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Abstract— We consider a centralized Spectrum Server that
coordinates the transmissions of a group of links sharing a
common spectrum. Links employ on-off modulation with fixed
transmit power when active. In the on state, a link obtains a
data rate determined by the signal-to-interference ratio on the
link. By knowing the link gains in the network, the spectrum
server finds an optimal schedule that maximizes the average
sum rate subject to a minimum average rate constraint for each
link. Using a graph theoretic model for the network and a linear
programming formulation, the resulting schedules are a collection
of transmission modes (sets of active links) that are time shared in
a fashion that is reminiscent of spatial reuse patterns in cellular
networks. In the special case when there is no minimum rate
constraint, the optimal schedule results in a fixed dominantmode
with highest sum rate being operated all the time. In order to
offset the inherent unfairness in the above solution, we introduce
a minimum rate constraint and characterize the resulting loss in
sum rate when compared to the case when there is no minimum
rate constraint. We also investigate alternate fairness criteria by
designing scheduling algorithms that achieve max-min fairness
and proportional fairness. It is shown that the max-min fair rate
allocation maximizes the minimum common rate among the links.
Simulation results are presented and future work is described.

I. I NTRODUCTION

Since the earliest days of radio regulation, spectrum man-
agement has been driven by improvements in technology,
from improved filters and frequency stability that allowed
more channels to be created, to sophisticated logic and radio
techniques that created the worldwide phenomenon of cellular.
More recently, however, a new paradigm has emerged in
which regulation has driven technology. A relatively small
regulatory experiment in “open spectrum” that began in the
ISM (Industrial Scientific, Medical) bands has spawned an
impressive variety of important technologies and innovative
uses, from cordless phones and wireless LANs to toll takers,
meter readers and home entertainment products. This obvi-
ous success has further energized an already intense debate
about regulatory strategy by introducing a new set of issues
and beliefs, and while this debate displays intensely held
regulatory and economic viewpoints, it inevitably turns on
the old-fashioned fulcrum of technological capability as well.
Ultimately, the capacity of the open access bands, and the
quality of service they can offer, will depend on the degree
to which radios can be designed to adapt to a wide variety of
conditions.

As a consequence, radios in future wireless systems are
envisaged to be ‘smart’ and ‘interference aware.’ Such radios,
often referred to as cognitive radios, are expected to have the
ability to cooperate and dynamically share spectrum among
several interfering radios. In addition to the degree of flexibil-
ity and adaptability of these radios, the need for global infor-
mation regarding signals in space, time and frequency plays
a prominent role in successful cooperation and coexistence.
In this paper, we introduce the notion of aSpectrum Server
which can serve as an information aid to enable coexistence
of radios in a shared environment. Specifically, these radios
could be made to cooperate by the centralized spectrum
server which can determine neighborhood and interference
information from measurements from the radios and enable
efficient coordination. The spectrum server could then ‘advise’
a set of links, so that spectrum can be used efficiently. There
are many different ways in which the spectrum server can
coordinate a set of radios in a wireless network [1], [2]. In this
work, we consider the problem of scheduling transmissions
for a group of links which have a fixed transmission power,
under the objective of maximizing the sum rate obtained by the
links. We also address issues of fairness by deriving scheduling
algorithms that result in max-min fair and proportional fair
rate allocations. Max-min fair scheduling of rates have been
studied extensively in the context of flow control of sourcesin
a network [3]. Proportional fair scheduling has been studied in
the context of multiuser diversity [4] and downlink scheduling
for HDR [5]. But to the best of our knowledge, it has not been
studied in the context of our framework.

Scheduling transmissions in a wireless network has been
studied in various contexts. In [6], a joint scheduling and
power control strategy is proposed to maximize network
throughput and energy efficiency of the system. Their algo-
rithm selects candidate subsets of concurrently active links,
and applies the distributed power control algorithm [7] to find
the minimal power vector. Another direction in this problem
is addressed in [8], [9], where the authors look at the cross-
layer issues of routing, scheduling and power control. In [10],
a centralized MAC protocol is proposed but the objective is
to maximize a utility function. The authors in [11] introduce
the concept of transmission modes and develop a framework
for integrated link scheduling and power control policies to



Fig. 1. Graph of network showing the nodes and directed links

maximize the average network throughput, when each link is
subject to an average power constraint and each node is subject
to a peak power constraint. The authors assume a model in
which the data rate of a link is a linear function of the signal-
to-interference ratio at the receiver.

