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Wireless power transfer (WPT) promises to deliver energy to devices that are otherwise hard to charge or replace batteries
for. This paper presents a new power transfer approach by aligning the phases of a collection of radio frequency (RF)
energy chargers at the target receiver device. Our approach can ship energy over tens of meters and to mobile targets. More
importantly, our approach leads to a highly asymmetric energy density distribution in the charging area: the energy density
at the target receiver is much higher than the energy density at other locations. It is a departure from existing beamforming
based WPT systems that have high energy along the energy beam path. Such a technology can enable a large array of
batteryless Internet of Things applications and render them much more robust and long-running. Thanks to its asymmetric
energy distribution, our approach potentially can be scaled up to ship higher level of energy over longer distances.

In this paper, we design, prototype, and evaluate the proposed energy transfer approach, referred to as Energy-Ball. We
implement an Energy-Ball testbed that consists of 17 N210 and 4 B210 Universal Software Radio Peripheral (USRP) nodes,
yielding a 20 × 20m2 energy delivery area. We conduct carefully designed experiments on the testbed. We demo that the
energy density of Energy-Ball at the target spot is considerably higher than the energy density elsewhere, with the peak to
average power ratio of 8.72. We show that Energy-Ball can transfer energy to any point within the area. When the receiver
moves at a speed of 0.5 m/s, Energy-Ball can transfer 80% of optimal power to the mobile receiver. Further, our results also
show Energy-Ball can deliver over 0.6mw RF power that enables batteryless sensors at any point across the area.
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Fig. 1. Energy density distribution for beamforming. Fig. 2. Energy density distribution for Energy-Ball.
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1 INTRODUCTION
Ever since the invention of electricity, a world free of batteries and power cords has been the aspiration of many
scientific investigations. Now, this vision is ever more appealing, with the proliferation of Internet of Things (IoT)
systems, and at the same time ever more realistic thanks to recent advances in low-power embedded design and
energy harvesting. As an example of low power IoT devices, in the year of 2016, Graule et al. [27] made a robotic
drone that only needs 19mw to fly, and a couple of micro watts to remain perched on objects. Such extremely low
power devices can be potentially powered through simple mechanisms such as ambient energy harvesting from
lights, Wi-Fi router, TV and cellular signals [26, 39, 55]. While ambient energy harvesting has proven effective
in the above examples, it becomes less effective in many other situations, especially when the required energy
density exceeds what the environment offers. As such, near-field wireless charging techniques [17, 28, 34] have
proven useful in delivering higher amount of energy. However near-field charging is either limited by its range
or require large-scale facilities to achieve larger ranges.
As people endeavor to deliver higher amounts of energy over longer distances, they either choose to design

wireless power transfer (WPT) systems using highly directional energy chargers or phased arrays that can steer
the energy beam towards the target [6, 33, 34, 38]. However, such beamforming techniques have potential safety
concerns as they often lead to high energy concentration along the beam, which poses risk to people or objects
in those areas. Using simulations, we show the energy density distribution of an example beamforming system in
Figure 1, where the energy density level along the beam is higher than that at the target receiver. As a result, a
beamforming based WPT system requires extra measures to ensure (a) the energy level along the beam is low
enough not to be harmful, and (b) the energy level at the target receiver is high enough to be useful.
In this paper, we set out to design a new wireless power transfer system that can focus the energy around

the target and minimize energy density in other areas. Towards this goal, we arrange our transmitters in a fully
distributed fashion by surrounding them around the target receiver, as shown in Figure 2. A salient property of
this arrangement is that, by aligning their phases at the receiver, the energy level at the target receiver is higher
than the energy level at any other spot in the charging area. In fact, a small energy ball is formed around the
receiver, hence the system name of Energy-Ball. Figure 2 shows the energy density distribution of Energy-Ball
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using simulation results. In designing Energy-Ball, we draw inspiration from the design of the surround sound
system, in which multiple speakers are arranged around the audience for better audio experiences.
When devising Energy-Ball, we have overcome the following main challenges:

• Realizing Energy-Ball in a Realistic Setting. Due to its completely distributed nature, it is hard to achieve
phase alignment among the transmitters, especially when the amounts of transmitters increases. In a
realistic setting, these transmitters do not have phase level synchronized clocks among them , nor do they
communicate with each other. Furthermore, there often exist complex multipaths where Energy-Ball is
deployed, which makes those algorithms that rely upon channel state information (CSI) less useful.
In this paper, we carefully address this challenge by adopting a simple yet effective phase alignment
technique that is closed-loop and that does not require any CSI information. In an iterative fashion, it uses
the receiver’s feedback to guide the transmitter’s phase adjustments towards the optimal phases, with
which the maximum received power is achieved at the receiver. We achieve phase level synchronization
among the transmitters through a master-slave GPS architecture.

• Continuously Charging Mobile Target. Energy-Ball is designed to charge devices in an IoT system, where
devices may be mobile, such as low power drones/robots or sensors that are attached to a mobile platform.
In order to achieve continuous charging in this scenario, we have to figure out mechanisms to continuously
re-align the phases of transmitters in a timely manner.
When the receiver moves, we need to look for a more direct way of keeping transmitter phases around their
optimal values. Specifically, if the phase difference between the transmitter and the receiver was known,
then the transmitter would directly adjust its phase according to the difference. Though this information is
not available to the transmitter, we propose to estimate it using the phase difference between the receiver
and transmitter (which can be conveniently measured by the transmitter), considering that the phase
differences in these two directions are highly correlated.

In summary, our work has the following contributions:

• We have devised a new wireless power transfer system, Energy-Ball, that can precisely focus energy on
the receiver while having low energy density at other areas. To transfer the same amount of energy to
a device, such a system leads to much less RF energy in the charging area than traditional beamforming
systems. We believe Energy-Ball provides a viable and practical charging solution to rapidly growing
IoT systems. We envision that Energy-Ball can be deployed to surround the target IoT nodes, such as
in a smart factory, warehouse, or store, delivering energy to nodes one by one before they perform the
required sensing/processing/networking functions, without the need to ever replace batteries for these
nodes. Moreover, Energy-Ball can also be used to continuously power drones or robots that are used in
agriculture, rescue, industrial assembly lines [2, 4, 7].

