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Abstract— Collision detection is critical for safe robot opera-
tion in the presence of humans. Acoustic information originat-
ing from collisions between robots and objects provides oppor-
tunities for fast collision detection and localization; however,
audio information from microphones on robot manipulators
needs to be robustly differentiated from motors and external
noise sources. In this paper, we present Panotti, the first
system to efficiently detect and localize on-robot collisions
using low-cost microphones. We present a novel algorithm that
can localize the source of a collision with centimeter level
accuracy and is also able to reject false detections using a
robust spectral filtering scheme. Our method is scalable, easy
to deploy, and enables safe and efficient control for robot
manipulator applications. We implement and demonstrate a
prototype that consists of 8 miniature microphones on a 7
degree of freedom (DOF) manipulator to validate our design.
Extensive experiments show that Panotti realizes near perfect
on-robot true positive collision detection rate with almost zero
false detections even in high noise environments. In terms of
accuracy, it achieves an average localization error of less than
3.8 cm under various experimental settings.

I. INTRODUCTION

Collision detection is an important capability for manip-
ulator operation in dynamic and uncertain environments.
A robot colliding with the environment can damage itself
or its surroundings. It can also cause harm to humans
in the workspace. With the capability to detect collisions,
the robot can stop. If the collisions can be localized, the
robot can plan actions to avoid further impact. As a result,
significant research has been dedicated to collision detection
and localization for robot arms.

Existing approaches for collision detection and localiza-
tion can be divided into two groups based on their sensing
methods. The first group uses proprioception, e.g. motor
torque, position, velocity and momentum readings coupled
with inverse kinematics and dynamics [1]–[7]. As they are
model-based techniques, the detection algorithms usually
require accurate knowledge of the model parameters. In prac-
tice, however, it is challenging to obtain dynamic parameters
due to noisy and time varying properties of motors. The
second set of solutions rely on exteroceptive sensors such
as cameras and tactile sensors [8]–[12]. The feedback from
tactile sensors is typically limited to the area surrounding
the sensor. Covering an entire arm with tactile sensors can
be costly and difficult. Cameras, on the other hand, require
line of sight to detect collisions. Obstacles in the workspace
can cause occlusions which limit their effectiveness.
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Fig. 1. Panotti system configuration and overview.

In this paper, we focus on a new modality, sound, and
introduce a novel solution based on acoustic perception.
Specifically, we present the Panotti collision detection and
localization system for robot manipulators1. Panotti is the
first system to use low-cost microphones deployed on the
arm to detect and localize collisions.

In order to accurately detect collisions and localize them
using microphones on a robot arm, two sets of challenges
must be overcome. First, the system must distinguish be-
tween sounds caused by a collision and other sounds. This
is difficult because there are many sound profiles which
are similar to collisions. Such sounds can come from the
outside and also from inside the robot (e.g. from the motors).
In Section III-A, we present our approach for detecting
collisions using a series of custom filters. The second chal-
lenge is regarding localization. Classical methods used in
microphone and sonar arrays do not directly apply in our
case. In particular, these methods usually rely on accurate
detection of the onset time (the time for the sound to
reach the microphone) from all microphones. In our case,
we realized that while the onset time can be determined
accurately for the microphone closest to the collision, it is
hard to detect for the other microphones. However, those
microphones still provide useful information which can be
exploited for localization. In Section III-B, we present a
novel method based on embedding the available information
along with the knowledge about the calibrated microphone P-
wave onset time onto an one-dimensional manifold in order

1The Panotti were a mythical group of people in Greek Mythology. They
were described as possessing large ears that covered their entire bodies [13].
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Fig. 2. Left: Three microphones deployed along a robot arm. A
collision happens at location B. Right: The received signal strength
(RSS) on microphones A and D under the this collision.

to localize the sound source.
To showcase these capabilities, we present a complete

system where we deployed Panotti with eight microphones
on a 7-DOF robot arm. In Section V, we present results
from experiments where we show that Panotti can accurately
detect collisions with an average localization error within
3.8 cm in challenging real-life settings. Our results establish
Panotti as an accurate, low-cost collision detection and
localization system for robot manipulators.

