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Abstract—We consider a centralized Spectrum Server that ~As a consequence, radios in future wireless systems are
coordinates the transmissions of a group of links sharing a envisaged to be ‘smart’ and ‘interference aware.” Suchosdi
d

common spectrum. Links employ on-off modulation with fixed  gtey referred to as cognitive radios, are expected to Hawe t
transmit power when active. In the on state, a link obtains a

data rate determined by the signal-to-interference ratio @ the ability t(_) cooperate a_nd dynaml_c_ally share spectrum among
link. By knowing the link gains in the network, the spectrum Several interfering radios. In addition to the degree ofiffiéx
server finds an optimal schedule that maximizes the average ity and adaptability of these radios, the need for globabinf
sum rate subject to a minimum average rate constraint for. eab  mation regarding signals in space, time and frequency plays
link. Using a graph theoretic model for the network and a linear 5 5-ominent role in successful cooperation and coexistence
programming formulation, the resu.ltlng. schedules are acdbcthn In thi introd th ti f t S
of transmission modes (sets of active links) that are time stred in ' N!S Paper, we introduce the notion o Spectrum erver
a fashion that is reminiscent of spatial reuse patterns in dailar ~ Which can serve as an information aid to enable coexistence
networks. In the special case when there is no minimum rate of radios in a shared environment. Specifically, these gdio
constraint, the optimal schedule results in a fixed dominantnode  could be made to cooperate by the centralized spectrum
with highest sum rate being operated all the time. In order 0 gapyer which can determine neighborhood and interference
offset the inherent unfairness in the above solution, we imbduce . . .
a minimum rate constraint and characterize the resulting Iss in Infpr_matlon fr(_)m measurements from the radios a”O_' enable
sum rate when compared to the case when there is no minimum €fficient coordination. The spectrum server could then isalv
rate constraint. We also investigate alternate fairness dteria by  a set of links, so that spectrum can be used efficiently. There
designing scheduling algorithms that achieve max-min faitess are many different ways in which the spectrum server can
and proportional faimess. It is shown that the max-min fair rate 44 qinate a set of radios in a wireless network [1], [2].Hist
allocation maximizes the minimum common rate among the link. . . ..
Simulation results are presented and future work is descriled. work, we consmier the _prOblem of _SChEdu“ng _tra_nsmlssnons
for a group of links which have a fixed transmission power,
|. INTRODUCTION under the objective of maximizing the sum rate obtained By th
Since the earliest days of radio regulation, spectrum madmks. We also address issues of fairness by deriving sdimgdu
agement has been driven by improvements in technologygorithms that result in max-min fair and proportionalrfai
from improved filters and frequency stability that allowedate allocations. Max-min fair scheduling of rates haverbee
more channels to be created, to sophisticated logic and rasiudied extensively in the context of flow control of sourtes
techniques that created the worldwide phenomenon of eellula network [3]. Proportional fair scheduling has been stiidtie
More recently, however, a new paradigm has emerged the context of multiuser diversity [4] and downlink schadgl|
which regulation has driven technology. A relatively smaflor HDR [5]. But to the best of our knowledge, it has not been
regulatory experiment in “open spectrum” that began in ttetudied in the context of our framework.
ISM (Industrial Scientific, Medical) bands has spawned an Scheduling transmissions in a wireless network has been
impressive variety of important technologies and innaeati studied in various contexts. In [6], a joint scheduling and
uses, from cordless phones and wireless LANSs to toll takepgywer control strategy is proposed to maximize network
meter readers and home entertainment products. This olthroughput and energy efficiency of the system. Their algo-
ous success has further energized an already intense deb#iien selects candidate subsets of concurrently activies]in
about regulatory strategy by introducing a new set of issuasd applies the distributed power control algorithm [7] tadfi
and beliefs, and while this debate displays intensely helde minimal power vector. Another direction in this problem
regulatory and economic viewpoints, it inevitably turns ois addressed in [8], [9], where the authors look at the cross-
the old-fashioned fulcrum of technological capability asliw layer issues of routing, scheduling and power control. B{,[1
Ultimately, the capacity of the open access bands, and theentralized MAC protocol is proposed but the objective is
quality of service they can offer, will depend on the degrde maximize a utility function. The authors in [11] introdric
to which radios can be designed to adapt to a wide variety thie concept of transmission modes and develop a framework
conditions. for integrated link scheduling and power control policies t