• We have built an Energy-Ball testbed using USRPs and validated its charging ability and resulting energy
distribution using real-world experiments. Our results show that Energy-Ball can deliver over 0.6 mW RF
power at any point in a 20 × 20 × 3m3 charging space, using 24 transmitters transmitting at 1.7W (which
is the highest transmitting power allowed on our facility). Since Energy-Ball emits very low energy in
the charging space, we will be able to deliver much higher energy by boosting the transmission power
and/or increasing the transmitter number. Further, we show that a low-power tag [23] can be continuously
powered by Energy-Ball at all the locations we have tried in the experiments.

• We have developed a fast phase adjustment algorithm that transmitters can adopt to continuously align
their phases at a mobile receiver. For a mobile receiver whose speed is lower than 0.5 m/s, the received
energy is on average around 80% of the energy received by a stationary receiver located at each point on
the trajectory.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 65. Publication date: June 2018.



65:4 • X. Fan et al.

2 RELATED WORK AND MOTIVATION

2.1 Electromagnetic Radiation Based Energy Harvesting and Transferring
Many wireless charging systems transfer energy through electromagnetic radiation. We broadly group these
systems into three categories: near field wireless charging, passive energy harvesting, and far field wireless
energy transfer.
Near Field Wireless Charging: The near field is that part of the radiation field that is below the Fraunhofer
distancedf = 2D2/λ [9], whereD is the source of the diffracting edge or antenna diameter, and λ is the wavelength.
Transferring energy through coupling magnetic coils is a typical near-filed energy delivery system, which is also
the most commercially successful wireless charging method [11, 13], ranging from charging cell phones, tooth
brushes, to cars and buses. Traditionally, this method had limited charging distance and required the device be
placed in a certain position [40]. Fortunately, recent development has improved their performance. Adopting the
idea of closed loop beamforming, MagMIMO [34] shapes a magnet flux into a steerable beam with multiple coils
to charge iPhones. Due to the nature of closed loop beamforming, MagMIMO charges the iPhone regardless of its
orientation and position. Meanwhile, in 2016, Disney research has created a 54m3 quasistatic cavity resonance
room, which can deliver up to 1900 watts of power [17] in the whole room.

In summary, near field wireless charging systems can transfer a decent amount of energy, but it either suffers
from very limited charging distances or it requires special large-scale facilities to achieve larger charging ranges.
Neither case is suitable for our BF-IoT scenarios.
Passive Energy Harvesting: Passively harvesting is also called ambient harvesting. It is proposed for charging
sensors, medical implants and many other extremely low power sensors [36, 41, 59]. For example, Ambient
Backscatter [39] is a prototype end-to-end system with the capability of harvesting energy from TV and cellular
signals in the environment to activate smart cards and grocery tags. It enables ubiquitous communication between
inexpensive devices that need near-zero maintenance. Talla et al. [55] harvest WiFi signal to charge low power
streaming cameras and sensors. However, passive harvesting is only suitable for battery free devices that need
micro watt level power, but not for IoT applications that require higher power.
Far Field Wireless Energy Transfer: Actively transferring energy to the target device has long been proposed
as a promising way of transferring heftier power over longer distances. In this paper, we specifically refer to
this type of wireless charging systems as WPTs. From the early Tesla’s Wardenclyffe tower to the later Air
Force mission of wirelessly powering an unmanned helicopter, until now people are still actively exploring
new possibilities in this space. Point source far field WPT methods have lower efficiency than their near-field
counterparts due to path loss, PrPt = GrGt

λ
4πdα , where we have α between 2 and 8 depending on the environment.

For example, with an isotropic receiver and transmitter, the power transfer efficiency can be lower than 0.1% for
a 10 meter charging distance. Thus, in order to deliver a certain amount of energy over 10 meters away, it is not
realistic to have only one isotropic energy transmitter.

One approach to addressing this challenge is to increase the directionality of the transmission. Using directional
antennas [16] or laser beams [33] can significantly increase the received energy given the same transmitting power
and distance. The other approach, however, is based on beamforming, which uses a large array of transmission
antennas for enhancing the signal towards certain directions. For example, Ossia [6] and Energous [10], two recent
start ups, have created WPT solutions through beamforming by using a large array of WiFi band transmitters.
Similarly, WPTs using distributed beamforming have also been investigated in [44, 47, 57], where closed form
solutions for distributed beamforming realization and energy delivery efficiency are studied.
We take the viewpoint that far-field active transferring is the most promising approach to enabling a large

array of BF-IoT systems with diversity charging energy and distance requirements. In this paper, we propose a
newWPT approach that leverages a group of transmitter antennas to increase the delivered energy. Our approach,
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referred to as Energy-Ball, is however drastically different from beamforming based WPTs in that it arranges
the transmitter antennas in a completely different manner and thus yields completely different energy density
distribution in the charging area. In the next subsection, we will then take a close look at the energy density
distribution of these two types of WPT approaches.

2.2 WPT Energy Density Distributions and Their Implications on Safety
The risks of excessive RF energy exposure have been studied in the past, which have revealed that harmful
biological effects may stem from strong RF radiation [21, 25, 32, 37, 48, 49]. High energy density across the
charging space in WPT systems may cause excessive RF energy exposure, which we strive to avoid in the design
of Energy-Ball.

Existing beamforming based WPTs have unwanted RF energy exposure along the beam. Due to path loss, the
energy density on the beam path is higher than that at the target receiver. Specifically, the simulation results
in Figure 1 show that on the beam path, the energy density at 1 meter away from the transmitter array is 13
times higher than the energy density at the target receiver. If the beamforming system is designed with only the
received energy in mind, without realizing that the energy level on the path may become much higher, then it is
hard to guarantee that the energy density on the beam is low enough to meet the FCC regulations or to be safe.
FCC establishes different exposure limits for different RF ranges. These limits are codified in Title 47 of the Code
of Federal Regulations (CFR). Specifically, as for conventional far field wireless charging frequency of 915MHz,
maximum permissible exposure (MPE) for uncontrolled environment is 0.6mw/cm2 [12]. In addition, due to skin
depth effect [43], WPT systems operating at higher frequencies naturally interact more strongly with the human
body than lower frequency WPTs [1].

