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Abstract

We propose a channel state information (CSI) feedback scheme based on unquantized

and uncoded (UQ-UC) transmission. We consider a system where a mobile terminal

obtains the downlink CSI and feeds it back to the base station using an uplink feed-

back channel. If the downlink channel is an independent Rayleigh fading channel,

then the CSI may be viewed as an output of a complex independent identically dis-

tributed Gaussian source. Further, if the uplink feedback channel is AWGN and the

downlink CSI is perfectly known at the mobile terminal, it can be shown that UQ-

UC CSI transmission (that incurs zero delay) is optimal in that it achieves the same

minimum mean squared error (MMSE) distortion as a scheme that optimally (in the

Shannon sense) quantizes and encodes the CSI while theoretically incurring infinite

delay. Since the UQ-UC transmission is suboptimal on correlated wireless channels,

we propose a simple linear CSI feedback receiver that can be used to improve the

performance of UQ-UC transmission while still retaining the attractive zero-delay

feature. We provide bounds on the performance of such UQ-UC CSI feedback and

study its impact on the achievable information rates. Furthermore, we explore its

application and performance in multiple antenna multiuser wireless systems and also

propose a corresponding pilot-assisted channel state estimation scheme.
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1 Introduction

The tremendous capacity gains due to transmitter optimization in multiple antenna multiuser

wireless systems [1–6] rely heavily on the availability of the channel state information (CSI) at

the transmitter. In such scenarios, aside from the issue of how to estimate the channel state,

another interesting question is how to transmit (or feedback) the CSI. In this case, what are the

limits imposed by practical considerations as well as applications supported by multiple antenna

techniques? For example, if there are stringent delay requirements imposed by certain applications,

what are the most efficient ways of transmitting the CSI back to the transmitter for the purposes

of transmitter optimization? In addition to delay requirements, there may also be the issue of

user mobility that needs to be contended with [7, 8]. Therefore, the CSI feedback will have to be

fast and frequent in some cases. A fundamental question that arises is that, is it necessary for an

efficient CSI feedback to follow the principles outlined by the ”digital dogma”? In other words,

is it necessary that the CSI be optimally quantized and encoded (in a Shannon theoretic sense)

for it to be reliable? Are there ways to mitigate the delay (which is theoretically infinite) that is

imposed by such a Shannon theoretic approach?

In this paper we consider a system where a mobile terminal obtains the downlink CSI and

feeds it back to the base station using an uplink feedback channel. If the downlink channel is

an independent Rayleigh fading channel, then the CSI may be viewed as an output of a complex

independent identically distributed (iid) Gaussian source. Further, if the uplink feedback channel

is AWGN and the downlink CSI is perfectly known at the mobile terminal, it can be shown that

unquantized and uncoded (UQ-UC) CSI transmission (that incurs zero delay) is optimal in that

it achieves the same minimum mean squared error (MMSE) distortion as a scheme that optimally

(in the Shannon sense) quantizes and encodes the CSI while incurring infinite delay. Results

on the optimality of unquantized and uncoded transmission have also been discussed in other

contexts in [9–11]. Since the UQ-UC transmission is suboptimal on correlated wireless channels,

we propose a simple linear CSI feedback receiver that can be used in conjunction with the UQ-UC

transmission while still retaining the attractive zero-delay feature. Furthermore, we describe an
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auto regressive (AR) correlated channel model and present the corresponding performance bounds

for the UQ-UC CSI feedback scheme. We also explore the performance limits of such schemes in

the context of achievable information rates in multiple antenna multiuser wireless systems. We

consider a pilot-assisted channel state estimation scheme specific to multiple antenna systems and

estimate the performance of such UQ-UC CSI feedback on transmitter optimization.

2 Background

Consider the communication system in Figure 1. The system is used for transmission of unquan-

tized and uncoded outputs (i.e., symbols) of the source. The source is complex, continuous in

amplitude and discrete in time (with the symbol period Tsym). We assume that the symbols x

are zero-mean with unit variance. The average transmit power is P , while the channel introduces

additive zero-mean noise n with variance N0. At the receiver, the received signal y is multiplied

by the conjugate of g. Consequently, the signal x̂ at the destination is

x̂ = g∗y = g∗
(√

Px + n
)

(1)

and x̂ is an estimate of the transmitted symbol x, where g∗ denotes the conjugate of g. We select

the coefficient g to minimize the mean squared error (MSE) between x̂ and x. Thus,

g = arg min E|x̂ − x|2 = argf min E|f ∗
(√

Px + n
)

− x|2. (2)

Consequently,

g =

√
P

P + N0

(3)

and the corresponding mean squared error is

min E|x̂ − x|2 =
1

1 + P
N0

. (4)

The MSE corresponds to a measure of distortion between the source symbols and estimates at the

destination.

Let us now relate the above results to the transmission scheme that applies optimal quantization

and channel coding. Based on the Shannon rate distortion theory [12], for a given distortion D?,
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the average number of bits per symbol at the output of the optimal quantizer is

R = log2

(

1 +
1 − D?