Our contributions can be summarized as follows:
• Panotti is the first system that detects and localizes robot

collisions using low-cost microphones.
• We customize several signal processing algorithms to

specifically address our unique design challenges. More-
over, we design a localization algorithm by exploiting
the robot structure. The system requires very little
calibration and runs in real-time.

• We implement a Panotti prototype on a 7 DOF ma-
nipulator with a multi-track microphone array, and
conduct comprehensive evaluations. Our multi-scenario
real world experiments take into consideration various
over-the-air impulsive sound sources, on table and floor
impulsive sound sources, multiple test objects colliding
with the robot arm, and the moving robot arm colliding
with multiple test objects. Our results show that Panotti
realizes close to 100% on-robot collision true positive
detection rate and close to 0% off-robot sound false
positive detection rate, meanwhile achieving less than
3.8 cm average localization error.

In the next section (Section II), we introduce the physics
behind collision on robots and present an overview of related
work. The system design is detailed in Section III. An
implementation (Section IV) and performance evaluation
(Section V) then follows. Section VI concludes with a
summary of our results and future research directions.

II. BACKGROUND

In this section, we first provide a brief overview of the
physics behind robot collisions in order to highlight the
challenges in audio based approaches. Next, we provide a
summary of related work in wireless localization.

A. Physics behind On-robot Collisions

Sound waves resulting from collisions that happen be-
tween robots and surrounding obstacles are of an impul-

sive nature. These impulse waves are lamb waves (plate
waves) [14] because robots are generally constructed with
solid plates. The ratio of wavelength to thickness of the robot
plates is large. For example, if a 50 Hz wave propagates in
the robot with a velocity of 1000 m/s, the wavelength is
equal to 20 m, which is much larger than the thickness of
robot plates (less than 1 cm).

Plate wave propagation in robots is of a dispersive nature,
which causes different frequency components to have dif-
ferent velocities [15], [16]. A deployed example is shown
in Figure 2. Three microphones are mounted along a robot
arm at locations A, C and D. The collision happens at
location B. Due to the dispersion, as illustrated in the
right figure, each microphone will receive dissimilar signal
with the same collision, which makes correlation based
TDoA methods infeasible. Furthermore, even for the same
frequency, plate wave propagation velocity depends on the
robot structural and material characteristics, such as modulus
of elasticity, density, Poisson’s ratio, and slab thickness [17].
As illustrated in Figure 2, even with the on-robot distance
dAB < dBD, due to the robot structural heterogeneity,
the microphone at location D might receive the collision
earlier than the microphone at location A. The heterogeneity
consequently hinders the system determining the onset time
or TDoA. Lastly, the relative location of each microphone
changes as the robot arm moves around, making triangle-
based localization algorithms not feasible.

B. Related Work in Wireless Localization

Wireless localization is of vital importance in several
domains such as sonar [18], robotics [19], wireless sensor
networks [20], and communication [21]. Existing methods
can be categorized into three categories: i) signal strength
fingerprinting, ii) beamforming based source localization,
and iii) multilateration.

Localization through RSS signature fingerprinting is based
on the wave (acoustic or radio frequency) propagation char-
acteristics [22]. This approach requires a transmitter proac-
tively sending known signals, and a RSS-location map is con-
structed by measuring the RSS at different distances from the
signal source. Besides this approach being vulnerable to the
ever changing wireless channel state information (multipath
and fading), the signal source is randomly generated in each
collision, which prevents us from using this fingerprinting
approach. Beamforming approaches find the source location
by shifting the phases of received signal copies until they find
the maximum similarity in the spatial domain [23]. However,
the beamforming approach assumes the wave propagates
in a homogeneous medium. It also requires the receivers’
geometric layout and wave velocity to be known, which is
not feasible in the Panotti design.

Multilateration localizes the sound source based on the
measurement of time of arrival (ToA) or time difference
of arrival (TDoA) of waves across the receiver array [24].
Traditionally, this approach also requires the wave velocity
and receivers’ geometrical information. However, in the
design of Panotti, we generalize the Multilateration method
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Fig. 3. From left to right: raw over the air signal, low-pass filtered over the air signal, raw on table signal, and high-pass filtered on table
signal.

by calibrating the microphones’ P-wave TDoA onto an one-
dimensional manifold and then designing a scoring function
to localize the sound source.