Fig. 1. Graph of network showing the nodes and directed links Fig. 2.  Graph of network showing transmission mode corredimy to
(1010)

maximize the average network throughput, when each linkfisr vectors and boldface uppercase for matricesa lfs a
subject to an average power constraint and each node iscsubjector,a” denotes its transpose aadb = >; aib; represents
to a peak power constraint. The authors assume a modettig inner product of the vectossandb. The vector of all zeros
which the data rate of a link is a linear function of the signahlnd all ones are represented ®yand 1 respectively.
to-interference ratio at the receiver.
) ] . . II. SYSTEM MODEL

In contrast, we consider transmitters with a fixed power on- , . . .
off modulation and devise schedules that maximize the syst C;ons@er a W|reless network WittV' nodes forming L
throughput. We assume that we obtain a non-zero rate in Egmal links sharing a common spectrum. The network can
links for any non-zero signal-to-interference ratio (SIRhe . € represented as a directed grgw, £), where the nodes

optimization problem, subject to minimum rate constraint the network are _represented by the set of vertﬂies_f
in the individual links, is posed as a linear program. If th&'® graph and the links are represented by a set of directed

link gains are known to the spectrum server, it can sched 899350-I Tgere]fore the cg;d|nallt|§|3)| - ]\Il anorl]|5| - LhA
the transmissions among the links to maximize the syst ected edge from a node to noden implies thatn wishes

throughput. It is shown that when there is no minimum rafg communicate data to node. We consider thg scenario
constraint, a fixed set of links (called the dominant mod herg the spectrum server coordmat_es the activity of the se
which maximizes the sum rate is operated all the time. Inror f L I|_nks fo share the sp_ect_rum efficiently.

to offset the inherent unfairness in the above solution,ntre+ Define the set ofransmission mode§ = {0,1,..., M N
duce a minimum rate constraint and characterize the regultil}’ wh_ergM = M — 1 denotes th.e.number of possible
loss in sum rate when compared to the case when there ist_'i‘f"’cpsm'.SSIon modes: Then_thmde activity Ve.CFOti of mode
minimum rate constraint. We also investigate alternateésis I a binary vector, |nd!cat|ng the on-_o_ff activity of the ki
criteria by designing scheduling algorithms that achiewaxm If s = (t1s, t2s, - ., t4) IS @ mode activity vector, then

min fairness and proportional fairness. We show that theemax, _ [ 1, link [ is active under transmission mode

min fair rate allocation can be obtained in one step by sglvin b 0, otherwise.

a linear program which maximizes the minimum common rate (1)
among the links. The proportional fair schedule is obtaimgd Note that there ar@/ possible transmission modes including
solving a non-linear convex optimization program. The pap&e mode in which all links are off. Figure 1 shows a repre-
is organized as follows. In section II, we describe the systesentative network and Figure 2 shows particular transomssi
model. The problem formulation and analytical results af@ode for the set of links.

described in section Ill. We present the max-min fair schedu Let the transmitter power on a linkbe Fy. If Gy is the

in section IV and the proportional fair schedule in sectiolink gain from the transmitter of link: to the receiver of link
V. The simulation results are presented in section VI. Weandoj is the noise power at the receiver of linkthe SIR
conclude in section VII with pointers to future work. 7; at the receiver of link in transmission modeis given by

Before we explain the system model, we comment on the i = tuGu b %)
notation of this paper. We use boldface lowercase chasacter ’ Y okee ot hiGe Py + 07




