Towards Flexible Wireless Charging for Medical Implants Using Distributed Antenna System

Xiaoran Fan*, Longfei Shangguan[‡], Richard Howard*, Yanyong Zhang[†], Yao Peng*,

Jie Xiong[•], Yunfei Ma[×] and Xiang-Yang Li[†]

*Wireless Information Network Laboratory (WINLAB), Rutgers University, USA

[‡]Microsoft

[†]University of Science and Technology of China

*Northwest University

* University of Massachusetts Amherst

[×] Alibaba Group

Deep Tissue Wireless Power is Badly Needed

Replacing battery for implants

Controlled drug release

Existing Approaches

□ Near-field inductive coupling

- □ Coil size relatively large form factor
- □ Coil misalignment unreliable (blood flow)
- □ Bulky inconvenient

Mid-far-field wireless charging In tissue attenuation – low power Low efficiency

□ Overheating

Near-field

Far-field

[1] Mehdi, Kiani, et al. 2011. Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE transactions on biomedical circuits and systems

[2] Yunfei Ma, et al. 2018. Enabling Deep-Tissue Networking for Ministure Medical Devices. In In ACM SIGCOMM.

[3] Raffaele Guida, et al. 2019. U-Verse: a miniaturized platform for end-to-end closed-loop implantable internet of medical things systems. In In ACM SenSys.

Distributed Beamforming for Deep Tissue Power

Energy distribution: traditional beamforming

Issues: overheating and blocking

[1] Xiaoran, Fan, et al. 2018. Energy-ball: Wireless power transfer for batteryless

internet of things through distributed beamforming. Proceedings of the ACM UbiComp.

Implication: safer

Xiaoran Fan

Distributed Beamforming Implementation

□ We choose a closed-loop implicit phase alignment method

- **Requires only 1-bit feedback. No CSI feedback needed**
- Transmitters work fully independent. No need a centralized control for the distributed phase array

Example Realizations

Xiaoran Fan

ox5bc@winlab.rutgers.edu

High Level Challenges 1

Implanted devices are power limited Solutions: offloading computations to an out-of-body leader node using backscatter

Key: the backscatter works like a mirror (with a frequency shifted reflect signal)

Sub-challenge 1: Monotonic Backscatter Design

Dual antenna monotonic backscatter design – isolate input and reflecting radio chain

A typical passive backscatter – implicit BF algorithm will fail

Monotonic Backscatter Demo

ox5bc@winlab.rutgers.edu

High Level Challenges 2

Severe path loss in animal tissues – no CSI or even RSS available
Solutions: chirp spreading (spectrum spreading) with implicit BF algorithms

Why Chirp Spreading – an Experiment

Transmission power increases at TX side

Leader's RSS (reflected from the backscatter) is under the noise floor

Sub-challenge 2: Tight Chirp Synchronization is Needed

RSS needs to be stable in beamforming. Large time offset among carrier chirps leads to RSS fluctuation

Step 1: compensate the carrier frequency offset (CFO) for macro sync

Minimizing time offset makes stable RSS

Step 2: use the fluctuation rate as feedback for micro sync

Chirp Decoding after the Synchronization

Decoding method: the peak of frequency domain correlation between the received backscatter signal and the reference chirp

□ **Denoted as** *P*_{CCS(0)}

Lemma 1: $P_{CCS(0)}$ is linearly proportional to the power of backscatter reflected signal $p(\cdot)$

P_{CCS(0)} is clearly increasing

An Example Chirp Decoding Result

The increasing RSS trend is under the noise floor in time domain The increasing RSS trend is clear after chirp decoding

Xiaoran Fan

Challenge 3: Bootstrap the Backscatter

Cold start is crucial – the inbody device might not have power at the first place

Challenge 3: Bootstrap the Backscatter

Intentionally introduce phase noise to enlarge the 'Energy-Ball'

Xiaoran Fan

Challenge 3: Bootstrap the Backscatter

Intentionally introduce phase noise to enlarge the 'Energy-Ball'

WINLAB

Challenge 3: Bootstrap the Backscatter

Intentionally introduce phase noise to *enlarge* the 'Energy-Ball'

Experiment Setup

Xiaoran Fan

WINLAB

Power Delivering in 10 cm Tissues

In-N-Out Could achieve much higher power in actual room settings

0.37 mW RF power delivered at 10 cm deep, achieves highly asymmetric energy distribution at the same time

Micro Benchmark Evaluations: Chirp Synchronization Accuracy

Residual time offset is minimized after two steps of chirp synchronization procedure

Xiaoran Fan

Micro Benchmark Evaluations: Sync Time Consumption

Time delay is quasi-linear to the number of transmitters, but this procedure only needs to be done once

Xiaoran Fan

Micro Benchmark Evaluations: Cold Start vs Number of TX

Cold start method has high (>92%) success rates with short (<0.6s) time delays when there are more than 8 TX

Xiaoran Fan

Micro Benchmark Evaluations: Cold Start vs L-B Distance

L-B distance: leader to backscatter distance

Cold start method performs well when L-B distance is less than 1 meter

Xiaoran Fan

ox5bc@winlab.rutgers.edu

Micro Benchmark Evaluations: Beamforming Time Consumption

Establishing the Beamforming is fast (<0.4 s), the time consumption is quasi-linear to the # of TX

Xiaoran Fan

Micro Benchmark Evaluations: Backscatter Orientation

Power delivery is insensitive to the backscatter orientation (a big advantage)

Field Study: Beamforming Performance in Various Mediums

Our beamforming succeeds consistently in various wave propagation mediums (10 cm deep)

Xiaoran Fan

Field Study: BF Performance vs State of the Art (Stationary)

IVN is a multi-frequency multiantenna blind beamforming design

[1] Y. Ma et al. "Enabling deep-tissue networking for miniature medical devices." Proceedings of the 2018 Conference of the ACM SIGCOMM.

Our system delivers 18.1x power than IVN when there are 24 TX

Field Study: BF Performance vs State of the Art (Mobile)

Our system outperforms IVN by 7.4× and 5.3× in relatively slow speed (1 cm/s and 5 cm/s)

Xiaoran Fan

Field Study: BF Performance vs State of the Art (Mobile)

Our system delivers higher and more stable energy than IVN

In-N-Out Summary

- The first far-field distributed beamforming based wireless power transfer system charges deep tissue implants at a near-optimal power level
- Technical innovations including backscatter-leader-slave three-party beamforming without explicit CSI measurement, two-phase leader-slave chirp synchronization design and radio cold start through intentionally imperfect phase alignment
- Prototyping the system on software-defined radios with a monotonic backscatter PCB design, and conducting comprehensive evaluation of the system

Thank you!