III. SYSTEM DESIGN

Panotti involves N=8 low-cost (∼10$ each) miniature-
microphones deployed along a 7 DOF robot arm. An im-
portant feature of Panotti is that the location information of
microphones is not required.

In the rest of this section, we explain the details of each
design component, including the on-robot collision detection
method (§III-A), the collision localization algorithm, the
epicenter multilateration for collision localization (EMCL)
(§III-B), and the motor noise suppression mechanism in (§III-
C).

A. On-robot Collision Detection

Similar to on-robot collisions, off-robot sounds can be
impulsive by nature, and thus they can be captured by mi-
crophones and mistakenly considered as on robot collisions.
Therefore, we need to carefully investigate the characteristics
of off-robot sounds and detect on-robot impulses only.

In Panotti, the first thing we do is to physically isolate
microphones from the robot’s surroundings. As shown in
Figure 1, in our implementation, we seal microphones with
a sound deadening material [25]. The sound deadening
material reduces the wide band over-the-air audio signal
strength by approximately 20 dB. In this way, Panotti ma-
jorly receives signal generated on the robot and mediums
coupled with the robot (e.g. the support table and floor).

However, as shown in Figure 3 left, the residual over-the-
air signal still remains significant. Determining the on-robot
collision by simply thresholding the raw signal is not robust
and generalizable. In Panotti design, we apply a low pass
filter (LPF) with very low cut of frequency (< 200 Hz) to
identify the over-the-air sound. The key intuition is on-robot
collisions introduce micro vibrations along the robot body,
which translates to significantly higher amount of infrasound
energy. Consequently, true on-robot collisions can be easily
detected after LPF. On the other hand, as shown in Figure 3
left, the filtered over-the-air sounds are usually under the
noise floor or very weak.

Collisions on the table or floor that supports the robot may
also vibrate the robot slightly, which consequently generate
infrasound energy. However, in wave propagation, the high
frequency components attenuates exponentially faster than
the low frequency components [26]. Also, comparing with

audio signals propagating in the air, solid materials such as
wood and concrete floor absorb several magnitudes more
energy in the whole spectrum [27]. As such, followed by
the LPF, we apply another high pass filter (HPF) to identify
the on table and on floor sound. An example result is shown
in Figure 3 right. As can be seen, for the example on table
collision, the high frequency components are well under the
noise floor. Detailed cut off frequency investigations for both
filters are presented in Section V-A.1

Algorithm 1 On-robot collision detection
1: function DETECTION(s1, s2...sN )
2: for i ← 1 to N do
3: sLi ← LPF (si)
4: sHi ← HPF (si)
5: if (||sLi||inf) ≥ γ1 & (||sHi||inf) ≥ γ2 then
6: return on-robot collision detected
7: end if
8: end for
9: end function

The implementation of on-robot collision detection is
illustrated in Algorithm 1. N is the number of microphones.
si is the received signal on ith microphone. γ1 and γ2 are
two preset thresholds. Panotti adapts this simple physical
microphone tweak with a mixed filtering approach to identify
on-robot collisions. The detection accuracy remains high
even under extreme tests (4% false negative rate). Detailed
evaluations of this mechanism are presented in Section V-
B.1.

B. Epicenter Multilateration for Collision Localization
(EMCL)

We detect the onset time ti of ith microphone by finding
its first peak above an energy threshold γ = 3σ, where σ
is the standard deviation of the received signal copy. T =
[t1, t2, ..., tN ] is the onset time set. The relative onset time
(ROT ) is defined as:

ROT = T −min(T ). (1)

As discussed in Section II, triangulation based localization
methods and correlation based onset time detection methods
are not suitable in our scenario. Let’s rethink our application
scenario, we are trying to localize sound sources generated
on robot arms that usually around 1 meter long. Although
the arm can move, the microphone locations on the robot are
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Fig. 4. From left to right: the 2 dimensional manifold projection in the microphone 1 and 2 space, the microphone 3 and 4 space, the
microphone 5 and 6 space, and the microphone 7 and 8 space.

fixed, the arm’s modulus of elasticity, density, Poisson’s ratio,
and slab thickness stay invariant during moving. For example
in Figure 2, if two collisions happen at different locations
between microphone A and B, ROT (A) − ROT (B) will
change but ROT (D) − ROT (C) remains similar in two
collisions. As such, when the collision location gradually
moves between microphone i and microphone i + 1, only
the ROT (i)−ROT (i+1) changes among microphones, i.e.
The ROT is an one dimensional manifold in the N dimension
microphone space. We can then calibrate and acquire the
wave propagation properties beforehand, and apply them to
localize the upcoming collision.