The link gain between a transmitter and receiver takes inBince C is a matrix with non-negative entries, the constraint
account the path loss and attenuation due to shadow fadihgx = 1 can be replaced by the constrairitx < 1 since the
We assume that the link gains between each transmitter aplimumx, say xop, Will satisfy 1Txopt = 1. Otherwise, we
receiver are known to the spectrum server. The data ratuld scalexqp up so that the objective function is increased.
in each link depends on the SIR in that link. We assum&e denote the optimal vaIuIeTCxopt as copt(0).

that the transmitter can vary its data rate, possibly thinoaig

combination of adaptive modulation and coding. In paricul A. No minimum rate constraint

for a given mode, the transmitter and receiver on a link esnplo . : .

the highest rate that permits reliable communication giben We nhow cor_1$_|der the special case whem, =0, i.e., w_hen
link SIR in that mode. For purposes of this study, we assurH%ere IS no minimum rate reqwrement.for any of the I|nk§.
that the transmission of other links are treated as Gaussiar "€0reém 1:Whenryi, = 0, the solution to problem (7) is

_ T H
noise and that a transmission on lihks reliable in a given *opt= [00...1...00]", where the position of corresponds
mode: with a data rate to the transmission mode with the maximum sum rate. The

optimal objective value is the maximum column sum of the
cii = log(1 4+ y14)- (3) rate matrixC. Hence, the optimal strategy is to always operate

We emphasize here that we do not consider any minimum S transmission mode with the maximum sum rate.

threshold required at each receiver, i.e., associated awtth Proof. The proc_>f of the theorem is str_aightfo_rward. Since
transmission modé, a non-zeroy; defines some rate on the!min = 0, anyx saﬂsfymg T(7b) and (7c) is feasible, as (7a)
link 1. Let z; be the fraction of time that transmission made is trivially satisfied. Sincel* C represents the row-vector of

- I .
is active and-; be the average data rate of lihkEach link has column sumbs_ O];.C' thfe OleeCtlve funcp(t)r?l C);:ml(s_riome
a minimum average data rate requiremeft’. The average convex combination of column sums ot the ma us,

data rate in linkl is the time average of the data rates of all L M
the transmission modes that include lihKThus, 1"cx = > cu (8)
=1 i=1
T = Z ClLiTi, (4) vooL
| i = 2w a ©)
or in vector form, i=1 1=l
r = Cx, (5) M L
) . . . < Z T; max Z Cli (20)
whereC = [¢;;] is anL x M matrix with non-negative entries, P i
such that columr indicates the rate obtained by each link in I
modei. = max > ai (11)

1. M AXIMUM SUM RATE SCHEDULING
We are interested in maximizing the sum of the averagéhere the equality in (11) is true singe, z; = 1. Equality

data rates over all linké= 1,2,..., L, subject to constraints holds in (10) whenx = xopt = [0 0...1...0 0]" where
on the minimum rate for each link. The optimization problerthe position ofl in xop is i = argmax; 3, ;. Hence the
can be posed as the linear program (LP): proof. [ ]
o Depending on the geometry of the links, the dominant
max I'r (6) transmission mode can be a single active link or a collection
subject to r = Cx, (6a) of geographically separated links. However, one implarati
r > I'min, (6b) of the above theorem is that the links that are not a part of
17x =1, (6¢) the dominant transmission mode are starved. So, the system
is not fair in terms of providing non-zero data rates to al th
x 2 0. (6d) jinks.

The objective functiont”r = >°.r; is the sum of average
rates of the individual links. The constraint (6b) représenB. Non-zero minimum rate constraint
the minimum rate constraint and (6c) is the normalizatian fo
the schedule.

The variables in the LP (6) aneandx. Rewriting the LP
in terms of the variable only, we get

In the case when,,;, is hon-zero, ank satisfying (7b) and
(7c) may not be feasible. There is an additional constraint i
(7a) which has to be met. Hence the optimal objective value
cannot exceedop(0). We now characterize the loss in sum
Copt(Tmin) = Max 1T Cx (7) rate due to the minimum rate constraint. We begin by writing
(7a) the dual problem for the LP.