D?

)

. (5)

Note that the optimal quantizer that achieves the above rate incurs infinite quantization delay.

For the AWGN channel, the maximum transmission rate is

C = log2

(

1 +
P

N0

)

. (6)

As in the case of the optimal quantizer, the optimal channel coding would incur infinite coding

delay. Furthermore, optimal matching (in the Shannon sense) of the quantizer and the channel

requires that

R = C ⇒ D? = 2−C =
1

1 + P
N0

. (7)

The above distortion is equal to the MSE for the UQ-UC transmission scheme given in (4) (see

also [10]). The above result points to the optimality of the UQ-UC scheme (while it incurs zero

delay) when the source is iid Gaussian and the channel is AWGN.

3 UQ-UC CSI Feedback

Using the above result, we now motivate why UQ-UC transmission schemes can be used for CSI

feedback in wireless systems. Consider the communication system shown in Figure 2. It consists

of a base station transmitting data over a downlink channel. A mobile terminal receives the data,

and transmits the CSI of the downlink channel state hdl over an uplink channel. Let us assume that

the mobile terminal estimates the downlink channel state hdl perfectly. If the downlink channel is

iid Rayleigh, then the CSI is an iid complex Gaussian random variable. In this case, if the uplink

channel is AWGN and it is independent of the downlink channel, then it follows directly from

the earlier discussion that the above UQ-UC scheme is optimal for transmission of the downlink

CSI over the uplink channel. In other words, for the communication system shown in Figure 2,

UQ-UC transmission (with zero delay) of the downlink CSI will achieve the same distortion as

a scheme that optimally (in the Shannon sense) quantizes and encodes the CSI while incurring

infinite delay.
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To further distinguish the fact that the UQ-UC CSI feedback transmission does not imply

an ”analog” communication1 system, we now illustrate an example of how such a scheme could

be applied in the context of a CDMA system. The functional blocks of the mobile terminal in

a CDMA system are depicted in Figure 3. Using a pilot-assisted estimation scheme, the mobile

terminal obtains an estimate of the downlink channel hdl, denoted as h̄dl. The downlink channel

estimate h̄dl is the CSI to be transmitted on the uplink channel hul. The estimate h̄dl modulates

(i.e., multiplies) a Walsh code that is specifically allocated as a CSI feedback carrier as shown in

Figure 3. The second Walsh code is allocated for the conventional uplink data transmission. For

generality, the uplink pilot is also transmitted allowing the base station to obtain an estimate h̄ul

of the uplink channel hul.

In general, the downlink and uplink channel estimation is not perfect, i.e., h̄dl = hdl + edl and

h̄ul = hul + eul, where edl and eul are the channel state estimation errors on the downlink and the

uplink, respectively. The estimation errors are modeled as AWGN, which is typical to pilot-assisted

channel state estimation schemes (see [13, 14] and the references therein). Consequently, the

downlink and uplink estimation errors are distributed as NC(0, N
e
dl) and NC(0, N

e
ul), respectively,

where NC(0, σ
2) denotes a complex zero-mean Gaussian random variable distribution with the

variance σ2.

Consider a signal/system model, where at the time instant i, the uplink received signal corre-

sponding to the CSI feedback is

y(i) = hul(i)
√

P csi
ul h̄dl(i) + n(i) (8)

where hul(i) is the uplink channel state, P csi
ul is the CSI feedback transmit power, h̄dl(i) is the

estimate of the downlink channel hdl that is being fed back and n(i) is the AWGN on the uplink

with the variance N0. Using the received signal in (8) and an estimate of h̄ul(i), the CSI feedback

receiver at the base station will estimate the transmitted CSI hdl(i). In the following derivations

we assume that the uplink and downlink channel states are mutually independent and correspond

1While we use the term unquantized (UQ) in the UQ-UC nomenclature, it must be pointed out that any practical

transmission scheme will require at least some level of coarse quantization.
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to zero-mean and unit-variance complex Gaussian distribution NC(0, 1).

Using the same approach as given in Section 2, the uplink CSI feedbeck receiver w is derived

from the following optimization

w = arg min Ehdl(i)|h̄ul(i)|ĥdl(i) − hdl(i)|2 = argv min Ehdl(i), y(i)|h̄ul(i)|v∗y(i) − hdl(i)|2. (9)

Thus,

w =
s

u
(10)

where

u = Ey(i)|h̄ul(i) [y(i) y(i)∗] =

= P csi
ul Ehul(i)|h̄ul(i) [hul(i) hul(i)

∗]
︸ ︷︷ ︸

Ne

ul

1+Ne

ul

+ 1
(1+Ne

ul
)2

h̄ul(i)h̄ul(i)∗

Eh̄dl(i)|h̄ul(i)

[

h̄dl(i) h̄dl(i)
∗
]

︸ ︷︷ ︸

1+Ne

dl

+ N0 =

= P csi
ul

(

N e
ul(1 + N e

dl)