Overview of EMCL. In a manner analogous to locating
the epicenter of earthquakes, we name our algorithm as
Epicenter Multilateration for Collision Localization (EMCL).
As shown in Figure 1, we first evenly mark along the robot
arm at M locations, then we hit at each marked location
clearly and derive the low dimensional manifold in the N
dimension microphone space. When there is a new collision,
we calculate the onset time for the strongest signal, and
scoring each location along the calibrated manifold. We
design the scoring function based on the manifold. Last, we
conclude the collision location based on that score.

P-wave TDoA calibration. During the calibration, we have
one ROT for each interested location along the robot arm,
Hence the manifold M can be represented by a concatena-
tion of M ROT s:

M = [ROT1;ROT2; ...;ROTM ]. (2)

The proposed localization method strongly depends on the
estimation accuracy of manifoldM, which requires accurate
onset times T . However, as illustrated in Figure 5, due to the
dispersiveness and the attenuation in the signal, it is hard to
determine accurate onset times for the microphones far from
the signal source. Note the onset time difference between two
adjacent microphones ∆t(i, i+1) = ti−ti+1 is fixed if colli-
sions didn’t happen between microphone i and microphone
i + 1. According to this observation, we first obtain each
∆t(i, i+1) by proactively colliding near (but not in between)
the microphone i or microphone i + 1. Then we use this
onset time difference ∆T = [∆t(1, 2),∆t(2, 3), ...,∆t(N −
1, N)] to cleansing the manifold M. The implementation is
illustrated in Algorithm 2.

Algorithm 2 Cleansing the M ×N dimension manifold
1: function CLEANSING(M,∆T )
2: V = NULL
3: for i ← 1 to M do
4: temp = ROTi
5: index = argmin(ROTi)
6: for j ← index to 1 do
7: if j≤2 then
8: Break
9: else

10: temp(j− 2) = temp(j− 1) + ∆T (j− 2)
11: end if
12: end for
13: for j ← index to N do
14: if j≥N-1 then
15: Break
16: else
17: temp(j+ 2) = temp(j+ 1) + ∆T (j+ 1)
18: end if
19: end for
20: V = Concatenate(V, temp)
21: end for
22: return V
23: end function

Figure 4 describes the cleansed low dimensional (2D)
projected manifold from the high dimensional (N = 8)
microphone space. We evenly mark M = 21 locations
(5cm spacing between two markers) along the robot arm
in the calibration and colliding at each marker sequentially.
As can be seen, there is a separable 1D manifold in each
2D projection. We call this calibration procedure as P-
wave TDoA calibration due to the P-wave arrives fastest in
earthquakes [28].

Localization. As an example shown in Figure 5, the first
peaks of microphones near the collision are easy to find,
however finding first peaks for the faraway microphones are
difficult. In Panotti localization, we only find the onset time
of first peak tref from the microphone that has the strongest
signal si. Then we generate a set of virtual onset time U for
the other microphones based on the manifold M:

U =M− 1T
N ⊗M(i) + 1M · 1T

N · tref . (3)

1N is a column vector of 1 with N elements, M(i)
is the ith column in M, and ⊗ is the Kronecker tensor
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product [29]. The virtual onset time U is the shifted version
of the original manifold M based on the incoming detected
collision. The intuition here is we try to find the best matched
marker location from this adjusted manifold U . Next we
adapt the virtual onset time U to derive the score for the
ith pre-determined marker location S(i):

S(i) =

N∑
k=1

F(Ui(k))2. (4)

F is the scoring function and Ui is the ith row in U . In
Panotti implementation, F(Ui) is defined as the standard
deviation within a small window w that expands each el-
ement in the virtual onset time Ui. The physical intuition
here is, when there is an upcoming collision, the signal
starts to rise and oscillate in a faster rate if we found the
right onset time. Larger disturbance translates to larger stand
deviation value. As such, a higher score value represents to
a higher chance to be the correct marker location. Moreover,
we also investigate other scoring functions during Panotti
design, detailed comparisons are discussed in section V-A.2.

