal to its assigned size. Code snippet shown below shows how this is done

MPI_Bcast(&s,1,MPI_INT,0,MPI_COMM_WORLD); /* --- Broadcast size of

array that each

 slave has to sort -

-- */

chunk = (int *)malloc(s*sizeof(int));

MPI_Scatter(data,s,MPI_INT,chunk,s,MPI_INT,0,MPI_COMM_WORLD); /* ---

Scatter the values

 from array to

the slaves --- */

elapsedtime(id,"Scattered data:");

myqsort(chunk,0,s-1); /* --- call to sort

function --- */

elapsedtime(id,"Sorted data:");

Here elapsedtime is a function that displays time. In the above case time spent for data
scatter and for sorting are found out.

4.1.1 Merge function

 Consider that v1 and v2 are 2 sorted subsequences with number of values n1 and n2
respectively. Then the merge function compares values one by one and saves the lower

value in an array result[]

 7

Here the best case for merge would be when all values
of one sequence are lower than all the vales of the other.
The time complexity would be Θ(n1 +1) or Θ(n2+1)
since after a pass through one array it will just copy the
values of the other array and append to the first.

The worst case performance would be when alternating
values of the 2 subarrays are lower. i.e v1[1] < v2[1],
v2[1] < v1[2], v1[2] < v2[2] and so on. In this case the
time complexity would be Θ(n1+ n2).

 Figure 2. Merge function code

4.1.2 Tree Based Merge Implementation:

A simple method of merging of all sorted subsequences would have been, a simple gather
implementation where the master gathers the sorted subsequences and merges them. But
this would degrade the performance. If there are n elements to sort and p processes, then
each slave sorts (n/p) values and master gathers the sorted subsequences. Master now
has p sorted subsequences and it will have to call merge operation (p-1) times. Hence a
time complexity of Θ ((p-1) (n1+n2)).

But with the tree based merge, each process sends its sorted subsequence to its neighbor
and a merge operation is performed at each step. This reduces the time complexity to
Θ((log p)(n1+n2)) as shown in the diagram below. Code snippet for this tree
implementation is also attached.

while(i<n1 && j<n2)

 if(v1[i]<v2[j])

 {

 result[k] = v1[i];

 i++; k++;

 }

 else

 {

 result[k] = v2[j];

 j++; k++;

 }

 if(i==n1)

 while(j<n2)

 {

 result[k] = v2[j];

 j++; k++;

 }

 else

 while(i<n1)

 {

 result[k] = v1[i];

 i++; k++;

 }

 8

Figure 4. Code for tree based merge implementation

4.1.3 MPI Setup Time

For timing analysis, MPI set up time is also calculated as follows
MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&id);

MPI_Comm_size(MPI_COMM_WORLD,&p);

elapsedtime(id,"MPI setup complete:");

Once MPI is initialize time is calculated. For smaller number of processes, this time is
negligible but as number of processes increases this time becomes substantial part of
execution time.

4.2 Implementation of Pthreads

Each thread finds the number of values less than and greater than the global pivot within
its section of the sequence. Then using these values a total count of values less than the
pivot is made. This is implemented as follows

step = 1;

 while(step<p)

 {

 if(id%(2*step)==0)

 {

 if(id+step<p)

 {

 MPI_Recv(&m,1,MPI_INT,id+step,0,MPI_COMM_WORLD,&status);

 other = (int *)malloc(m*sizeof(int));

 MPI_Recv(other,m,MPI_INT,id+step,0,MPI_COMM_WORLD,&status);

 elapsedtime(id,"Got merge data:");

 chunk = merge(chunk,s,other,m);

 elapsedtime(id,"Merged data:");

 s = s+m;

 }

 }

 else

 {

 int near = id-step;

 MPI_Send(&s,1,MPI_INT,near,0,MPI_COMM_WORLD);

 MPI_Send(chunk,s,MPI_INT,near,0,MPI_COMM_WORLD);

 elapsedtime(id,"Sent merge data:");

 break;

 }

 step = step*2;
 }

 9

for (i=my_start_index; i<my_start_index + my_length; i++)

 {

 if (a[i] < head -> pivot)

 less ++;

 else

 greater ++;

 }

pthread_mutex_lock(&(head->sum_lock));

head -> less_than += less; /* --- Critical section -

 Each thread updates the

 global value less_than --- */

pthread_mutex_unlock(&(head->sum_lock));

barrier(&(head -> barrier2), head -> numthreads); /* -- Barrier call

 to wait for all

 threads to update

 value less_than ---*/

Total count of values less than pivot is made by adding each threads value of less. Since it
is a critical section and simultaneous access by multiple threads should not be allowed,
hence it is put under mutex locks. Once a Total count of values less than pivot is made
this value is used to put pivot in appropriate position. This action should not take place
until all threads have updated the value less_than, hence a barrier is used here which
ensures that only updated value of less_than is not used for further operations.