Clearly, guaranteeing safety is one of the key objectives when designing a wireless charging system, especially
those that can work over several meters or longer [44]. A safe WPT approach has been investigated in [19]. In
this work, under the MPE constraint, the proposed approach selects specific energy chargers for a given set of
available energy chargers. On the other hand, a laser based wireless power transfer approach is proposed in [33],
where it automatically detects people in its laser beam path and turns the laser beam off. In Energy-Ball, as shown
in Figure 2, the peak energy exists precisely at the target receiver, an it is much higher than the received energy
at other locations. Thus, by controlling peak energy level at the receiver at a proper level, the entire charging
area should also be safe.

3 ENERGY-BALL DESIGN DETAILS

3.1 Overview
We have two main objectives when designing Energy-Ball:

(1) PreciseWireless EnergyTransfer:Taking a significant departure from beamforming basedWPT systems,
Energy-Ball arranges transmitters around the target devices, like speakers in a surround sound system.
When these transmitters align their phases at the target, an energy ball is precisely formed around the
target. The received energy density at the target is maximized while the energy density elsewhere is kept
low.

(2) Charging Mobile Receiver: We design an adaptive Kalman filter based framework to quickly re-align
phases for mobile receivers. Based on the fact that phase differences between transmitters to the receiver
and the receiver to transmitters are correlated, transmitters can estimate the needed phase differences for
phase alignment by using their measured phases. Transmitters then adapt their phases locally.
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3.2 Energy Transfer through Phase Alignment
Energy-Ball has two main components. Firstly, we arrange the transmitters around the target receiver (we will
discuss the spatial relationship between transmitters and receiver later in this subsection), and secondly we align
their phases at the receiver.
There are various approaches to aligning the transmitter phases. In our implementation, we extend the

algorithm presented in [46]. We partition time into rounds of equal duration, and within each round, every
transmitter transmits energy to the receiver at several randomly chosen phases, and expects a feedback beacon
from the receiver at the end of the round indicating whether any of the phase combinations gives higher energy
than in the previous round. After receiving the feedback, the transmitters choose a phase combination that has
given the highest energy level at the receiver, and then performs next round of random phase adjustments around
this combination. Repeating this process round by round, the receiver can guide transmitters to adjust their
phases towards the optimal phase combination which gives the optimal energy at the receiver. This algorithm
does not need complex channel state estimation, and it naturally takes into consideration the multipaths in the
environment. Though a heuristic based approach, it always led to fast convergence in many experiments we have
conducted on our testbed, mostly because our transmitters emit sine waves which have rather smooth slopes
around the peak region. More details on the implementation of our phase alignment algorithm will be further
presented in Section 4.2.
Can We Form an Energy Ball? Our simulation results show that when all transmitters align their phases at
the receiver, we can indeed form an energy ball at the receiver. That is, the energy density at the target is higher
than the energy density at any other location within the charging area. For example, in the results presented in
Figures 3 (a) and (b), we place 100 transmitters equally spaced on the edge of a circle with a radius of 10m, and
place the receiver at the center of the circle. Transmitters are isotropic, emitting narrow band RF signal at 1GHz.
Signals are coherently added up at the target receiver. Figures 3(a) and (b) pictorially show the energy density
distribution in a 10 × 10 meter area around the target receiver in free space and multipath environment (with
GWSSUS multipath channel [42]), respectively. In both settings, we witness a sharp energy peak around the
target receiver (circled using dotted red circle, the same for other energy distribution simulations). Specifically,
the peak to average energy ratio in the free space case is 90.9, while the peak to average energy ratio in the
multipath scenario is 81.1. Further, Figure 3(c) shows a 3D view of the resulting energy ball and the corresponding
transmitter deployment.

Besides having simulation results and actual experimental measurements that show the energy ball, we have
also mathematically proved that the energy at the target receiver is indeed the maximum energy across the entire
charging area. Interested readers are referred to [22] for detailed proof. Note that in practice, if the number of
transmitters is too small (say, 4 transmitters) or the receiver is placed far outside of the transmitter area, the
received power at the target location might not be the maximum received power across the entire space. However,
this observation still holds in most of the practical settings, as we will later show in Section 5.1.
How Small is the Energy Ball? Considering an asymptotically large number of transmitters, we have verified
in [22] that the distance between the point that receives the maximum energy level and the first point that
receives half of the maximum energy, which is usually called 3dB-down distance (d3dB ) in communication, is:

d3dB ≈ 0.22λ. (1)

We can use d3dB to represent the size of the energy ball, which is proportional to the RF wavelength we use for
charging. For an operating frequency of 1GHz, d3dB is around 13cm, which is quite focused. Further, through
simulation studies, we find that even for a smaller number of transmitters or asymmetric transmitter placement,
d3dB would still be a fraction of λ as long as transmitters are placed around the target receiver.
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(a) (b) (c)

Fig. 3. When we place the receiver in the center of the transmitter square, (a) shows the energy distribution around the
receiver in a 2D plane and (b) energy distribution under a GWSSUS channel, (c) pictorially shows the ‘energy ball’ relative to
transmitters in a 3D space, where blue dots mark the transmitters.

(a) (b) (c) (d)

Fig. 4. Simulated energy distribution around the the target receiver (target receiver is placed at the center) with (a) 8
transmitters (b) 16 transmitters (c) 25 transmitters (d) 50 transmitters.

(a) (b) (c) (d)

Fig. 5. Energy level distribution in different transmitter-receiver placement settings: (a) receiver placed at the center of
transmitter square; (b) receiver placed in the transmitter square, but not the center; (c) receiver placed outside of transmitter
square, but close; (d) receiver placed further away to the transmitter square. Among these four cases, the energy ball is
formed in the first three case.

How Many Transmitters We Need to Form the Energy Ball? In the above simulation studies, we have 100
transmitters. In reality, deploying such a large number of transmitters is not only prohibitively expensive, but
will also be hard to achieve synchronization/phase alignment among them.

Figures 4(a)-(d) show simulation results of the energy density distribution around the target receiver with
different transmitter numbers. In these simulations, transmitters are still placed on a circle centered around the
receiver. The results show that no matter how many transmitters we have, the energy level at the receiver is the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 2, Article 65. Publication date: June 2018.