Algorithm 3 Localization
1: function LOCALIZATION(S)
2: k = argmax(S)
3: if k == 1 then
4: C = QuadraticFit([S(1), S(2), S(3)])
5: else
6: if k == N then
7: C = QuadraticFit([S(k), S(k− 1), S(k− 2)])
8: end if
9: C = QuadraticFit([S(k − 1), S(k), S(k + 1)])

10: end if
11: return argmax(C)
12: end function

Finally, the localization method based on this score is
illustrated in Algorithm 3. An example scoring and interpo-
lation for a collision close to marker location 5 is illustrated
in Figure 6. The final collision location is determined by
looking for the peak index of the quadratic fit curve.

The elegance of EMCL is that it only requires the onset
time for the microphone that has the strongest signal. Also,
although different collision items generate different wave
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forms, the wave propagation speed should be similar across
all frequency bins given fixed robot arm material and surface
structure. It’s the key for Panotti to robustly locate collisions
with novel subjects. Detailed evaluations of the localization
algorithm are presented in Section V-B.2.

C. Motor Noise Suppression

Motor noise is inevitable during robot operation. However,
the majority of the noise comes from the nature frequencies
of robot motors. As shown in Figure 7, the fundamental
frequency of our Kinova Jaco is focused tightly around
100 Hz. We thus apply a band stop filter which has center
frequency around 100 Hz onto the received signal to mitigate
the motor noise. Figure 8 shows an illustration of the filtering
result. As can be seen, the motor noise has been significantly
mitigated. This process eventually brings EMCL with a better
performance when the robot arm is moving. In practice, the
arm’s fundamental frequency can be acquired by calibration.
For example, another robot arm Kinova Gen3 [31] we tested
has the fundamental frequency around 80 Hz.

IV. PUTTING TOGETHER A Panotti COLLISION
DETECTION SYSTEM

We describe the system implementation in this section.

A. Testbed Setup

We deploy 8 Sujeetec miniature omnidirectional micro-
phones [32] on a Kinova Jaco manipulator. The microphones
are shielded with a Noico 80 mil automotive butyl and foil
sound deadening material [25] and connected to a Zoom F8n
MultiTrack Field Recorder [33]. The sampling rate Fs is set
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Fig. 9. System work flow of Panotti on the 7 DOF manipulator.

9533



0 100 200 300 400

F
LC

 (Hz)

0

1

2

3

4

5
O

T
A

 t
ri

g
g

e
r 

ra
te

 %

99

99.5

100

O
R

 t
ri

g
g

e
r 

ra
te

 %

Over the air

On-robot collision

Optimal

Fig. 10. OTA sound trigger rate
and OR collision trigger rate vs.
FLC . Dashed line indicates the
optimal FLC selection.

0 0.5 1 1.5 2

F
HC

 (Hz) 10
4

0

1

2

3

4

5

O
T

F
 t

ri
g

g
e
r 

ra
te

 %

90

95

100

O
R

 t
ri

g
g

e
r 

ra
te

 %

On table and floor

On-robot collision

Optimal

Fig. 11. OTF sound trigger rate
and OR collision trigger rate vs.
FHC . Dashed line indicates the
optimal FHC selection.

5 10 15 20 25

Window length (samples)

0

1

2

3

4

5

L
o

c
a
li
z
a
ti

o
n

 e
rr

o
r 

(c
m

) /window

Average

Standard deviation

Optimal

Fig. 12. Average localization er-
ror and σ vs. window length
using standard deviation as the
scoring function.

5 10 15 20 25

Window length (samples)

0

1

2

3

4

5

L
o

c
a
li
z
a
ti

o
n

 e
rr

o
r 

(c
m

) Max/window

Average

Standard deviation

Optimal

Fig. 13. Localization average er-
ror and σ vs. window length
using max value as the scoring
function.

as 48 KHz. Each microphone is driven by 24V phantom
power provided by the Field Recorder. Signal processing is
done by an Intel NUC7i7BNH computer [34].

The 8 microphones are evenly deployed along the 1 meter
long Kinova Jaco arm. We evenly mark 21 calibration loca-
tions between microphone 1 and 8. The robot fundamental
frequency is obtained by recording random movements of
the robot arm for 240 seconds.