1 + N e
ul

+
1 + N e

dl

(1 + N e
ul)

2
|h̄ul(i)|2

)

+ N0. (11)

The above result is based on the fact that the conditional distribution p(hul(i)|h̄ul(i)) is a complex

Gaussian distribution NC

(

h̄ul(i)
1+Ne

ul

,
Ne

ul

1+Ne

ul

)

and hdl(i) is independent of h̄ul(i). Furthermore,

s = Ehdl(i), y(i)|h̄ul(i)
[hdl(i)

∗ y(i)] =

=
√

P csi
ul Ehul(i)|h̄ul(i) [hul(i)] Ehdl(i), h̄dl(i)|h̄ul(i)

[

hdl(i)
∗ h̄dl(i)

]

=

=
√

P csi
ul

h̄ul(i)

1 + N e
ul

. (12)

The uplink receiver then estimates the downlink CSI hdl(i) as

ĥdl(i) = w∗y(i) (13)

with the MSE distortion being

Ehdl(i)|h̄ul(i)|ĥdl(i) − hdl(i)|2 = Ehdl(i), y(i)|h̄ul(i)|w∗y(i) − hdl(i)|2 = 1 − s s∗

u∗
=

=

P csi

ul

N0

(
Ne

ul
(1+Ne

dl
)

1+Ne

ul

+
Ne

dl

(1+Ne

ul
)2
|h̄ul(i)|2

)

+ 1

P csi

ul

N0

(
Ne

ul
(1+Ne

dl
)

1+Ne

ul

+
1+Ne

dl

(1+Ne

ul
)2
|h̄ul(i)|2

)

+ 1
. (14)

Note that as the estimation errors approach zero, N e
dl → 0 and N e

ul → 0, the receiver in (10) is

identical to the receiver in (3).
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4 UQ-UC CSI Feedback on Correlated Channels

The MSE distortion achieved by the UQ-UC CSI feedback transmission scheme is optimal when

the downlink is iid Rayleigh and the uplink is AWGN, and further, the uplink and the downlink

are also mutually independent with perfect channel estimation of hdl and hul. In reality, there may

the following situations that arise in wireless systems: (1) temporal correlations in the downlink

channel, (2) temporal correlations in the uplink channel, and (3) correlations between the uplink

and the downlink channels. In each of these cases, it is of interest to quantify the MSE distortion

achieved by the UQ-UC CSI feedback. Since, an exact analysis is not readily tractable, we propose

to quantify such performance through upper and lower bounds in each of the above scenarios.

4.1 Performance Bounds

Let us assume that the uplink and downlink channel states are independent (which is typical

in FDD wireless systems). Both the uplink and downlink channels are varying in time and are

assumed to be ergodic. If the scheme shown in Figure 1 and 2 is now applied on the CSI feedback

channel, using the result in (14), it follows that the MSE is

MSEub
uq−uc = Eh̄ul







P csi

ul

N0

(
Ne

ul
(1+Ne

dl
)

1+Ne

ul

+
Ne

dl

(1+Ne

ul
)2
|h̄ul|2

)

+ 1

P csi

ul

N0

(
Ne

ul
(1+Ne

dl
)

1+Ne

ul

+
1+Ne

dl

(1+Ne

ul
)2
|h̄ul|2

)

+ 1







. (15)

Clearly this serves as an upper bound on the MSE achieved by any additional processing that

accounts for both the downlink and the uplink CSI feedback channel being correlated channels.

To illustrate an approach to derive a lower bound, consider an Lth order auto regressive (AR)

process model for the downlink channel as

hdl(i) =
L∑

j=1

cjhdl(i − j) + c0 ndl(i), (16)

where ndl(i) is a complex Gaussian random variable with distribution NC(0, 1). The coefficients

cj (j = 0, · · · , L) determine the correlation properties of the channel. ndl(i) is the innovation se-

quence that describes the evolution to successive channel states. This is a quasi-static block-fading

channel model where the temporal variations of the channel are characterized by the correlation
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between successive channel blocks. The above model gives a general framework for describing the

correlations in the downlink channel states through the coefficients cj (j = 0, · · · , L).

Using an approach outlined in [15, 16] and Appendix, it is possible to approximate the well

known Jakes correlated fading model by relating parameters such as carrier frequency and mobile

speed to the AR model coefficients. The Jakes model corresponds to a continuous time-varying

channel, while the AR model to a quasi-static block-fading channel. To connect these two models,

we assume that the channel is constant for a duration of τ seconds (i.e., this duration may be

viewed as the channel coherence time) and τ is the absolute time difference between successive

channel states hdl(i) and hdl(i−1). Furthermore, the correlation E[hdl(i)hdl(i−k)∗] = J0(2πfdkτ)

where fd is the maximum Doppler frequency (see Appendix). For a more detailed analysis of auto

regressive-moving average (ARMA) processes and wireless channel modeling we refer the reader

to [17, 18] and the references therein.