subject to Cx > ryin, _ .
The Lagrangian for the LP (7) is

17x <1, (7b)
x> 0. (7c)  L(x,u,v) = 17Cx + ul (Cx — rpin) + v(1 — 1Tx), (12)



whereu € RY andv € R are the dual variables. The Lagrang&or all modes;j ¢ 7T, the nonzero interference gaifig;, and

dual is the monotonicity of the fractio®/(cP + o2) imply that
G
g(u,v) = supL(x,u,v) (13) Vi < i = S L (18)
x>0 2 jee i Gk
_ T. . .
= ~U Imin 0 We can thus upper bound the SHg; of any link / in any
+sup(1TC +u”C —v1T)x (14) transmission modg ¢ 7 as
x>0
—ulr. . T T — 1T i < 4 = max maxy;. 19
_ u rmm—i—y, 1“C+u'lC—-wvl S?lS) Vi <Y ez Vij (19)
oo, Otherwise

It follows from (3) that
Thus the dual problem for the LP (7) is

aj<c=log(1+7), j¢T. (20)
. . . T
m|n.|m|ze _I;minu Tt (16) Note thatc serves as an upper bound for the rate that can be
subjectto  C' (1 +u) <ol, (162)  obtained by any link in a shared modg ¢ 7. However, in
u>0,uv>0. (16b) a modei; € 7 in which only link [ is active,
By strong duality [12, Chapter 5], the optimal value of the Vi, = Gl—lzp =(P), (22)
g

dual problem in (16) is equal t@p(rmin). Let (u*, v*) be the l
solution of (16). Since by Theorem dq(0) is the maximum a monotone increasing function &f. Let us define
column sum ofC andu > 0, we have according to (16a),

v* > cop(0). Therefore, the optimal value of (16) a(P) = log(1 +(P)). (22)
P . as the data rate obtained when linkkansmits with poweP in
Copt(Tmin) = —Tpiu" +v the isolation mode;. Sincec;(P) is a monotone increasing
> —rl. u* + copt(0). function of P, there exists a transmit powdr*, such that

) r . P> P*implies¢/(P) > Le for all links 1.
Sincecopt(0) — copt(rmin) < Ty, u”, the loss in sum rate is at - Now, let us suppose thaP > P*, but x is an optimal

mostr., u*. An interpretation of the dual variable® is that gchedule for problem (7) with:; > 0 for a shared mode
it can be viewed as the amount of rate loss for a unit increaf,% 7 Consider a new schedule given by

in rZ. . This is analogous to the dual prices interpretation, in

which the dual variables are interpreted as the price paid fo 0 =]

using the limited resources (primal variables), the caiists rp={ @ +ax;/L i€ T (23)
of which are specified in the primal problem. z; otherwise

C. Maximum sum rate schedule with high SNR links The schedule’ reallocates the time; in mode; equally to

. . . . the isolation modes; in 7. In particular, an isolation mode
We can examine the special case of high SNR links when ! P

. . . ! 7 will now be active for time
each link transmits with a large powét. Let us define a set e

of modes xy, =z + % (24)

T = {ir 1 tyy, =1, ty;,, =0 forall k #1}. We now show that every linkreceives a positive rate increase

) o ) . by switching to schedulg’. Under schedulg, a link ! obtains
In modei,, link [ transmits in isolation and thus we call= (gte

{i1,12,...,11} the set of isolation modes.

When the transmit poweP is high, all links have high "= chixi = QT + i Ty, + Z CliTi- (25)
SNR and a link achieves a high rate when transmitting in the i i {gu}
isolation modei;. However, in a shared (non-isolation) mod&Jnder schedule’, link ! obtains rate
j ¢ 7, links will have interference-limited SIRs and relatively , , ,
low data rates. These observations lead to the following Tl :chixi = C1i Ty, + Z Clii- (26)
theorem. i ig{gi}

Theorem 2:If the interference gainés;;, are all non-zero, For link {, the difference in rates is
then for sufficiently large transmit powe?, the solution to
(7) is time sharing among the transmission mode$ in

Proof: If P is the transmit power in all linké € £, from = (@ - clj) xj. (28)

(2) the SIR~;; of link I in transmission modg¢ is given by o L . . . .
' However, P > P* implies that in the isolation modg, link