B. System Processing Flow

Figure 9 shows the processing flow of the system function-
ing modules. First, Panotti detects if the robot is in motion
from the manipulation system call. Next, the motor noise
filter is applied if the robot is in motion. Then the energy
prorating mechanism is carried in the collision detection,
and the EMCL localization algorithm follows if an on-
robot collision is detected. Finally the robot starts to retreat
according to the estimated collision location. We implement
the robot retreat using Kinvoa SDK Ver. 1.5.1.

V. EXPERIMENTS

We present the experiment and evaluation results in this
section.

A. Micro-benchmark

We start with performing micro-benchmarks to evaluate
system parameters in each function module. In this section,
we aim to find the optimal system parameters by using a set
of training data. We have collected 311 over-the-air (OTA)
impulsive sound sources, such as human clasp, shout, and
hitting use metal and wood etc. We have collected 276 on
table and floor (OTF) sound sources, such as item drop on the
table, human jumping, and hitting on the table/ground use a
mallet. We also collected 286 on-robot (OR) collisions using
a screw driver, which include 105 collisions (5 collisions at
each marker location) for the P-wave TDoA calibration.

1) On-robot Collision Detection: Experiments in this
section aim to i) understand the relationship between the
performance of proposed on-robot collision detection rate
and ii) finding the optimal filter settings of the energy
prorating method.

Cut off frequency FLC . We evaluate the trigger (detected
as an OR collision) rate for OTA sound sources and OR
collisions in different LPF cut off frequencies FLC . As

Scoring method Absolute value Absolute value2 Max/window Average/window σ/window

Average/σ (cm) 4.38/3.87 4.42/3.76 3.87/3.12 4.28/3.57 3.47/2.79

TABLE I. Localization error and standard deviation (σ) for different
scoring function..

shown in Figure 10, the OTA trigger rate stays close to 0
percentage before 200 Hz while the OR trigger rate increases
to around 99.7% at 200 Hz. We thus choose 200 Hz as FLC

in the Panotti implementation.

Cut off frequency FHC . Figure 11 shows the results when
we evaluate the trigger rate for OTF sound sources and OR
collisions in different HPF cut off frequencies FHC . As can
be seen, the OR trigger rate stays close to 100% before 10
KHz and starting to decreases when after 10 KHz. The OTF
trigger rate start dropping sharply before 10 KHz and staying
lower than 0.4% after 10 KHz. We thus choose 10 KHz as
FHC in the Panotti implementation.

2) Scoring function F: Experiments in this section aim
to i) validate our scoring method and ii) identify an optimal
parameter for the scoring method’s window.

Methods for the scoring function F . As described in
Section III-B, we use the standard deviation (σ) in a window
as the scoring function and describe the detailed physical
intuitions of this method. However, we also conducted ex-
periments on other methods. We evaluate the localization
performance for the following scoring methods: (1) directly
using the signal’s absolute RSS value exactly at the virtual
onset time, (2) the square of the absolute RSS value, (3) the
maximum RSS value within a small window (10 samples)
around the virtual onset time, (4) the average RSS value
within a small window around the virtual onset time, and
(5) the standard deviation σ within a small window around

Fig. 14. Collision objects in our
field study.
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Fig. 16. Histogram of localization
error when a screw driver collides
with the robot.

Fig. 17. Histogram of localization
error with augmented noise when
a screw driver collides with the
robot.

Fig. 18. Histogram of localization
error when test objects multiple
collides with the robot.

Fig. 19. Histogram of localization
error with augmented noise when
multiple test objects collides with
the robot.

the virtual onset time. As shown in Table I, max value
method (3) and standard deviation method (5) have the best
performances. We evaluate the window length of these two
methods next.

Window length for the scoring function F . We vary the
window length from 5 to 25 samples and try to find the
optimal window length. As shown in Figures 12 and 13, these
two methods are not very sensitive to the window length.
We choose 10 samples which gives the best performance for
standard deviation method as the window length, and proceed
using this method in our field study next.