65:8 • X. Fan et al.
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Fig. 6. Each radio device has separate ports for transmitting and receiving. We define the channel from the transmitter to
receiver as ‘energy charging’ channel, and the channel from the receiver to transmitter as ‘feedback’ channel. These two
channels work at different frequencies but are correlated.

highest. Further, when we have 25 transmitters, the peak to average energy ratio is already 13.4. In practice, we
built an actual testbed consisting of 24 transmitters, and we will show later in section 5 that the energy at the
receiver is indeed considerably higher than any other spot.
Does the Receiver Need to be Placed at the Center?We have shown one can form a tight energy ball around
the target receiver when placing the target receiver at the geometric center of the transmitters. We next investigate
the impact of receiver placement using simulations, in which we consider 100 transmitters that are equally spaced
along a 25 × 25 meter square. We vary the location of the receiver, and look at the energy distribution within a
10 × 10 meter area around the receiver, which are shown in Figures 5(a)-(d).

In Figure 5(a), the receiver is placed at the center of the square. In Figure 5(b), the receiver is placed within the
square, but not at the center. In Figure 5(c), the receiver is placed outside of the square, but its distance to the
square is comparable to the length of the side (its distance to the center of square is 85 meters). In Figure 5(d), the
receiver is placed far away from the square (its distance to the square is 200 meters). We observe that, as long as
the receiver is within the square, the energy concentration around the receiver is quite narrow, hence precise
energy delivery. Once the receiver is outside of the square, the width increases. However, we consider the energy
distribution in Figure 5(c) still precise, but not in Figure 5(d). Through extensive simulations, we observe that, not
only do we not need to place the receiver exactly at the center, but the key to precise energy delivery is that the
distance between transmitters and receiver is comparable to the distance between transmitters. The reason is, when
the distance between the transmitters and receiver is much larger than the distance between the transmitters
themselves, the setup approaches traditional beamforming and loses the advantage of Energy-Ball.

3.3 Charging Mobile Receiver
The second salient feature of our system is the ability to focus energy to devices while they are moving. Below
we discuss how we manage to charge mobile receivers.

3.3.1 Channel Reciprocity and Channel Correlations. The key to charging a mobile receiver is the ability to
quickly focus the transmitters’ phases at the new location of the mobile receiver as it moves. In order to ensure
smooth re-alignment, it is important to align each transmitter’s phase in a timely manner. Indirect methods such
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(a) (b)

Fig. 7. (a) PDD at 915MHz and 964MHz channel. Measurement results indicate the PDDs are correlated for these two
different channels. (b) Estimated energy charging channel PDD from the adaptive Kalman filter. We also show the measured
energy charging channel PDD as the ground-truth. This result suggests our phase estimation algorithm for mobile receiver is
indeed accurate.

as inferring phase differences by observing the Received Signal Strength (RSS) value at the receiver [46], are not
sufficient because the convergence process may take tens of seconds. Meanwhile, sequential methods in which
each ’s phase is adjusted one by one [50, 54] are also not fast enough.
In this study, we deal with this problem as follows. If we assume all the nodes are synchronized, and the

channel is time invariant, then the link from the energy transmitter to receiver (referred to as the energy charging
channel) and the link from the receiver to transmitter (referred to as the feedback channel) are reciprocal –
the absolute values of phase differences on these two channels should be the same [29, 30, 35, 58]. Hence phase
alignment can be quickly realized by taking advantage of channel reciprocity. Specifically, we can have the
receiver broadcast pilot beacons to all transmitters, such that each transmitter can measure the phase difference
and then adjust its phase locally according to the measured phase difference.

Unfortunately, the above method requires the two channels to be strictly reciprocal, which in turn requires all
the nodes to work in a dedicate Time Division Duplex (TDD) fashion1. That is, both the transmitter and receiver
should have an antenna that can switch between receiving and transmitting without re-locking its phase. The
TDD mode requires a specifically designed hardware that is not readily available on most low-cost IoT nodes.
Instead, it is more often that nodes work in the Frequency Division Duplex (FDD) mode. As shown in Figure 6,
in this setting, each node will use two RF ports, one for transmitting and the other for receiving, both working
simultaneously but at different frequencies. These two ports are spatially separated but close to each other.
Perfect channel reciprocity does not hold in our case since the energy charging channel and the feedback

channel work in different frequency bands that have different multipaths [18, 31]. However, considering the fact
that the two ports on a node are very close, and the receiving antenna and transmitting antenna on the energy
receiver move in a correlated trajectory, we have the hypothesis that the phase difference values for these two
channels are highly correlated.

1The full duplex radio is the best candidate to align phases using the channel reciprocity, however it involves even more complex hardware
and software design.
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We have conducted experimental investigations to confirm this hypothesis. Specifically, we use two USRP N210s
and configured each USRP to transmit and receive using two different antennas. The two USRPs are synchronized
by GPS where one is transmitting at 915MHz and receiving at 964MHz while the other is transmitting at 964MHz
and receiving at 915MHz. Then we attach the two antennas of the receiver USRP to a rotor, which spins at a
constant speed of 0.4m/s. Figure 7(a) shows the measured phase difference derivatives (PDD) –the differences
between adjacent phase difference values for a feedback rate of 20Hz – at different frequencies. We observe that
the two channels’ PDD values exhibit strong correlation and have similar trends. Hence, we believe our hypothesis
is true and can estimate the phase differences at the energy charging channel using the phase differences from
the feedback channel. As such, transmitters can measure the phase difference on the feedback channel, estimate
the phase difference on the energy charging channel, and then adjust their phases locally to achieve rapid phase
alignment.

3.3.2 Phase Estimation Using Adaptive Kalman Filter. We adopt an adaptive Kalman filter based estimation
method. On a transmitter node, we can model the received beacons as a state space model, in which yn denotes
the n-th feedback channel PDD, and xn denotes the n-th energy charging channel PDD. We have the following:

xn+1 = Axn +wn , yn = Cxn +vn . (2)
The signalswn ,vn are mutually-independent, zero-mean, white-noise signals with covariance matrices Qn and
Rn : E[wnw

T
i ] = Qnδni , E[vnvTi ] = Rnδni , and E[wnv

T
i ] = 0.

We first use our observed xn and yn data for pre-processing. Specifically, the initialization Kalman filter
parameters θ = [A,C,Q,R] are calculated by Expectation Maximization (EM) [20] algorithm from the pre-
processing data. Next, in order to timely estimate xn , we pass yn through the initialized Kalman filter and adopt
EM algorithm to adaptively update the Kalman filter parameters θ = [A,C,Q,R] periodically. Specifically, each
transmitter estimates and adjusts its new energy charging channel PDD xn upon receiving a feedback beacon,
and each transmitter updates its Kalman filter parameters using EM algorithm upon receiving everyM beacons.
In this way, each transmitter can locally adjust its phase to achieve rapid phase alignment. Figure 7(b) shows an
example PDD estimation sequence. The estimated energy charging channel PDD values (blue curve in Figure 7(b))
are in close agreement with the measured PDD values (orange dots in Figure 7(b)). In this experiment, the average
PDD estimating error is 2.4 degree, which is more than enough for achieving distributed phase alignment for our
purpose2.