In contrast, we consider transmitters with a fixed power on-
off modulation and devise schedules that maximize the system
throughput. We assume that we obtain a non-zero rate in the
links for any non-zero signal-to-interference ratio (SIR). The
optimization problem, subject to minimum rate constraints
in the individual links, is posed as a linear program. If the
link gains are known to the spectrum server, it can schedule
the transmissions among the links to maximize the system
throughput. It is shown that when there is no minimum rate
constraint, a fixed set of links (called the dominant mode)
which maximizes the sum rate is operated all the time. In order
to offset the inherent unfairness in the above solution, we intro-
duce a minimum rate constraint and characterize the resulting
loss in sum rate when compared to the case when there is no
minimum rate constraint. We also investigate alternate fairness
criteria by designing scheduling algorithms that achieve max-
min fairness and proportional fairness. We show that the max-
min fair rate allocation can be obtained in one step by solving
a linear program which maximizes the minimum common rate
among the links. The proportional fair schedule is obtainedby
solving a non-linear convex optimization program. The paper
is organized as follows. In section II, we describe the system
model. The problem formulation and analytical results are
described in section III. We present the max-min fair schedule
in section IV and the proportional fair schedule in section
V. The simulation results are presented in section VI. We
conclude in section VII with pointers to future work.

Before we explain the system model, we comment on the
notation of this paper. We use boldface lowercase characters

Fig. 2. Graph of network showing transmission mode corresponding to
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for vectors and boldface uppercase for matrices. Ifa is a
vector,aT denotes its transpose anda

T
b =

∑

i aibi represents
the inner product of the vectorsa andb. The vector of all zeros
and all ones are represented by0 and1 respectively.

II. SYSTEM MODEL

Consider a wireless network withN nodes formingL
logical links sharing a common spectrum. The network can
be represented as a directed graphG(V , E), where the nodes
in the network are represented by the set of verticesV of
the graph and the links are represented by a set of directed
edgesE . Therefore the cardinalities|V| = N and |E| = L. A
directed edge from a nodem to noden implies thatn wishes
to communicate data to nodem. We consider the scenario
where the spectrum server coordinates the activity of the set
of L links to share the spectrum efficiently.

Define the set oftransmission modesT = {0, 1, . . . , M −
1}, where M = M − 1 denotes the number of possible
transmission modes. Then themode activity vectorti of mode
i is a binary vector, indicating the on-off activity of the links.
If ti = (t1i, t2i, . . . , tLi) is a mode activity vector, then

tli =

{

1, link l is active under transmission modei,
0, otherwise.

(1)
Note that there areM possible transmission modes including
the mode in which all links are off. Figure 1 shows a repre-
sentative network and Figure 2 shows particular transmission
mode for the set of links.

Let the transmitter power on a linkl be Pl. If Glk is the
link gain from the transmitter of linkk to the receiver of link
l andσ2

l is the noise power at the receiver of linkl, the SIR
γli at the receiver of linkl in transmission modei is given by

γli =
tliGllPl

∑

k∈E,k 6=l tkiGlkPk + σ2

l

. (2)



The link gain between a transmitter and receiver takes into
account the path loss and attenuation due to shadow fading.
We assume that the link gains between each transmitter and
receiver are known to the spectrum server. The data rate
in each link depends on the SIR in that link. We assume
that the transmitter can vary its data rate, possibly through a
combination of adaptive modulation and coding. In particular,
for a given mode, the transmitter and receiver on a link employ
the highest rate that permits reliable communication giventhe
link SIR in that mode. For purposes of this study, we assume
that the transmission of other links are treated as Gaussian
noise and that a transmission on linkl is reliable in a given
modei with a data rate

cli = log(1 + γli). (3)

We emphasize here that we do not consider any minimum SIR
threshold required at each receiver, i.e., associated witheach
transmission modei, a non-zeroγli defines some rate on the
link l. Let xi be the fraction of time that transmission modei
is active andrl be the average data rate of linkl. Each link has
a minimum average data rate requirementrmin

l . The average
data rate in linkl is the time average of the data rates of all
the transmission modes that include linkl. Thus,

rl =
∑

i

clixi, (4)

or in vector form,
r = Cx, (5)

whereC = [cli] is anL×M matrix with non-negative entries,
such that columni indicates the rate obtained by each link in
modei.