= tle”P (17) [ obtains rate
J Zje&k;él tklelkP-i-UlQ

=1 = ey (), — xi,) — ciyT; (27)

Cliy, = Cl(P) > Le. (29)



It follows thatr; — r; > 0 for all links {. This contradicts the  3) r such that the rates in all linkg > r*, [ € £.

optimality of schedulex in that every link achieves a strictly The third possibility can be ruled out since it contradidts t
higher rate under scheduié. B optimality of (30). From Definition 1 of max-min fairness, it
follows thatr*1 is the max-min fair rate vector when the first
lt(vglo possibilities hold. [ ]

IV. M AX-MIN FAIR RATE SCHEDULING

The maximum sum rate scheduling is biased towards lin
that have the best quality (i.e., least interference) and is V. PROPORTIONAL FAIR SCHEDULING
unfair to the other links that are not a part of the dominant The max-min fair schedule derived in the previous section
transmission mode. To address this, we will consider twemthegds to global fairness. In this section, we discuss adasn
fairness criteria in deriving scheduling strategies - M&R- criteria which leads to fairness of individual links.
fair and proportional fair. In this section, we present th@xm  Definition 2: A vector of rates is proportional fair if it is
min fair [3] schedule. feasible, i.e.Cx = r for x such thatt”’x = 1 andx > 0, and

_ Definition 1: A vector of ratesr is said to bemax-min fair if for any other feasible vectar, the aggregate of proportional
if it is feasible and for eacli € £, r; cannot be increasedchange is negative.

while maintaining feasibility without decreasing for some

! .
link I’ for which r, < r;. Formally, for any other feasible Z LT, (31)
allocationr, with # > r;, there must exist som# such that P . )
Py < rp <1y In [13], Kelly proposed proportional fairness in the corttex

In the context of flow control of sources in a communicatioff rate control for elastic traffic. It can be shown that the
network, iterative algorithms for computing max-min faate Proportionally fair vector is the one that maximizes the sum
vectors exist [3]. Such iterative algorithms use a ‘progines ©Of logarithms of the utility functions. Hence, to obtain the
filing’ technique that starts with all rates equal to zeralanProportional fair rates, we solve the following non-linear
increases the rates until one or several link capacity simieptimization problem with linear constraints
are rea<_:hed. In ord_er to obtain the max-min fair sghe_dule in max Zlogm 32)
our setting, we begin by formulating the LP to maximize the p
minimum common rate in all t.he links. We ywll t_hen shpw that subject to r = Cx, (32a)
the solution to this LP results in the max-min fair solutidhe T

17x = 1, (32b)

LP which maximizes the minimum common rate among the
links is x> 0. (32¢)

r* = max Piin (30) The objective function of the above non-linear optimizatio
subject to r = Cx, (30a) proplem is increasing and strictly concave. The congtrs_aemt.

is linear and hence the problem is a convex optimization
I 2 Tminl, (30b) problem [12]. This implies that the problem has a unique
17x =1, (30c) global maximum over the constraint set. The solution fohsuc
x > 0. (30d) Pproblems can be found out by gradient search algorithms [12]

Before proving that the above LP results in the max-min V1. SIMULATION RESULTS
fair schedule, we state the following theorem: We present some simulation results in this section. Though
Theorem 3:1f the link gainsGy; are all non-zero, then thethe analytical results are true for more general cases, we
LP (30) which maximizes the minimum common rate amongresent simulation results for some specific cases to rifitest
the links results in all links getting the same ratg i.e., our findings. The simulation set-up is5& x 50 grid. The links
r* =r*1. are of fixed lengths and placed at random locations in the grid
The proof of Theorem 3 appears in the appendix. We nophe interference gaii;; between the transmitter of linkand
show that the schedule obtained by solving (30) is max-miRe receiver of a link is given byG,; = dl_j4' whered;; is
fair. the separation distance between the transmitter and egceiv
Theorem 4:The solutionx™ obtained by solving the LP The transmit powers are fixed for all transmissions and the
(30) results in the max-min fair solution for the maximunink geometries are characterized through the signaleieen
sum rate problem (7). ratio (SNR) at the receiver for that link (in the absence of
Proof: Our objective is to seek a max-min fair solutionnterference).