4 BUILDING ENERGY-BALL TESTBED USING USRPS
In order to implement and evaluate the Energy-Ball design presented in Section 3, we develop an actual testbeb
consisting of 17 N210 and 4 B210 USRP nodes.

4.1 Testbed Setup

USRP Deployment and Configuration: We deploy 16 USRP N210 and 4 B210 as transmitters, which are
mounted on the 3-meter high ceiling of our laboratory, forming a 20 × 20m2 area. Another N210 acts as the
receiver in our testbed. It keeps broadcasting feedback beacons to all transmitters to guide their phase adjustments
towards the optimum. Our working frequencies are 915 and 964 MHz in this study. The maximum output power
for each transmitter in our testbed is around 71mw (18.5dbm). We use a WBX RF daughterboard on the USRPs.
There are two RF ports on each N210 and four RF ports on each B210, in total we have 24 transmitters. Transmitters
and the target receiver work in FDD (with different antennas for transmitting and receiving) full duplex mode.
The energy charging channel is set as 915MHz narrow band, and the feedback channel is set as 964MHz.
2Through simulations, we find that as long as the transmitter’s phase is within 45 degrees of the optimal phase, Energy-Ball can still reach at
least 90% of the optimal energy at the receiver. Hence, we do not require the transmitter phases to be exactly the optimal value.
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Fig. 8. Real world Energy-Ball testbed.

3m

20m

20m

Roof-mount GPS 

Fig. 9. The illustration of Energy-Ball setup.

The receiver is set up on the floor, and the receiving antenna is attached to our specifically designed robot,
making it easier to change the receiver location. Transmitters’ antennas are fixed, TG.35.8113 in our testbed, with
quasi-isotropic radiation patterns and low return loss in 915 and 964 MHz. The testbed itself is shielded from
outside, but the indoor RF multipath situation is quite complex. Our testbed is housed in a cluttered laboratory,
with floor, walls, and ceiling made of high reflection materials.

Figure 9 shows a typical testbed deployment, 4 N210s and 1 B210 at each of the four corners of the ceiling,
with 1 meter between them. There is no communication channel between the transmitters. We could place the
receiver anywhere in the deployment area.
GPS Synchronization:We synchronize the transmitters through a master-slave GPS system. Specifically, we
use a rooftop-mounted GPS antenna that provides reference signals (as the master clock) to the indoor GPS
splitter. An Octoclock-G unit containing a GPS disciplined oscillator (GPSDO) generates the PPS and 10MHz
reference signals which are distributed via equal length cables (75ft + 7.5ft) to 8 other Octoclock units which do
not have GPSDOs. Four of these Octoclock units are installed in the corners of the testbed to split the reference
signals using equal length cables (10ft). The use of equal length cables and a symmetric topology ensures that all
connected devices will see the same reference signals with little deviation in phase and time.
Distributed Phase Alignment: How to achieve phase alignment is orthogonal to the design of Energy-Ball,
and we can potentially pick any practical phase alignment algorithm. In this study, we build our phase alignment
algorithm on the 1-bit phase alignment algorithm that is proposed in [45, 46]. That is, upon receiving a 1-bit
feedback from the receiver, transmitters will randomly adjust their phases. The energy receiver will measure
the resultant energy level, and send a feedback to indicate if this phase adjustment has led to a better received
energy. If yes, the transmitters adopt this new phase combination; otherwise, they continue to use their old phase
combination. In either way, at the end of each round, the transmitters keep the best phase combinations they
have attempted thus far. Repeating this process, the transmitter phase combinations will approach optimal values
that result in the optimal energy level at the receiver. In this study, we extend the 1-bit phase alignment algorithm.
In each round, instead of trying one phase adjustment, the transmitters try N different phase adjustments. The
receiver will then notify the transmitters whether any of the N new phase combinations gives higher energy
then the old phase combination; if yes, which new phase combination is the best.
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Fig. 10. (a) Convergence speed comparison for algorithms in different random adjustments N and simulated annealing.
Phase alignment with larger N converges faster. (b) In the first 150 seconds, we turned on/off and measured 12 transmitters
one by one. After time 150, we turn on all transmitters and started phase alignment. RSS quickly converges after that.

Our extension converges much faster compared to the 1-bit algorithm. Figure 10(a) shows simulation results
(with 100 transmitters) of convergences for several different N values, with the simulated annealing algorithm [56]
and 1-bit algorithm (N = 1) as baseline results. The results show that the convergence is significantly faster than
base line algorithms with larger N .

Figure 10(b) shows an example experiment of real world distributed phase alignment. There are 12 transmitters
in this experiment, the feedback rate is 20Hz and N = 2. In this experiment, we turn on and off 12 transmitters one
by one to record the RSS contribution from each transmitter in the first 150 seconds. After 150 second, we turn
on all transmitters and run the phase alignment algorithm. The RSS converges to near optimal after 9 seconds.
Specifically, the optimal RSS is 0.222, and Energy-Ball reaches of the optimal RSS in this experiment.

4.2 GNU Radio Implementation
Signal processing tasks are performed by the GNU radio version 3.7.6.1. An overview of implementation flow for
transmitters and the receiver is illustrated in Figure 11. We write multiple out-of-tree GNU radio modules to
implement our functions. We next describe the GNU radio signal processing flow in detail.

4.2.1 Transmitter Side: The transmitters first receives feedback beacons in a narrow band 964 MHz channel
by a USRP Hardware Driver (UHD) source block. Then after low pass filtering, the transmitter demodulates
the incoming signal using the preset width-value mapping and guard band design in the demodulation block.
By changing the threshold parameter on this block, we can calibrate the threshold that differentiates noise and
beacons at the beginning of each experiment. This is important since the experimental environment is changing
with time. The transmitter will do different tasks according to the demodulated beacons.
Stationary Scenario: The transmitter applies N phase adjustments after demodulating the beacon in the next
block. Note that the transmitter holds its phase for the period of a slot τ , τ = t/N , where t is the duration for a
round, we set t = 50ms in our testbed. Due to the complexity involved in having large N values, we implement
N = 2 in our testbed. At last, after an output control block, the transmitter sends out the narrow band 915 MHz
phase adjusted signal by a UHD sink block.
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Fig. 11. Energy-Ball TX and RX signal processing flow.