4.2.1 Pthread Setup Time

Similar to MPI, Pthread set up time is also calculated

for (i=0; i<NUM_THREADS; i++)

{

 pthread_create(&sort_threads[i], NULL, sort_thread,(void *)

&workspace[i]);

}

void *sort_thread(void *ptr)

{

barrier(&(head -> barrier1), head -> numthreads);

(void)pthread_once(&once_ctr, once_rtn);

Here once the main program calls pthread _create all threads start executing the routine
sort_thread. Here a barrier call ensures all threads have been created and started
executing routine sort_thread. At this time pthread_once function is called which allows
only one thread to call routine once_rtn. The only task of this once_rtn routine is to display
time. Hence pthread set up time will be obtained. This part was only included for time
analysis.

 10

5. Experiments and results:

8.1 Benchmark Experiment: (1 MB sort)

Initial goal of the project was to have a benchmark with 1TB sort but I later realized dealing
with such huge numbers was not feasible on the cluster.

To sort 1 MB, N (the number of integers to sort) is set to 250000. [Since size of 1 int is 4
bytes] and the number of processes were varied for MPI and number of threads were
varied for pthreads. Code used for this experiment are seq_qsort.c, mpi_qsort.c and
pthreads_qsort.c. For each execution a result file is generated which stores the sorted
values. The file can be used to check for correctness of the programs. Values obtained for
the experiments are as follows.
Execution time for sequential program is 0.24 seconds.

QuickSort Time for 1MB data - Keeping problem size constant,

varying p

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20
Number of processes / Threads

T
im

e
 (

s
e
c
s
) Sequential

Pthreads

MPI

Figure 5. Experiment readings and graph for 1MB quicksort using MPI, Pthreads and Sequential code

Here minimum execution time for MPI and Pthreads is obtained at approximately 10
processes / threads after which increasing processes increases execution time. This is
because as the number of processes increases communication time increases and hence
computation to communication ratio begins to decrease.

5.2 Speedup analysis

Speedup = Execution time using best sequential algorithm

 Execution time using a multiprocessor using p processes

Number of
processes

Pthread
execution
time (sec)

MPI
execution
time (sec)

5 0.23 0.11

7 0.19 0.1

9 0.18 0.08

11 0.16 0.06

13 0.16 0.1

15 0.16 0.15

 11

Speed Up Plot P -> Processes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

MPI - 1MB Pthreads -

1MB

MPI - 2MB Pthreads -

2MB

MPI - 4MB Pthreads -

4MB

S
p

e
e

d
 u

p

5P 7P 9P 11P

 Figure 6. Speedup plot for varying problem size and varying number of processes

As mentioned in the previous analysis, minimum execution time is obtained at
approximately 10 processes and hence speedup is maximum at that value.

5.3 Execution time split up into different phases of the program

To analyse the time spent in different phases of the program, I executed the MPI program
for 5, 10 and 15 processes and time spent in each phase of the program execution was
found out.

 5 processes 10 processes 15 processes

MPI Set up Time 0.01 0.07 0.11

Generate random numbers 0.04 0.03 0.03

Communication time 0.02 0.03 0.08

Sorting time / Computation time 0.07 0.04 0.03

Figure 7. Plot for time spent in each phase of the program

 12

From the above plots, we can see that for 5 processes time sent for sorting or computation
time is maximum while for 15 processes time spent for communication is more. One
important thing to note is that as processes are increased MPI set up time also increases
drastically. Hence to have any substantial speedup, it is important that problem size
increases with number of processes.