in the set (7a)-(7c). Denote the set By Let us consider the  |n the case of maximum sum rate scheduling with no

solutionx™ of (30) which results in the rate allocatiarf = minimum rate constraint, the transmission mode with the

r*1. Now, for any feasiblex € S, there can be only three highest sum rate is chosen. The links which are not a part of

different possibilities: this transmission mode are not operated at all. In the specia
1) r such that the rates in all linkg <r*, [ € £. case when the noise at the receiver is high, the denominator

2) r such that for some linkg; < v* and some links;, > in the SIR expression is dominated by the receiver noises Thi
r* for [,l' € . approximates the case when there is no interference from the
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Fig. 3. Set of five links each of lengifh = 10. The dominant transmission Fig. 4. A set of source-destination pairs
mode at SNR=10 dB is shown in solid lines.

— Sum rate
- Link 2

neighboring links. Hence the best policy would be to turn on - t@nti i
in , 9,

all the links in order to maximize the sum rate in all the links

As the SNR in each link increases, the interference from
neighbors also increases. Then the best transmission mod
is that which has the highest sum rate among all the other
transmission modes. The set of links chosen follows spatial
reuse patterns that are reminiscent of those used in aellula
networks. Figure 3 shows a set of links and the dominant
transmission mode at SNR = 10 dB. The links in the dominant
mode are shown in solid lines.

In the case of maximum sum rate scheduling with non-
zero minimum rate constraint, we see that more than one
transmission mode is operated since there is a minimum rate
requirement for each link. The best mode is selected for most "min
of the time and the mode which includes the poorer quality o o ]
links are turned on for a fraction of time just enough to $atis ig. 5. Variation of sum rates and individual rate as a func®f ry,;,
their minimum rate requirement. Most of the transmission
modes are thus not used at all since it is best to use the
dominant mode during all other times except when a minimuim Figure 7. We observe that modd } and mode{3} are
rate should be guaranteed to some poor quality links. active for equal amounts of time since link 1 and 3 transmit in

We now discuss an illustrative example of this case. Figurésblation in this mode, and they require the same minimum rat
shows a set of source-destination pairs. Whgn, is zero to transmit. The fraction of time modgt} is active increases
at 20 dB received SNR, the mode consisting of lifs5} as the fraction of time modg2,4} transmits decreases to
is always operated. But as the common minimum tgtg, compensate for the increase in rate in link 4. Finally, thesa
increases from zero, an additional set of modes is operatadill the links are same at* ~ 1.58.
to satisfy the minimum rate requirement for each link. The The rates corresponding to maximum of the minimum
schedules of the individual transmission modes as showndommon rater* is shown in the Figure 5. All the links end
Figure 6 varies with the minimum rate so that the minimump getting the same rates in this case. The schedule and the
rate constraint in each of links is maintained. Notice thdyo rate allocation vector the same as those obtained when we
five different modes are active. Whamn,;,, is increased in solve (7) withry;, = r*1. The comparison of scheduling
steps, we observe that the same set of modes is operasetiemes under different optimization settings is shown in
After a certainr,,;, value, sayr’, a different set of modes hasFigure 8. From the Figure, we notice that only in the case
to be operated in order to obtain a feasible schedule. Undfi maximum sum rate with no minimum rate constraint, there
then the rate of all the modes falls linearly with increase iexist links with zero obtained rate. In the case of the max-mi
rmin. The break point in the sum rate curve occurs’afWe fair solution, all the links end up getting the same rate |§ab
zoom in to the graph for,;, values ranging from 1.4 to 1.58 shows a numerical comparison of the sum rate and individual
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Fig. 6. Schedule of different transmission modes at varioys, values Fig. 8. Comparison between rates of the links under diffesettings
when maximizing sum rate of links
A ; mg**;;;;mde {25} at any given time (or when each node has a single transceiver)
* mode {1} In this case, the number of transmission modes will be only
o mode {3} 3L
f'zj osl v mode {4} : o )
g In our work, the problem of maximizing the sum rate in all
P the links subject to minimum rate constraint is posed asealin
g oor ] program. The solution to the linear program gives the optimu
£ schedule for the transmission modes in the network. But for
[} . . . . .
E oaf i a network involvingL links, there is an exponential number
E 88 088 89 o of transmission modes and thus the LP we solve involves
o o o o o o o8 . . .
‘§ Ao osoocecbgeossoe oo | an exponential number of variables. However, we conjecture
i ® o 03" v that almost always there are only very few active transioissi
\4 . A
,v T ° o, modes as corroborated by our simulation results.
v o 4 . . .
TY vy vy vy In the present work, the whole process is centralized since
14 142 1s4 14 148 15 152 154 1s6 158 16 the spectrum server just solves the linear program to caenput
"imin the schedules for each of the links. A heuristic algorithm