III. M AXIMUM SUM RATE SCHEDULING

We are interested in maximizing the sum of the average
data rates over all linksl = 1, 2, . . . , L, subject to constraints
on the minimum rate for each link. The optimization problem
can be posed as the linear program (LP):

max 1
T
r (6)

subject to r = Cx, (6a)

r ≥ rmin, (6b)

1
T
x = 1, (6c)

x ≥ 0. (6d)

The objective function1T
r =

∑

i ri is the sum of average
rates of the individual links. The constraint (6b) represents
the minimum rate constraint and (6c) is the normalization for
the schedule.

The variables in the LP (6) arer andx. Rewriting the LP
in terms of the variablex only, we get

copt(rmin) = max 1
T
Cx (7)

subject to Cx ≥ rmin, (7a)

1
T
x ≤ 1, (7b)

x ≥ 0. (7c)

SinceC is a matrix with non-negative entries, the constraint
1

T
x = 1 can be replaced by the constraint1

T
x ≤ 1 since the

optimumx, sayxopt, will satisfy 1
T
xopt = 1. Otherwise, we

could scalexopt up so that the objective function is increased.
We denote the optimal value1T

Cxopt ascopt(0).

A. No minimum rate constraint

We now consider the special case whenrmin = 0, i.e., when
there is no minimum rate requirement for any of the links.

Theorem 1:Whenrmin = 0, the solution to problem (7) is
xopt = [0 0 . . . 1 . . . 0 0]T , where the position of1 corresponds
to the transmission mode with the maximum sum rate. The
optimal objective value is the maximum column sum of the
rate matrixC. Hence, the optimal strategy is to always operate
the transmission mode with the maximum sum rate.

Proof: The proof of the theorem is straightforward. Since
rmin = 0, any x satisfying (7b) and (7c) is feasible, as (7a)
is trivially satisfied. Since1T

C represents the row-vector of
column sums ofC, the objective function1T

Cx is some
convex combination of column sums of the matrixC. Thus,

1
T
Cx =

L
∑

l=1

M
∑

i=1

clixi (8)

=
M
∑

i=1

xi

L
∑

l=1

cli (9)

≤

M
∑

i=1

xi max
i

L
∑

l=1

cli (10)

= max
i

L
∑

l=1

cli (11)

where the equality in (11) is true since
∑

i xi = 1. Equality
holds in (10) whenx = xopt = [0 0 . . . 1 . . . 0 0]T where
the position of1 in xopt is î = arg maxi

∑L
l=1

cli. Hence the
proof.

Depending on the geometry of the links, the dominant
transmission mode can be a single active link or a collection
of geographically separated links. However, one implication
of the above theorem is that the links that are not a part of
the dominant transmission mode are starved. So, the system
is not fair in terms of providing non-zero data rates to all the
links.

B. Non-zero minimum rate constraint

In the case whenrmin is non-zero, anyx satisfying (7b) and
(7c) may not be feasible. There is an additional constraint in
(7a) which has to be met. Hence the optimal objective value
cannot exceedcopt(0). We now characterize the loss in sum
rate due to the minimum rate constraint. We begin by writing
the dual problem for the LP.