6 Optimizations

6.1 Benchmark Minute Sort - Optimizing chunk size

One of the most standard benchmarks for sorting is Minute Sort (number of bytes sorted in
1 minute)

For implementing this, I created chunks of data. For experiment 1, chunk size of 100KB
was selected. The sequential code sorts this 100KB, stores the sorted values in result file
and then checks if 1 minute has elapsed. If execution time has passed 1 minute execution
stops, if not then another chunk of 100 KB is sorted. In MPI at the completion of sorting of
each chunk, the master process checks if 1 minute has elapsed, and broadcasts a
termination flag to all slaves if 1 minute has elapsed, else program execution continues.
Similar experiment was done for chunk size of 500KB and 1 MB. Codes attached for
minute sort are seq_minute.c and mpi_minute.c .

Sequential execution - 118.9 MB sorted in 1 minute with chunk size of 100KB
 113 MB sorted in 1 minute with chunk size of 500KB
 114 MB sorted in 1 minute with chunk size of 1 MB

Minute Sort - Keeping time constant, changing p

145

150

155

160

165

170

0 10 20 30 40 50
Number of processes

A
m

o
u

n
t

o
f

d
a
ta

 s
o

rt
e
d

 (
M

B
)

Chunk Size - 100 KB

Chunk Size - 500KB

Chunk Size - 1MB

 Figure 7. Minute Sort plot – Verifying optimum chunk size

Number
of
processes

Chunk
size -
100KB

Chunk
size -
500KB

Chunk
size -
1MB

 5 147.1 148 149

10 152 155 153

15 152.3 159 154

20 153.9 162 155

25 154.5 164.5 157

30 156 154 155

35 149 152 155

40 146.6 150.2 153

 13

From the above plot, we can see that maximum data can be sorted with chunk size of 500
KB and 25 processes (165 MB).

6.2 Pivot Optimization

Average case efficiency for quicksort is Θ(nlogn) but worst case efficiency is Θ(n2) [4]. The
worst case condition for quicksort is when the sequence is already sorted. Techniques to
improve performance in this worst case have been suggested by many researchers:
One possible solution that is adopted for my project is to choose the median value as pivot
to improve the worst case performance. I conducted three experiments and compared the
outcomes.

Experiment 1 – First element as pivot and input
 to quicksort is a random
 sequence
Experiment 2 – First element as pivot and input
 to quicksort is a sorted sequence
Experiment 3 – Middle element as pivot and
 input to quicksort is a sorted
 sequence

The results are as shown:

Pivot Optimisation for Worst case scenario

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40
Number of Processes

S
o

rt
in

g
 t

im
e
 (

s
e
c
) Random input - First

Element as pivot

Sorted input - First
Element as pivot

Sorted input - Middle

element as pivot

 Figure 8. Pivot optimization plot for Worst case scenario for quicksort

Number
of
processes

Random
Input -
First
element
as pivot

Sorted
input -
First
element
as pivot

Sorted
input -
Middle
element
as pivot

5 0.07 14.16 0.45

10 0.08 6.15 0.25

15 0.08 2.77 0.21

20 0.07 1.52 0.19

25 0.16 1 0.18

30 0.17 0.74 0.18

 14

Clearly, we can see that selecting middle element as pivot improves worst case
performance considerably. Some other pivot optimization techniques like median of 3 pivot
select, randomized pivot select can also be tested.

7. Conclusion

I successfully implemented the parallel quicksort program using MPI and Pthreads and
performed benchmarking like Megabyte sort and minute sort on the implementation.
The project gave me a chance to gain insight into some of the techniques that can be used
for message passing cluster architectures and shared memory architectures. The speedup
obtained using parallel implementation suggests that such parallel methods should be
incorporated into real world applications which require sorting.

References:

[1] Philippas Tsigas and Yi Zhang. A Simple, Fast Parallel Implementation of Quicksort
and its Performance Evaluation on SUN Enterprise
10000

[2] Hongzhang Shan and Jaswinder Pal Singh. Parallel Sorting on Cache-coherent DSM
Multiprocessors

[3] K. E. Batcher. Sorting networks and their applications. In AFIPS Springer Joing
Computer Conference, pages 307–314, Arlington,VA, April 1968

[4] Anany V. Levitin, Villanova University Introduction to the Design and Analysis of
Algorithms 2003

[5] Barry Wilkinson and Michael – Parallel Programming, Techniques and Applications
using Networked Workstations and Parallel Computers