Let us assume that the above model and the previous channel states hdl(i−j) (j = 1, · · · , L) are

known at the CSI feedback transmitter and receiver. In addition, in deriving the lower bound, we

will assume that the estimation errors edl = 0 and eul = 0 (i.e., perfect channel state estimation).

In this idealized case, having only the innovation ndl(i) transmitted over the uplink CSI feedback

channel, the receiver can estimate the channel state hdl(i). We will now use arguments similar to

that used in deriving (7) to arrive at a lower bound for the MSE of the UQ-UC scheme. Consider

the distortion of the innovation sequence

Din = E|n̂dl(i) − ndl(i)|2, (17)

where n̂dl(i) is an estimate of ndl(i). Then the average number of bits per symbol at the output

of the optimal quantizer is

Rin = log2

(

1 +
1 − Din

Din

)

. (18)

Furthermore, the ergodic capacity of the uplink channel is

C̄ul = Ehul

[

log2

(

1 +
|hul|2P csi

ul

N0

)]

. (19)
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Then the optimal matching (in the Shannon sense) of the quantization and channel coding of the

innovation ndl(i) results in

Rin = C̄ul. (20)

Hence the MSE

Din = E|n̂dl(i) − ndl(i)|2 = 2−C̄ul. (21)

Thus from equations (16) and (21) it follows that the MSE of hdl(i) is lower bounded as

E|ĥdl(i) − hdl(i)|2 ≥ c2
02

−C̄ul. (22)

Note that the above expression is derived under the following assumptions: (i) ideal error-free

channel state estimation, (ii) knowledge of all previous channel states in the equation (16), thereby

allowing transmission of only the innovation sequence, (iii) optimal transmission of the innovation

using the Shannon principle, i.e., at the rate equal to the uplink capacity. Therefore, it follows

that the MSE of any CSI feedback scheme can never be lower than that corresponding to the

situation in assumptions (i) to (iii). Since the bound in (22) is obtained using idealized knowledge

of the previous channel states and also a channel coding scheme that achieves the ergodic capacity

of the uplink channel, we expect it to be loose. However, the procedure outlined above leads us to

believe that it is possible to obtain not only tighter bounds but also bounds for channels beyond

the scenario outlined above, i.e., ergodic and mutually independent uplink and downlink channels

where the downlink obeys the model in (16).

4.2 Feedback Receivers for Enhancing UQ-UC CSI Feedback Schemes

While the previous subsection considered the performance limits of the MSE distortion achieved

by the UQ-UC CSI feedback transmission, in this subsection we will outline signal processing

techniques that could be used to improve the performance of UQ-UC schemes. The specific

approach that we propose is to design receivers on the CSI feedback channel that can exploit the

channel correlations and thus improve the performance in cases where the UQ-UC CSI feedback
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transmission is suboptimal. We illustrate such an approach through a design of a linear CSI

feedback receiver in the following.

The uplink received signal in (8) is used to form a temporal K-dimensional received vector as

y(i) = [y(i) y(i− 1) · · · y(i − K + 1)]T. (23)

The uplink receiver then estimates the downlink CSI hdl(i) as

ĥdl(i) = wHy(i) (24)

where w is a linear filter that is derived from the following MMSE optimization

w = argv min E|vHy(i) − hdl(i)|2. (25)

For the given estimates of the uplink channel h̄ul(i) = [h̄ul(i) h̄ul(i − 1) · · · h̄ul(i − K + 1)]T we

define the following matrix

U = Ey(i)|h̄ul(i)

[

y(i) y(i)H
]

(26)

and the vector

s = Ehdl(i), y(i)|h̄ul(i)
[hdl(i)

∗ y(i)] . (27)

It can be shown that the linear MMSE CSI feedback receiver w is given as

w = U−1s. (28)

As is evident from the equations (26)-(28), the linear transformation w takes into account implic-

itly the following correlations: (1) temporal correlations in the downlink channel, (2) temporal

correlations in the uplink channel and (3) the correlations between the uplink and the downlink.

In fact, when K = 1 and the uplink and the downlink are mutually independent, then the above

receiver will achieve the MSE distortion upper bound in equation (15). In all other cases, the

performance will be superior, thereby enhancing the performance of the UQ-UC CSI feedback

transmission.
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4.3 Numerical Results: Distortion Performance

We now present the upper and lower bounds derived in the previous sections for different scenarios

corresponding to the uplink and downlink CSI. Specifically we take into account the effect of

background noise levels, estimation errors and channel correlation. We characterize the quality of

the uplink CSI feedback channel through its SNR given as

SNRcsi
ul = 10 log

P csi
ul

N0

. (29)

In order to quantify the effect of the estimation errors on the UQ-QC scheme, we proceed in the

following way. Recall that the uplink channel estimate is given as h̄ul = hul + eul. We quantify

the estimation performance by the following SNR term

SNRe
ul = 10 log

1

N e
ul

, (30)

where N e
ul is the variance of eul. The corresponding quantity that is used to characterized the

downlink channel estimation error is

SNRe
dl = 10 log

1

N e
dl

. (31)