The Lagrangian for the LP (7) is

L(x,u, v) = 1
T
Cx + u

T (Cx − rmin) + v(1 − 1
T
x), (12)



whereu ∈ RL andv ∈ R are the dual variables. The Lagrange
dual is

g(u, v) = sup
x≥0

L(x,u, v) (13)

= −u
T
rmin + v

+ sup
x≥0

(1T
C + u

T
C− v1T )x (14)

=

{

−u
T
rmin + v, 1

T
C + u

T
C− v1T ≤ 0

∞, otherwise
(15)

Thus the dual problem for the LP (7) is

minimize −r
T
min

u + v (16)

subject to C
T (1 + u) ≤ v1, (16a)

u ≥ 0, v ≥ 0. (16b)

By strong duality [12, Chapter 5], the optimal value of the
dual problem in (16) is equal tocopt(rmin). Let (u∗, v∗) be the
solution of (16). Since by Theorem 1,copt(0) is the maximum
column sum ofC and u ≥ 0, we have according to (16a),
v∗ ≥ copt(0). Therefore, the optimal value of (16)

copt(rmin) = −r
T
minu

∗ + v∗

≥ −r
T
min

u
∗ + copt(0).

Sincecopt(0)− copt(rmin) ≤ r
T
min

u
∗, the loss in sum rate is at

mostrT
min

u
∗. An interpretation of the dual variableu∗ is that

it can be viewed as the amount of rate loss for a unit increase
in r

T
min

. This is analogous to the dual prices interpretation, in
which the dual variables are interpreted as the price paid for
using the limited resources (primal variables), the constraints
of which are specified in the primal problem.

C. Maximum sum rate schedule with high SNR links

We can examine the special case of high SNR links when
each link transmits with a large powerP . Let us define a set
of modes

T̂ = {il : tlil
= 1, tkil

= 0 for all k 6= l} .

In modeil, link l transmits in isolation and thus we callT̂ =
{i1, i2, . . . , iL} the set of isolation modes.

When the transmit powerP is high, all links have high
SNR and a linkl achieves a high rate when transmitting in the
isolation modeil. However, in a shared (non-isolation) mode
j /∈ T̂ , links will have interference-limited SIRs and relatively
low data rates. These observations lead to the following
theorem.

Theorem 2:If the interference gainsGlk are all non-zero,
then for sufficiently large transmit powerP , the solution to
(7) is time sharing among the transmission modes inT̂ .

Proof: If P is the transmit power in all linksl ∈ E , from
(2) the SIRγlj of link l in transmission modej is given by

γlj =
tljGllP

∑

j∈E,k 6=l tkjGlkP + σ2

l

. (17)

For all modesj /∈ T̂ , the nonzero interference gainsGlk and
the monotonicity of the fractionP/(cP + σ2) imply that

γlj < γ̄lj =
Gll

∑

j∈E,k 6=l tkjGlk
. (18)

We can thus upper bound the SIRγlj of any link l in any
transmission modej /∈ T̂ as

γlj < γ̄ = max
j /∈T̂

max
l

γ̄lj . (19)

It follows from (3) that

clj ≤ c̄ = log(1 + γ̄), j /∈ T̂ . (20)

Note thatc̄ serves as an upper bound for the rate that can be
obtained by any linkl in a shared modej /∈ T̂ . However, in
a modeil ∈ T̂ in which only link l is active,

γlil
=

GllP

σ2

l

= γl(P ), (21)

a monotone increasing function ofP . Let us define

cl(P ) = log(1 + γl(P )). (22)

as the data rate obtained when linkl transmits with powerP in
the isolation modeil. Sincecl(P ) is a monotone increasing
function of P , there exists a transmit powerP ∗, such that
P > P ∗ implies cl(P ) > Lc̄ for all links l.

Now, let us suppose thatP > P ∗, but x is an optimal
schedule for problem (7) withxj > 0 for a shared mode
j /∈ T̂ . Consider a new schedulex′ given by

x′
i =











0 i = j

xi + xj/L i ∈ T̂

xi otherwise

(23)

The schedulex′ reallocates the timexj in modej equally to
the isolation modesil in T̂ . In particular, an isolation mode
il ∈ T̂ will now be active for time

x′
il

= xil
+

xj

L
. (24)

We now show that every linkl receives a positive rate increase
by switching to schedulex′. Under schedulex, a link l obtains
rate

rl =
∑

i

clixi = cljxj + clil
xil

+
∑

i/∈{j,il}

clixi. (25)

Under schedulex′, link l obtains rate

r′l =
∑

i

clix
′
i = clil

x′
il

+
∑

i/∈{j,il}

clixi. (26)

For link l, the difference in rates is

r′l − rl = clil
(x′

il
− xil

) − cljxj (27)

=
(clil

L
− clj

)

xj . (28)

However,P > P ∗ implies that in the isolation modeil, link
l obtains rate

clil
= cl(P ) > Lc̄. (29)



It follows that r′l − rl > 0 for all links l. This contradicts the
optimality of schedulex in that every link achieves a strictly
higher rate under schedulex′.