to find the best schedule with less measurement overhead
would be an interesting future work to address. This may
involve links reporting the interference seen by them from
all the other links. This would also be a first step to finding a

Fig. 7. Schedule of different modes - zoomed in for highgg,, values

link rates among the various links in the network. completely distributed scheduling algorithm. The cefteal
approach proposed in this paper would then serve as an upper
VII. DiscussiON ANDCONCLUSION bound to the performance of such distributed algorithms.

We introduced the notion of a Spectrum Server, which Throughout this paper, we have assumed that the spectrum
allocates a schedule for a set of links in a wireless netwog€rver has knowledge of the link gains. This involves mea-
which is modelled as a directed graph. We observe that tifidrement of link gains by the spectrum server. An intergstin
problem formulation can also be applied to the case whédgsue is how coarse the measurement can be and how it affects
the links operate in non-overlapping frequency rangeshis t the scheduling algorithm. If the link gains are modelled by a
case, some of the link gairg;; may be zero. The model cantime-varying faqmg process, then finer measurements would
be easily extended to the case when there are bidirectioRgIVvery expensive.
links between two nodes (if we assume there are separatdhe problem formulation in this work yields itself to many
transmitters and receivers), in which case the number @ptimization problems. One such example is to minimize the
transmission modes will b22L. In this case, interference atsum fraction of times the links are on so that the total trahsm
the receiver which is colocated with the transmitter in Arot power in all the links is minimized. Another example is to
link is very high. This may result in schedules in which one ghaximize the sum rate in all the links subject to the conditio
the bidirectional links are active at any given time. If taég a that all the links are active for equal amount of time.
restriction that only one of the bidirectional links can lotiae In this work, we assume that there is a single hop com-



TABLE |
COMPARISON OF SUM RATE AND INDIVIDUAL RATES

Tmin =0 Tmin = 0.5 Tmin = 1 Tmin = 1.58 Proportional fair

(Max-min fair solution) | solution
Sum rate| 10.8987 10.2035 9.5082 7.9 7.0632
Link 1 0 0.5 1.0 1.58 0.8324
Link 2 5.3814 4.5640 3.7466 1.58 1.9581
Link 3 0 0.5 1.0 1.58 1.3314
Link 4 0 0.5 1.0 1.58 1.9516
Link 5 5.5173 4.1394 1.0 1.58 0.9896

munication between the source destination pairs. Yet anotisets7;*, 7," and7;* such that
interesting issue would be to find the solution for the maximu

sum rate problem if we have a schedule with multiple hops T = {ieT":ty=0, forallle Ly}, (34)
between the source and destination. T, = {ieT":ty=0, forallle L}, (35)
While we have primarily considered links of equal length T = T"\{T/UT,}.

for the purposes of numerical illustration, it is of interés
study the performance of the various scheduling algorithrilg’ and 7" contain active transmission modes which consist

for the case of links of unequal lengths as well. of links only from £; and £, respectively, and/;* contains
transmission modes which consist of links in bathand £,.
VIIl. A CKNOWLEDGEMENT We consider two cases below.