First we consider a case when the uplink and downlink channels are mutually independent. The

channels correspond to the iid Rayleigh block-fading model (i.e., for every time instant independent

channel states are instantiated for the uplink and downlink). In Figure 4 we set SNRcsi
ul = 20

dB and present the MSE bounds as functions of SNRe
ul and/or SNRe

dl. We compare the curves

corresponding to the perfect downlink estimation (SNRe
dl = +∞) and variable SNRe

ul versus the

perfect uplink estimation (SNRe
ul = +∞) and variable SNRe

dl (i.e., the curve with marker ×

versus 5). From these results we note that the MSE upper bound is more affected by the errors

in the uplink than the downlink channel state estimation. In this particular example, for the

estimation SNRs exceeding 25 dB, the increase in the distortion due to the imperfect knowledge

of the channel states is negligible, as evidenced by the flattening of the MSE upper bound.

We now investigate the MSE distortion for correlated channels. The downlink and uplink

channels are modeled as an AR process (L = 10) whose coefficients are chosen to correspond to

11



the Jakes model for a carrier frequency of 2 GHz and the coherence time τ = 2 msec (i.e., duration

of one channel block). The correlation between the uplink and downlink channel is quantified as

ρ = E [hdl(i) hul(i)
∗] (32)

where the coefficient |ρ| ≤ 1. In addition, the uplink has an average SNRcsi
ul = 10 dB and the

estimation is perfect (SNRe
ul = +∞ and SNRe

dl = +∞). In Figure 5 we show the MSE of the UQ-

UC scheme with the linear CSI feedback receiver and the MSE upper bound for different mobile

terminal velocities. These results show that the linear receiver in combination with the UQ-UC

transmission is able to exploit the channel correlations and improve the performance. Note that

when the mobile terminal velocities are low the improvement is greater (because the successive

channel states are more correlated which is exploited by the linear CSI feedback receiver). Also,

the improvement is greater when the uplink and downlink channels are mutually correlated (i.e.,

for ρ = 0.9).

5 UQ-UC CSI Feedback for Transmitter Optimization in Multiple

Antenna Multiuser Systems

The discussion thus far has focused on performance limits and enhancements from the point of

view of the MSE distortion achieved due to the UQ-UC CSI feedback transmission. A more direct

performance issue that needs to be considered is the overall capacity of a system that actually

uses the CSI feedback information. We will consider the UQ-UC CSI feedback in a multiple

antenna multiuser system. As an example, consider the system shown in Figure 6, where there

are M transmit antennas at the base station and N single-antenna mobile terminals. In the above

model, xn is the information bearing signal intended for mobile terminal n and yn is the received

signal at the corresponding terminal (for n = 1, · · · , N). The received vector y = [y1, · · · , yN ]T is

y = HSx + n,

y ∈ CN ,x ∈ CN ,n ∈ CN ,S ∈ CM×N ,H ∈ CN×M (33)
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where x = [x1, · · · , xN ]T is the transmitted vector (E[xxH] = Pdl IN×N), n is AWGN (E[nnH] =

N0 IN×N), H is the MIMO channel state matrix, and S is a transformation (spatial pre-filtering)

performed at the transmitter. Note that the vectors x and y have the same dimensionality.

Further, hnm is the nth row and mth column element of the matrix H corresponding to a channel

between mobile terminal n and transmit antenna m.

Application of the spatial pre-filtering results in the composite MIMO channel G given as

G = HS, G ∈ CN×N (34)

where gnm is the nth row and mth column element of the composite MIMO channel state matrix

G. The signal received at the nth mobile terminal is

yn = gnnxn
︸ ︷︷ ︸

Desired signal for user n

+
N∑

i=1,i6=n

gnixi

︸ ︷︷ ︸

Interference

+ nn. (35)

In the above representation, the interference is the signal that is intended for other mobile

terminals than terminal n. As said earlier, the matrix S is a spatial pre-filter at the transmitter.

It is determined based on optimization criteria that we address later in the text and has to satisfy

the following constraint

trace
(

SSH
)

≤ N (36)

which keeps the average transmit power conserved. We represent the matrix S as

S = AP, A ∈ CM×N ,P ∈ CN×N (37)

where A is a linear transformation and P is a diagonal matrix. P is determined such that the

transmit power remains conserved. For N ≤ M we study the zero-forcing (ZF) spatial pre-filtering

scheme where A is represented by

A = HH(HHH)−1. (38)

As can be seen, the above linear transformation is zeroing the interference between the signals

dedicated to different mobile terminals, i.e., HA = IN×N . The xn’s are assumed to be circularly
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symmetric complex random variables each having Gaussian distribution NC(0, Pdl). Consequently,

the maximum achievable data rate (capacity) for mobile terminal n is

RZF
n = log2

(

1 +
Pdl|pnn|2

N0

)

(39)

where pnn is the nth diagonal element of the matrix P defined in (37). In general, for the given

A, to maximize the downlink sum date rate the elements of the matrix P should be selected such

that

diag(P?) = [p?
11, · · · , p?