IV. M AX -MIN FAIR RATE SCHEDULING

The maximum sum rate scheduling is biased towards links
that have the best quality (i.e., least interference) and is
unfair to the other links that are not a part of the dominant
transmission mode. To address this, we will consider two other
fairness criteria in deriving scheduling strategies - max-min
fair and proportional fair. In this section, we present the max-
min fair [3] schedule.

Definition 1: A vector of ratesr is said to bemax-min fair
if it is feasible and for eachl ∈ E , rl cannot be increased
while maintaining feasibility without decreasingrl′ for some
link l′ for which rl′ ≤ rl. Formally, for any other feasible
allocation r̃, with r̃l > rl, there must exist somel′ such that
r̃l′ < rl′ ≤ rl.

In the context of flow control of sources in a communication
network, iterative algorithms for computing max-min fair rate
vectors exist [3]. Such iterative algorithms use a ‘progressive
filling’ technique that starts with all rates equal to zero and
increases the rates until one or several link capacity limits
are reached. In order to obtain the max-min fair schedule in
our setting, we begin by formulating the LP to maximize the
minimum common rate in all the links. We will then show that
the solution to this LP results in the max-min fair solution.The
LP which maximizes the minimum common rate among the
links is

r∗ = max rmin (30)

subject to r = Cx, (30a)

r ≥ rmin1, (30b)

1
T
x = 1, (30c)

x ≥ 0. (30d)

Before proving that the above LP results in the max-min
fair schedule, we state the following theorem:

Theorem 3:If the link gainsGlj are all non-zero, then the
LP (30) which maximizes the minimum common rate among
the links results in all links getting the same rater∗, i.e.,
r
∗ = r∗1.
The proof of Theorem 3 appears in the appendix. We now

show that the schedule obtained by solving (30) is max-min
fair.

Theorem 4:The solutionx
∗ obtained by solving the LP

(30) results in the max-min fair solution for the maximum
sum rate problem (7).

Proof: Our objective is to seek a max-min fair solution
in the set (7a)-(7c). Denote the set byS. Let us consider the
solutionx

∗ of (30) which results in the rate allocationr∗ =
r∗1. Now, for any feasiblex ∈ S, there can be only three
different possibilities:

1) r such that the rates in all linksrl ≤ r∗, l ∈ E .
2) r such that for some linksrl < r∗ and some linksrl′ ≥

r∗ for l, l′ ∈ E .

3) r such that the rates in all linksrl > r∗, l ∈ E .

The third possibility can be ruled out since it contradicts the
optimality of (30). From Definition 1 of max-min fairness, it
follows thatr∗1 is the max-min fair rate vector when the first
two possibilities hold.

V. PROPORTIONAL FAIR SCHEDULING

The max-min fair schedule derived in the previous section
leads to global fairness. In this section, we discuss a fairness
criteria which leads to fairness of individual links.

Definition 2: A vector of ratesr is proportional fair if it is
feasible, i.e.,Cx = r for x such that1T

x = 1 andx ≥ 0, and
if for any other feasible vectorr′, the aggregate of proportional
change is negative.

∑

i

r′i − ri

ri
≤ 0. (31)

In [13], Kelly proposed proportional fairness in the context
of rate control for elastic traffic. It can be shown that the
proportionally fair vector is the one that maximizes the sum
of logarithms of the utility functions. Hence, to obtain the
proportional fair rates, we solve the following non-linear
optimization problem with linear constraints

max
∑

l

log rl (32)

subject to r = Cx, (32a)

1
T
x = 1, (32b)

x ≥ 0. (32c)

The objective function of the above non-linear optimization
problem is increasing and strictly concave. The constraintset
is linear and hence the problem is a convex optimization
problem [12]. This implies that the problem has a unique
global maximum over the constraint set. The solution for such
problems can be found out by gradient search algorithms [12].