This work is supported in part by the NSF under gramt. Case (i):7;* is non-empty
number NeTS-0434854 and bY the Defense Spectrum O1.Eﬁce‘|'here exists an active transmission made 7;* consisting
(DSO) of the Defense Information Systems Agency. The f|rs¥ links only from £,. Consider the mode’ with activity
author thanks Jasvinder Singh for useful discussions on e . L

R vectort;, given by
material in this paper.
. { 1, forallle L,,
lir =

(36)

APPENDIX 0, otherwise.

Proof of Theorem 3The LP which maximizes the minimumMode i’ consists of all links from£s. Therefore,c;;r >

common rate is 0 for I € Ly. In the optimal schedute*, we know thatc} > 0
but 2}, may be zero. The rate in linkunder schedule™* is
max T'min 33 ,, = >, axxy. Define for some fixed; > 0, the feasible
subject to r = Cx, (33a) schedule
r > rpinl, (33b) . . . . I
o X=|T;...0; —€1...0; +€1...0y_
17x =1, (33¢) i ' v 2]
x> 0. (33d) For sufficiently smalk,, the schedule will be feasible. Now,

for I € L, the rater; due to schedul& is

Let »* be the optimal value of (33), corresponding to a R . .
schedulex* and a set of active transmission modes= {i € L= cwir =1" = cuer + cer
7T : z} > 0}. Note that the idle transmission mode with the b
all zero activity vector would never be a part 8 because, Sincec;;; > 0 for | € Lo,
if it were, we can improve the rates of links if, and this
contradicts that* is the optimal solution of (33). It is required =17+ e (38)
to prove that at optima, the rate vectOx = r*1. We assume
the contrary that the solution to (33) leads to unequal ra
over the set ofL links. We can then partition the sets of link
£ into two disjoint non-empty sets

(37)

Thus, we conclude that > r*, | € L5. Note thate; needs

tFoS be chosen such that for dlle £4, #; > r*. The choice

“of €1 such thatei;er < mineg, 7 — r* ensures that; >

r* for [ € £1. We can thus improve the rates in all links in
L-. This contradicts the optimality of*. We denote this ste

Li={le&in>r} aszlncreasél) P ! P

and B. C i): 77 i t
. Case (ii):7;* is em
Lo={le&:m=r") ()7, PY

In this case, if75" is empty, then7* = 75* and hence all
This in turn induces a partition on the sét* of all active rates are equal, and the proof is complete. Thus we consider

transmission modes for the optimal solution into threeailsj only the case ofZ;* being non-empty. For an active mode



j € 73, there exist non-empty subsets 6f and L2, namely
M, and M such that the activity vectar; is given by

17 l S Ml g El!
le Mz C Ly,
0, otherwise.

(39)

Consider the modg¢' for which the activity vectot; is given

by
{1, if 1 € Mo,
tlj/ = O

otherwise. (40)

We have assumed that all link gait%; are non-zero, that is

there is lesser interference for links i, in mode ;' than
in mode; due to a lesser number of active links in mode
Thus for links! € M,

GuP,
“j = (41)
’ D ke My UM kit i G Pr + 07
G P
” — =ay.  (42)

D ke Mokt thjr Gie P + 0f

Sincej € 75, ©
feasible schedule

J

X=[z]...7] —e...7} +eo...ah, )T
Under schedule™* andx, link [ obtains rate
r = chsz
k
and
fi = chkik
k
respectively. Thus,
’f’l — 1] (:ffj - I;/)Clj/ “+ (:ffj - I;)Clj (43)
= EQ(Clj/ — Clj). (44)

It follows from (41) that#, — r; > 0. Let us call this step

Increasé2).
Since L, is a finite set, repeatedly applyingcreasé€l) or

* > 0. For someey, > 0, we define a

(1]

(2]

(3]
(4]

(6]

(7]

(8]
El

[10]

(11]

[12]

[13]

Increas€2) on L5\ M,, we can increase the rates of all the

links in £5. This contradicts the optimality of*. The proof
is complete since both cases contradict the fact that themapt

solution leads to unequal rates in the links.
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