NN ]T = arg max
trace(APPHAH)≤N

N∑

i=1

Rn. (40)

where the superscript ? indicates optimality in terms of maximizing the sum data rate. For more

details on the above optimization, see [6, 8]. In this study we apply a suboptimal, yet a simple

solution

P =

√

N

trace (AAH)
IN×N (41)

that guarantees the constraint in (36).

To perform the above spatial pre-filtering, the base station obtains CSI corresponding to each

downlink channel state hnm. The CSI is obtained from each mobile terminal using the UQ-UC

CSI feedback. In other words, at time instant i, terminal n (n = 1, · · · , N) is transmitting the

corresponding CSI hnm(i) (m = 1, · · · , M) via the uplink CSI feedback channel. Relating to the

analysis in the previous sections, each hnm(i) corresponds to a different hdl(i). Instead of the

ideal channel state hnm(i), the spatial pre-filter applies the CSI estimate ĥnm(i) obtained from

the uplink CSI feedback receiver. Therefore at the base station instead of the true H, in the

expressions (38) and (41), Ĥ is applied whose entries are ĥnm(i) (m = 1, · · ·M and n = 1, · · · , N).

Consequently, the maximum achievable data rate for mobile terminal n is

R̂ZF
n = log2

(

1 +
Pdl|ĝnn|2

Pdl

∑N
i=1,i6=n |ĝni|2 + N0

)

. (42)

where ĝnm is the nth row and mth column element of the composite MIMO channel state matrix

Ĝ = HÂP̂ (43)
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with

Â = ĤH(ĤĤH)−1 and P̂ =

√
√
√
√

N

trace
(

ÂÂH
)IN×N . (44)

Note that ÂP̂ forms a spatial pre-filter. It is mismatched because it applies Ĥ instead of the true

H.

To further illustrate how the UQ-UC scheme could be used in practice, in Figure 7 we outline

one possible arrangement of the pilot and data-carrying symbols on the downlink and the uplink. A

block of the transmitted symbols on the downlink starts with M pilot symbols (denoted as PIdl(j),

j = 1, · · · , M) where each symbol is transmitted from one of the transmit antennas. Using the

received pilot symbols, the nth mobile terminal (n = 1, · · · , N) sends unquantized and uncoded

channel state estimates h̄nm(i) (m = 1, · · · , M) as uplink symbols FBul(j)(j = 2, · · · , M +1) (i.e.,

realizing the UQ-UC CSI feedback) with a delay of one symbol period. Immediately upon receiving

the UQ-UC CSI feedback symbols, the base station performs the spatial pre-filtering sending the

data-carrying symbols (denoted as Ddl(j), j = (M + 2), · · · , J) to the mobile terminals. In every

block, a total of (J − M − 1) data-carrying symbols is sent (because of M pilot symbols and an

”empty” symbol to account for a delay of one symbol period of the CSI feedback). Note that

the transmit power of the CSI feedback symbols FBul(j) (j = 2, · · · , M + 1) is P csi
ul , with the

corresponding SNR defined in (29). The duration of the block (J symbols) is shorter or equal to

the coherence time τ .

The power of each pilot and data-carrying symbol is denoted as P p
dl and P d

dl, respectively.

Considering the model in (33) (where E[xxH] = Pdl IN×N), the average transmit power Pdl, per

mobile terminal, is

Pdl =
MP p

dl + (J − M − 1)P d
dl

JN
(45)

with the corresponding SNR

SNRdl = 10 log
Pdl

N0
. (46)

We observe the performance of the system with respect to the amount of transmitted power on

the downlink that is allocated to the pilot symbols (percentage wise). This percentage is denoted
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as µ and is given as

µ =
MP p

dl

MP p
dl + (J − M − 1)P d

dl

100[%]. (47)

Recall the quantity SNRe
dl = 10 log (1/N e

dl) that is used to characterized the downlink channel

estimation error (defined in (31)). The variance N e
dl is inversely proportional to the pilot power

P p
dl as N e

dl = N0/P
p
dl. Furthermore, considering the resources allocated to the pilot symbols, the

data rate for mobile terminal n is now

R̃ZF
n =

J − M − 1

J
log2

(

1 +
P d

dl|ĝnn|2
P d

dl

∑N
i=1,i6=n |ĝni|2 + NN0

)

. (48)

The term (J − M − 1)/J is introduced because (J − M − 1) data-carrying symbols are sent per

each block consisting of J symbols.

Before we proceed to the numerical results we would like to refer to the CSI feedback scheme

that is proposed in [19]. The scheme is based on a specific quantization of the beamforming vectors

that result in a very efficient CSI feedback. The scheme is specifically designed for a single-user

MIMO system with the transmitter beamforming (using the quantized beamforming vectors) and

maximum-ratio combining at the multiple antenna receiver. In this paper we consider a multiuser

system with the spatial pre-filtering at the base station and single-antenna terminals. Therefore,

terminal i does not know the channels between the base station and any other terminal j (where

j = 1, · · · , N and j 6= i). Consequently, the CSI vector quantization and feedback in [19] cannot

be directly applied in this setting.