B. Field Study

After selecting optimal system parameters and obtaining
the manifold from the training data in the micro-benchmark,
we next conduct field study to evaluate Panotti in various
scenarios. We collected more than 1000 real world on-
robot collisions and off-robot sound sources. In particular,
we collected 359 OTA impulsive sound sources, 224 OTF
sound sources and 527 OR collisions for collision detection
evaluation. In order to evaluate the localization accuracy, we
collected another 241 OR collisions using a screw driver.
Further, as shown in Figure 14, we randomly choose 16
items ranging from light weight plastic chip to wooden plank,
human, and metal pole as the collision test objects. In total
we have another 286 collisions using test objects. Lastly, we
collected 137 collisions with test objects happened while the
robot arm was actually moving.

Fig. 20. Histogram of localization error when a moving robot
collides with multiple test objects.

1) Collision Detection: In order to evaluate the perfor-
mance of collision detection, we evaluate the true positive
rate (TPR, succeed in detecting on-robot collisions), false
positive rate (FNR, failure to detect on-robot collisions),
true negative rate (TNR, succeed in detecting off-robot
collisions), and false positive rate (FPR, failure to detect off-
robot collisions) based on our field experiments. As shown
in Figure 15, the TPR and TNR are close to 100% while the
FPR and FNR are close to 0 percentage. Further, we collected
176 more OTA sound sources in extreme experiment settings,
where the sound happens very close (< 0.3 m) to the robot
arm. The result is still reasonably good with 96% TNR.

2) Localization Accuracy: We next evaluate the localiza-
tion accuracy of Panotti in various experiment settings. We
also study the localization accuracy by adding the robot arm
motor noise onto the original recordings (augmented noise).
We program the robot arm to move to multiple random
locations and collect the motor noise. Lastly, we present the
collision localization accuracy with a moving robot arm.

Collisions with a screw driver. The robot arm collides
with a screw driver in this experiment. Figure 16 shows
the histogram of the localization error. The error average
is 3.56 cm and standard deviation is 3.39 cm. Most of the
localization errors are small, and 95% of the localization
errors are smaller than 10.71 cm. Figure 17 shows the
histogram of the localization error with augmented motor
noise. As can be seen, the average localization error stays
similar but the standard deviation increases by 0.48 cm.

Collisions with test objects. The robot arm collides with
test objects and human listed in Figure 14. Figure 18 and 19
show histograms of localization error with and without
the augmented motor noise. Average localization errors are
similar as colliding with the screw driver, and the standard
deviations are increased around 1 cm. 95% of the localization
errors are smaller than 11.24 cm and 11.57 cm with and
without the augmented noise.

Collisions with test objects and robot moving. In this
experiment, we program the robot arm, let it move randomly
and collide with test objects. As shown in Figure 20, the
average and standard deviation of localization error are 3.82
cm and 5.38cm. Except very small amount of outliers, the
localization still remains accurate.
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VI. CONCLUSION

In this paper, we introduced a robot collision detection
and localization system using low cost microphones. We
presented the design, implementation, and evaluation of
Panotti in detail. We implemented our proposed system by
deploying 8 low-cost microphones on a 7 DOF manipulator.
Extended field experiments show Panotti realizes close to
100% on-robot collision true positive detection rate and
close to 0% off-robot sound false positive detection rate,
meanwhile achieving less than 3.8 cm average localization
error. Moving forward, we plan to pursue subsequent real
world experiments by deploying Panotti at actual warehouses
for further validations.

There are multiple avenues for future research:
Colliding on fingers while grasping. In our current

implementation, we pause the collision detection system
when the robot is grasping items, because all our grasping
tasks require the robot move to the target position then
start grasping. However, in more general cases, robot might
grasp and move the arm at the same time. Note that Panotti
potentially enables fine-grained localization on the robot
finger, which could be adapted for differentiating intentional
grasping and collisions on the robot finger.

Alternative microphone deployments. These include op-
timizing the type, number and placement of microphones to
further improve Panotti.

Localize multiple collisions. Multiple collisions can hap-
pen within the same time window in rare cases. A potential
solution is to group microphones into multiple subsets and
run our method alternatively.

Light collisions. Although most collisions are fatal and
very strong, there are cases very light collision might happen
when the robot collides with soft items. Light collision
detection is very challenging due to lack of information. Also
the definition of light collision is obscure. Nevertheless, it is
desirable to investigate the limitations of Panotti.

Beyond robot arms. Panotti is implemented on a 7 DOF
robot manipulators in this paper. It is however easy to adapt
this system to other moderate size robots.
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