Mobile Scenario: The transmitter measures the phase difference of each incoming beacon and calculates the
PDD accordingly. Within each incoming beacon, every two adjacent samples will yield out a phase difference,
and the phase difference of this beacon is calculated by averaging the phase difference of all adjacent samples.
Since USRP could only calculate wrapped phases, we apply Fast Fourier Transform (FFT) for each beacon to do
phase unwrapping before calculating the phase difference.
Then the calculated PDD is sent to the Kalman filter to estimate the PDD of 915MHz channel. Lastly the

transmitter adjusts its current phase using this estimated new phase. The Kalman filter parameters are updated
by the EM algorithm once for every 60 beacons.

4.2.2 Receiver Side: The receiver acts as a coordinator for transmitters, sending out instructions to guide the
transmitters’ phase adjustment towards constructive interference among them. By broadcasting different beacon
width, the receiver sends different beacons to indicate if its stationary or mobile.
Stationary Scenario: The receiver first receives all incoming signals in a narrow band 915 Mhz channel. In the
following block, after low pass filtering, the receiver measures the received energy by averaging the RSS of all
incoming signals for each of the N phase adjustments. It sends out an instruction to the next block at the end of
each round after comparing the average RSS values for each phase combination, telling the next block which
phase adjustment in this round has the highest energy. Then, the next block modulates a width-based beacon
following the preset width-value mapping. Finally, this beacon is sent out by the last UHD sink block in a narrow
band 964 MHz channel. In our system, the receiver broadcasts 20 beacons every second. Hence it has to process
receiving signal every 50 milliseconds.
Mobile Scenario: In this case the receiver keeps broadcasting 20 special width beacons every second. Transmitters
measure the phase difference of 964MHz channel according to this beacon.

4.2.3 Robust Pulse-width Modulation Feedbacks. Next, we take a closer look at the feedback mechanism for
the receiver. In the feedback control phase alignment method, the receiver sends feedbacks to transmitters to
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Fig. 12. (a) We use different beacon width to indicate feedback information. Only one threshold is used to differentiate
environmental noise and beacons. (b) Powercast P2110-EVB board and our PIPs sensor board. (c) Energy measurement robot
scans Chilitags (on the ceiling) for navigation.

signify which phase combination out of the N + 1 options gives the strongest signal to the receiver. Below,
we use N = 1 to simplify the discussion. In this case, the feedback has two values, 0, meaning the transmitter
should use its old phase value, and 1, meaning the transmitter should adopt the randomly picked phase value.
In [52], the receiver feedback uses signal amplitude to modulate: low amplitude denoted as 0 and high amplitude
denoted as 1. Such a scheme requires two preset amplitude thresholds, one threshold for differentiating noises
and valid feedback beacons, while the other for differentiating lower amplitude from higher amplitude. Choosing
suitable amplitude threshold values, however, is quite challenging as different settings have significantly different
radio environments; even the same setting may experience considerable fluctuation with time. Also, N feedback
control phase alignment method needs N + 1 vulnerable thresholds, which is extremely difficult to realize while
the receiver is moving. In [53], a GMSK-based feedback scheme is used, which only requires one threshold to
differentiate noise from feedback beacons. On the downside, it requires phase-level synchronization among the
transmitters and receiver, which is not always available in such a distributed system.

In order to address this issue, we choose to adopt a width-based modulation method and show that it is simple
but robust. In each round, the receiver broadcasts a feedback beacon that has N + 2 possible widths, in which
N + 1 different widths are for feedback control phase alignment method while the receiver is stationary and
another special width is used for adaptive Kalman filter while the receiver is mobile. The mapping between
beacon width and specific values is pre-determined and known to each transmitter and receiver. After receiving
a feedback beacon, transmitters infer its value based upon the beacon width and the pre-determined mapping. It
is very likely that the received beacon width does not exactly match any of the preset values, and so we set a
small tolerance space δ = ±d

5 , where d is the expected beacon width, as a guard band (in time domain) to address
this problem.

Compared to amplitude-based feedback beacons, width-based beacons are more robust since they only needs
one threshold to decode the feedback (the threshold differentiating environmental noise and receive beacons,
shown in Fig 12(a)). We note that the downside of the width-based beacon scheme is the relatively limited beacon
values it can support, which is not a concern in our system because large N values are not realistic anyway.

4.3 Experimentation and Measurement Tools
4.3.1 Energy Harvester and Low-Power IoT Sensors: In the testbed, we utilize the delivered energy to power an

in-house low-power IoT sensor, PIPs [23, 24, 60], which has been designed for smart building applications.
Figure 12(b) shows the PIPs board and the energy harvester board. A Powercast P2110-EVB [8] serves as the

energy harvester in our system. It converts input RF energy into DC energy, charging a 500uF capacitor on the
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P2110-EVB board. The output voltage of P2110-EVB is then set as 3.3v by a regulator and the regulator will only
be turned on when the voltage across the capacitor exceeds 1.2v. The regulator consumes the stored energy in
the capacitor. Note at 915Mhz, the P2110-EVB energy harvester has around 50% RF-DC efficiency. Hence the
actual rectified DC power received at the end device is less than the absolute delivered RF power.
We charge PIPs by using the 3.3v output voltage. An Agilent E4405B [5] is used to measure the absolute

incoming RF signal strength. Though the harvester could be turned on as long as its input RF signal strength
is over -12 dbm, around -7 dbm signal strength is needed to make the regulator work continuously. Otherwise,
voltage between the capacitor pins would drop while powering the regulator, hence failure to provide a stable
3.3v output voltage.

PIPs is an ultra low-power sensor board, consisting of a moisture, temperature, and magnet open/close sensor.
Normally, PIPs is powered by a coin cell. Here we configure PIPs such that it collects and reports data every 10
seconds. It takes 45.7 µJ to collect and transmit data, and consuming 3 µW to stay idle.
In order to charge PIPs, we first attach the receiver N210’s antenna onto a tripod with a coax cable and run

feedback control phase alignment method to achieve the optimal energy at the receiver. Next, keeping the
receiving antenna in the same location, we connect it to the P2110-EVB harvester board that converts the received
RF energy to DC energy. As soon as sufficient energy is generated, PIPs would start transmitting sensed data to
its receiver.