5.1 Numerical Results: Information Rates in Multiuser Systems

In Figure 8 we present downlink sum data rates where SNRdl = 10 dB, and M = 3 and N = 3.

The rates are presented as functions of the mobile terminal velocity using the approximate Jakes

model for a carrier frequency 2 GHz and the coherence time τ = 2 msec and spatially uncorrelated

channels. The uplink CSI feedback channel is with the average SNRcsi
ul = 10 dB, and it is

independent of the downlink. In addition, we present the rates for instantaneous ideal channel

knowledge and a delayed ideal channel knowledge (2 msec delay) which may correspond to a
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practical feedback scheme that quantizes and encodes the CSI. For example, in 3G WCDMA

HSDPA system 2 msec corresponds to the duration of a radio packet which may be used to

transmit quantized and encoded CSI, incurring the minimum delay of 2 msec. We note that under

the UQ-UC CSI feedback with the linear receiver, the performance is better for channels with

higher correlations (i.e., lower mobile terminal velocities). For the moderate and higher velocities,

the UQ-UC CSI feedback scheme is outperforming the case of the delayed ideal channel knowledge.

Note that in the above example we assume that the estimation is perfect (SNRe
ul = +∞ and

SNRe
dl = +∞), and no resources are allocated to the pilot symbols.

In Figure 9 we illustrate the effects of the pilot-assisted estimation using the proposed data

block structure that is depicted in Figure 7. We set SNRcsi
ul = 10 dB and SNRe

ul = 20 dB and

SNRdl = 10 dB, while varying the percentage of the power allocated to the pilot symbols. As the

worst case, both the uplink and downlink are independent and iid Rayleigh block-fading channels.

We present the average downlink sum data rates for different durations of the coherence time

(assuming that it coincides with the number of symbols J in the data block). We note that by

increasing the channel coherence time the maximum rate is closer to the ideal case and it is reached

for a lower percentage of the power allocated to the pilot symbols.

To evaluate the effects of the uplink, in Figure 10 we present the average downlink sum data

rates as a function of the uplink CSI feedback SNR (SNRcsi
ul ) and the uplink estimation SNR

(SNRe
ul). We set SNRdl = 10 dB, while selecting the percentage of the power allocated to the

pilot symbols that maximizes the sum rate for J = 100. As in the previous example, the uplink

and downlink are independent and iid Rayleigh block-fading channels. When the uplink feedback

channel and its estimate are good, we see that the UQ-UC CSI feedback achieves reasonably close

performance to that of the ideal case of the instantaneous ideal channel knowledge.

6 Conclusion and Discussions

In this paper we have considered a system where a mobile terminal obtains the downlink CSI

and feeds it back to the base station using an uplink feedback channel. If the downlink channel
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is an independent Rayleigh fading channel and the uplink feedback channel is AWGN, we have

shown that unquantized and uncoded CSI transmission (that incurs zero delay) is optimal in that

it achieves the same minimum mean squared error distortion as a scheme that optimally quantizes

and encodes the CSI while incurring infinite delay. We have proposed a simple linear CSI feedback

receiver that exploits the channel correlations while still retaining the attractive zero-delay feature.

Furthermore, we described the AR correlated channel model and presented the corresponding

performance bounds for the UQ-UC CSI feedback scheme. We explored the performance limits

of the scheme in the context of downlink multiple antenna, multiuser transmitter optimization,

and also consider a practical pilot-assisted channel state estimation scheme. We showed that the

UQ-UC scheme can provide a reliable and fast feedback of CSI even in the case of high terminal

mobility.

We believe that the presented study offers a number of future research topics. For example,

motivated by the performance bounds presented in Subsection 4.1, future work could result in CSI

feedback schemes that further approach them. Furthermore, there is a need for understanding the

trade-off between resources (e.g., power, time and spectrum) allocated to the pilots and the CSI

feedback versus the resources of the data-carrying signals on the downlink and uplink (similar

to the study in [13]). In the case of the downlink, to a degree this topic is addressed in Section

5. The corresponding uplink analysis may be a topic of future studies. Furthermore, note that

we have only considered the effects of temporal correlations. Recent work on multiple antenna

systems has revealed the importance of spatial correlations [20] that can also significantly affect

transmitter optimization schemes [7]. Effects of spatial correlations and CSI feedback may be a

topic of future studies.

Another future issue of interest is to compare the presented UQ-UC CSI feedback scheme

to different schemes that use quantization (i.e., source coding) and channel coding optimized

for a given delay constraint. In order to design an efficient CSI feedback scheme that will use

digital-coded modulation it is necessary for this work to be considered in the framework of joint

source-channel coding. The need for joint source-channel coding arises due to correlations in the
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wireless channel and the feedback delay constraint. We believe that the presented UQ-UC scheme

serves as a zero-delay comparison benchmark for any such extension.