4.3.2 Energy Measurement Robot: Figure 12(c) shows a picture of our energy measurement robot and Chilitags
on the ceiling. The robot is controlled via ROS (Robot Operating System) [51] and it’s a Pioneer-p3dx robot [14].
The robot is differentially driven, and uses a Logitech c920 webcam for localization via the Chilitags library [15].
There are approximately 460 11" by 11" fiducial markers placed in a grid on the ceiling with a onemeter spacing. For
the purposes of this experiment, the robot was controlled via teleoperation, though it is designed to be operated
autonomously. The Rosaria package provides a ROS compatible interface to the robots on-board controller,
allowing any other program in the ROS ecosystem to communicate with it. A simple logger was created in python
to record the robots position, and plot the path that the robot followed during the experiment.

4.3.3 Spectrum Analyzer and USRP Calibration: We use a spectrum analyzer Agilent E4405B to measure the
absolute RF channel power. The spectrum analyzer can be used for acquiring absolute channel power on USRPs.
USRPs can only measure RSS without units. But since the RSS measured on USRPs and their daughterboards
is linear to the absolute RSS [3], we can figure out the absolute measured power on a USRP by calibration.
Specifically, we set a USRP N210 broadcasting RF energy constantly, and we connect the receiving antenna to a
calibrated spectrum analyzer through a coax cable to measure the narrow band 915 MHz channel power. While
keeping the receiving antenna at the same location and RF source USRP broadcasting the same signal, we then
disconnect the coax cable from the spectrum analyzer and connect this cable to the receiving RF port of another
USRP. By this calibration process, we can map the unitless USRP measured RSS to the absolute power (in Watt).
However, we note that our calibration process does have limitations. For instance, the receiving RF port on

USRP N210s most likely saturates if the received RF power exceeds 9dBm (around 7.9 miliwatt), in which case the
USRP likely loses its linearity between the recorded RSS and the absolute received RF power. As a result, we limit
the received power accordingly in our experiments.

5 EVALUATION
Using the USRP-based testbed, we have conducted thorough and carefully designed experiments to evaluate
the proposed merits of Energy-Ball. We also demonstrate Energy-Ball can charge PIPs sensors across the room,
enabling battery free IoT communication.
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Fig. 13. Using the topology shown in Figure 9, we measure the power level distribution of Energy-Ball in a 6 × 6 meter
area centered at the receiver. (a) presents the 3D view of distribution, while (b) presents the histogram of the power level
measurements. The distribution clearly shows that the energy density level at the receiver (marked by the red X) is much
higher than that at other spots within the measurement area.

5.1 Energy Density Distribution of Energy-Ball
First, we measure the energy density distribution in the charging area. We show that with Energy-Ball, the
energy level at the target receiver is the maximum across the entire area. We have also implemented a traditional
beamforming based WPT system and compare its energy distribution pattern with Energy-Ball.
Experimental Setup:We use the topology shown in Figure 9 for Energy-Ball implementation in this experiment.
On the other hand, for comparison, as shown in Figure 14(a), we custom build a beamforming rack which has 16
transmitting antennas and 16 receiving antennas to perform MRC [38] beamforming based WPT.

The main challenge in conducting this experiment is measuring the energy distribution in the area. Manually
sampling the area would take a significant amount of time (e.g., tens of hours), and it is very hard to keep the

Target 

Receiver

(a) (b) (c)

Fig. 14. Comparison experiments show the energy distribution of beamforming WPT systems. (a) Real world set up of our 16
by 16 beamforming USRP Rack. (b) Measured received power in the area between the beamforming rack and target receiver.
(c) Statistics of measured power, there are still lots of locations have received power greater than the target receiver.
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radio environment around the receiver stable within this period. Performing parallel measurements with multiple
USRPs is not a viable approach either, due to differences in their hardware.
We thus use a specifically designed robot to address this challenge. The receiver’s antenna is attached onto

the robot. In this method, as soon as the phase combining at the receiver stabilizes, we stop the receiver from
sending feedback messages. As a result, the locked phases at the transmitters lead to coherent phase combining at
the original receiver’s location. Next the robot will traverse the intended scanning area by a preset trace, which
will cover the intended area as much as possible. Meanwhile the receiving USRP is recording the RSS during
the whole process, and the RSS values are eventually mapped to their corresponding locations by comparing
the timing information of the robot and the receiving USRP. During our experiment, we also make sure that
the observed RSScombined value at the energy delivery destination (the original receiver location) does not have
noticeable variation.
Results: In our topology (shown in Figure 9), we have measured a 6 × 6m2 (this size is limited by the maximum
length of the coax cable) rectangular area around the receiver. Figure 13 (a) shows the measured received power
distribution in a 3D view. We clearly witness a sharp energy peak around the target receiver location, while the
energy at other locations are very low. Figure 13(b) shows the statistics of measured received power from the
robot: the received power at target receiver is 0.63mw, which is the maximum received power of all measured
spots. 62% of measured received power is less than 0.063mw and 99% of measured received power is less than
0.31mw.
As far as the MRC beamforming based WPT is concerned, Figure 14(b) shows the measured received power

distribution. A strong energy beam projects toward the target receiver, and most of the received powers (89%
of measured locations on the line of main beam) on this beam are higher than the received power at the target
receiver. Figure 14(c) shows its statistics: received power at target receiver is 0.54mw, but there are 8% of measured
spots have received power higher than the target receiver.

We note that on our facility, we cannot move these USRP antennas around, and as a result, the distances between
the transmitters and the receiver in these two systems are different. Because of this, it is hard for us to directly
compare the delivered power amount in both systems, nor can we compare their charging efficiency. However,
we do see that these two systems lead to very different energy density distribution patterns. Energy-Ball has the
energy peak only at the target receiver. Specifically, the peak/average received power ratio in this experiment is
8.72. As we noted in Section 2.2, these patterns potentially have different implications on safety of the system
especially when the delivered energy amount goes up.

5.2 Energy-Ball Delivers Energy at Any Point across the Room
We have built a 20 × 20m2 area testbed. We now show Energy-Ball can align phases and delivery energy at any
point within this area. For this purpose, we place the target receiver at 42 different locations, measure the delivered
energy at each spot, and show the results in Figure 15. Among these 42 locations, location 1 is the center of the
charging area while the other 41 locations are randomly chosen. Specifically, the received power at location 1 is
0.57mw . When we move the receiver to a different location, our system re-align transmitters’ phases. Experiment
results show they all converge to over 90% of the optimal received power. Among these 42 measurements, the
minimum, average and maximum received power are 0.51mw , 0.63mw and 0.74mw , respectively.

5.3 Energy-Ball Charges Mobile Receivers
Next, we show that our Energy-Ball testbed can successfully deliver energy to a mobile receiver as well. In this
experiment, the trajectory of the mobile receiver is unknown to the transmitters.
Experimental Setup: We mount the receiver on our robot that moves on a straight line at constant speeds,
0.1, 0.2, 0.3, 0.4, 0.5 m/s. Here, as shown in Figure 16(a), while the robot is stationary, we first measure optimal
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Fig. 15. In our 20 × 20m2 test area, we place the Energy-Ball receiver at 42 locations, in which location 1 is the center of
the area and the other 41 locations are randomly chosen. We show the received power at each of these receiver locations
here. Results show the received power at most of the locations is higher than the received power level at the center of the
deployment area (location 1).

energies at 13 different positions along each moving track of 0.6m. Then the robot starts moving on a straight
line as well as running Energy-Ball. We did this experiment for 13 times at each speed. The receiving USRP
records received power data on the target receiver while the robot is moving. We use the average of 13 optimal
measured energy as reference (100%), we compare the received power among (1) different moving speeds and (2)
the performance between Energy-Ball is working and Energy-Ball is not turning on.
Results: Figure 16(b) shows around 80% of optimal received power is received for mobile receiver while Energy-
Ball is working, only 14.7% of optimal received power is received while we turn off Energy-Ball. The adaptive
Kalman filter design enables the mobile target receives significantly more energy, which is comparable with
optimal energy (when the receiver is stationary). This result also suggests the received power under these 5
different tested speeds are similar.

5.4 Application Example- Charging Low-Power PIPs Sensors
Lastly, in this subsection, we provide evaluation results of charging PIPs (hardware details are given in Section 4)
through a Powercast P2110-EVB harvester. With the delivered energy, we show that the PIPs sensor board is able
to work without battery.
Enabling Battery-less IoT: In this experiment, we place PIPs in 13 randomly chosen locations in the charging
area. At all 13 locations, Energy-Ball delivers over 0.6mw power that enables PIPs sensing and transmitting data
continuously. The measured minimum, average and maximum received power across the room are 0.61mw ,
0.67mw and 0.79mw respectively. Figure 17(a) shows a portion of the reported sensor data from the sensor
charged by our testbed. We observe no dropped packet during the entire experiment.
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Fig. 16. (a) We place the receiver on the robot, which moves at a constant speed along a 0.6 meter long trajectory. We
measure received power at 13 different positions on the trajectory (transmitters are placed at 4 corners). (b) The received
power percentage values at the mobile receiver with different moving speeds. The rightmost box represents the received
power percentage value when Energy-Ball is turned off (transmitter phases are still aligned to the original receiver location).

Powering Specific PIPs through Precise Energy Delivery: Next we place the harvester and PIPs in location
7-14 (red square in Figure 17(b), O in Figure 17(c)). After a short charging period, the PIPs board is powered and
begin to collect/report data continuously. Again, we observe no packet drop during the entire experimentation
period.

With transmitters’ phases locked, we move the harvester and PIPs to other locations (we move PIPs’s location
instead of having a different sensor at that location because we don’t have enough number of power harvesters):

• A short distance (wavelength 30cm) away from the energy focus. We move the PIPs one λ (around 30 cm)
away from the focus point O , i.e., A,B,C,D in Figure 17(c) (still within the red square in Figure 17(b). At
these locations, the harvester can be charged slowly but PIPs fails to work continuously. For example at
location A, PIPs could work for 90 seconds then it is down for a 20 minutes to charge, because the charging
speed of P2110-EVB’s on board energy storing capacitor is less than the rate of energy being consumed.

• Farther away from the energy focus. Next, we move the harvester and PIPs further away, to locations 7-13,
7-12, 8-14, 9-14, 7-15, 7-16, 6-14, 5-14, 15-15, 13-16, 15-7, and 7-6, one by one. As expected, PIPs did not
get charged to a level where it could sense/communicate. These locations are marked by blue squares in
Figure 17(b), and summarized as ‘others’ in Figure 17(c).

End-to-end Efficiency: Since our transmitters work in far-field settings, the end-to-end energy transferring
efficiency (prx/Σptx ) is rather low, ranging from 1/1000 to 1/3000 across our 20 by 20 meter testbed. However, it
is the physical limitation of any far-field WPT system. The end-to-end efficiency could be increased by using
directional transmitters. We argue that such an energy delivery system is still valuable, mainly because the value
of transmitted power and the value of received power is often asymmetric, especially if the receiving node is in a
hard-to-access region. As IoT devices are made increasingly low-power, this concern becomes less severe.
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Fig. 17. In this experiment, we investigate whether sensors at locations other than the target can be powered. (a) Data reported
by PIPs, including timestamp, dropped packet ID, server ID, sensor ID, RSSI and sensed data. (b) shows the experiment set
up where the target sensor (O) is in the center of the red block, and A, B,C , and D are within the red blocks, 30cm away from
O , and a few others are located in the blue squares. (c) shows how sensors at different locations operate when the energy is
focused at O . O can work perfectly, A-D can work partially even though they are only 30cm away, and those sensors that are
placed in the blue blocks do not have sufficient power to sense or communicate.

6 CONCLUSION
In this paper, we present a new WPT approach that transfers wireless energy to intended receivers by arranging
a group of distributed transmitters around the receiver and coherently combining their phases at the receiver.
This approach is a departure from existing beamforming based WPT approaches which have high energy on the
energy beam path. The key innovation of our approach is that it can maximize the received power solely at the
receiver, and have low received power at other locations across the space. Through detailed evaluation using 21
USRP nodes across a 20 × 20m2 area, we show that the proposed approach can maximize the power level at the
target receiver, can deliver a consistent amount of power to any point in the area, can charge a mobile receiver,
and can continuously power a low-power IoT node at any point across the area.
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