Appendix: AR Model and Approximation of the Jakes Model

In this appendix we show how for the given correlation between the downlink channel states, the

correlated channel states are generated and the coefficients c0 to cL of the AR model in (16) are

determined. The correlation between the downlink channel states is given as

φ(k) = E[hdl(i)hdl(i − k)∗] for |k| ≤ L (49)

where φ(−k) = φ(k)∗, and for |k| > L, φ(k) = 0. As said earlier, we assume that φ(0) = 1. The

corresponding correlation matrix is R = E[hdl(i)hdl(i)
H] where hdl(i) = [hdl(i)hdl(i− 1) · · ·hdl(i−

L)]T. Considering that the matrix R can be decomposed as R = QQH, the correlated channel

states hdl(i), · · · , hdl(i − L) are obtained from the following operation

hdl(i) = Q n (50)

where n is a random, L+1-dimensional, zero-mean vector with the correlation matrix E[nnH] = I.

Further, based on the AR model in (16) we form a set of L + 1 linear equations

φ(0) =
L∑

j=1

cjφ(−j) + c2
0 and φ(k) =

L∑

j=1

cjφ(k − j) k = 1, · · · , L. (51)

Let us define the following matrix

Φ =















1 φ(1)∗ φ(2)∗ · · · φ(L)∗

0 φ(0) φ(1)∗ · · · φ(L − 1)∗

...
...

...
...

0 φ(L − 1) φ(L − 2) · · · φ(0)















(52)

and vectors

c = [c2
0 c1 · · · cL]T (53)

and

f = [φ(0) φ(1) · · · φ(L)]T. (54)
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The above system of linear equations can be rewritten as

f = Φc. (55)

The least squares solution of the above linear equation is

c̃ = [c̃2
0 c̃1 · · · c̃L]T = (ΦH Φ)−1 ΦH f . (56)

From the above we directly adopt the solutions for the coefficients ci = c̃i for i = 1, · · · , L. Let us

now determine the coefficient c0. From the model in (16), the innovation term is

c0 ndl(i) = hdl(i) −
L∑

j=1

cjhdl(i − j) = zHhdl(i) (57)

where z = [1 − c∗1 · · · − c∗L]T. In order to guarantee that the innovation is unit-variance, while

maintaining the correlation R, the coefficient c0 is selected as

c0 =
√

zHRz. (58)

To approximate the Jakes model using the finite length AR model in (16) we select elements

of the vector f as

φ(k) = J0(2πfdkτ), k = 0, · · · , L (59)

where fd is the maximum Doppler frequency and τ is the time difference between successive

channel states hdl(i) and hdl(i − 1). Satisfying the Nyquist sampling rate, the period τ should be

such that τ < 1/(2fd).
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Figure 1: Unquantized and uncoded transmission that achieves the MMSE distortion of the trans-

mitted signal.

Figure 2: Communication system with CSI feedback.
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Figure 3: CDMA mobile terminal that applies the UQ-UC CSI feedback.

24



0 5 10 15 20 25 30 35 40

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

[dB]

M
S

E
 b

ou
nd

 [d
B

]

Horizontal axis =   SNR
ul
e  = SNR

dl
e

Horizontal axis =  SNR
ul
e , for SNR

dl
e =+∞

Horizontal axis = SNR
dl
e , for SNR

ul
e =+∞

MSE lower bound

MSE upper bound 
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Figure 6: System model consisting of M transmit antennas and N mobile terminals.

Figure 7: Arrangement of pilot and data-carrying symbols on the downlink and uplink.

26



0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

v [kmph]

S
um

 r
at

e 
[b

its
/s

ym
bo

l]

Instantaneous ideal channel knowledge
UQ−UC upper bound
UQ−UC linear receiver
UQ−UC lower bound
Delayed ideal channel knowledge (2 msec)

Figure 8: Average downlink sum data rate vs. mobile terminal velocity, fc = 2 GHz, M = 3,

N = 3, spatially uncorrelated, SNRdl = 10 dB and SNRcsi
ul = 10 dB.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

µ [%]

S
um

 r
at

e 
[b

its
/s

ym
bo

l]

Ideal UQ−UC case: J =+ ∞, SNR
ul
e =+∞ , SNR

dl
e =+∞ 

J = 100
J = 50
J = 20
J = 10

Figure 9: Average downlink sum data rate vs. power allocated to the pilot symbols, M = 3,

N = 3, iid Rayleigh block-fading, SNRcsi
ul = 10 dB, SNRe

ul = 20 dB and SNRdl = 10 dB.

27



0 5 10 15 20 25 30 35 40
2

3

4

5

6

7

8

SNR
ul
csi = SNR

ul
e  [dB]

S
um

 r
at

e 
[b

its
/s

ym
bo

l]

Instantaneous ideal channel knowledge
UQ−UC CSI feedback

Figure 10: Average downlink sum data rate vs. SNRcsi
ul and SNRe

ul, M = 3, N = 3, iid Rayleigh

block-fading, and SNRdl = 10 dB.

28