VI. SIMULATION RESULTS

We present some simulation results in this section. Though
the analytical results are true for more general cases, we
present simulation results for some specific cases to illustrate
our findings. The simulation set-up is a50×50 grid. The links
are of fixed lengths and placed at random locations in the grid.
The interference gainGlj between the transmitter of linkj and
the receiver of a linkl is given byGlj = d−4

lj , wheredlj is
the separation distance between the transmitter and receiver.
The transmit powers are fixed for all transmissions and the
link geometries are characterized through the signal-to-noise
ratio (SNR) at the receiver for that link (in the absence of
interference).

In the case of maximum sum rate scheduling with no
minimum rate constraint, the transmission mode with the
highest sum rate is chosen. The links which are not a part of
this transmission mode are not operated at all. In the special
case when the noise at the receiver is high, the denominator
in the SIR expression is dominated by the receiver noise. This
approximates the case when there is no interference from the
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Fig. 3. Set of five links each of lengthd = 10. The dominant transmission
mode at SNR=10 dB is shown in solid lines.

neighboring links. Hence the best policy would be to turn on
all the links in order to maximize the sum rate in all the links.

As the SNR in each link increases, the interference from
neighbors also increases. Then the best transmission mode
is that which has the highest sum rate among all the other
transmission modes. The set of links chosen follows spatial
reuse patterns that are reminiscent of those used in cellular
networks. Figure 3 shows a set of links and the dominant
transmission mode at SNR = 10 dB. The links in the dominant
mode are shown in solid lines.

In the case of maximum sum rate scheduling with non-
zero minimum rate constraint, we see that more than one
transmission mode is operated since there is a minimum rate
requirement for each link. The best mode is selected for most
of the time and the mode which includes the poorer quality
links are turned on for a fraction of time just enough to satisfy
their minimum rate requirement. Most of the transmission
modes are thus not used at all since it is best to use the
dominant mode during all other times except when a minimum
rate should be guaranteed to some poor quality links.

We now discuss an illustrative example of this case. Figure 4
shows a set of source-destination pairs. Whenrmin is zero
at 20 dB received SNR, the mode consisting of links{2, 5}
is always operated. But as the common minimum ratermin

increases from zero, an additional set of modes is operated
to satisfy the minimum rate requirement for each link. The
schedules of the individual transmission modes as shown in
Figure 6 varies with the minimum rate so that the minimum
rate constraint in each of links is maintained. Notice that only
five different modes are active. Whenrmin is increased in
steps, we observe that the same set of modes is operated.
After a certainrmin value, sayr′, a different set of modes has
to be operated in order to obtain a feasible schedule. Until
then the rate of all the modes falls linearly with increase in
rmin. The break point in the sum rate curve occurs atr

′. We
zoom in to the graph forrmin values ranging from 1.4 to 1.58
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Fig. 4. A set of source-destination pairs
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Fig. 5. Variation of sum rates and individual rate as a function of rmin

in Figure 7. We observe that mode{1} and mode{3} are
active for equal amounts of time since link 1 and 3 transmit in
isolation in this mode, and they require the same minimum rate
to transmit. The fraction of time mode{4} is active increases
as the fraction of time mode{2, 4} transmits decreases to
compensate for the increase in rate in link 4. Finally, the rates
in all the links are same atr∗ ≈ 1.58.

The rates corresponding to maximum of the minimum
common rater∗ is shown in the Figure 5. All the links end
up getting the same rates in this case. The schedule and the
rate allocation vector the same as those obtained when we
solve (7) with rmin = r∗1. The comparison of scheduling
schemes under different optimization settings is shown in
Figure 8. From the Figure, we notice that only in the case
of maximum sum rate with no minimum rate constraint, there
exist links with zero obtained rate. In the case of the max-min
fair solution, all the links end up getting the same rate. Table I
shows a numerical comparison of the sum rate and individual
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link rates among the various links in the network.

VII. D ISCUSSION ANDCONCLUSION

We introduced the notion of a Spectrum Server, which
allocates a schedule for a set of links in a wireless network,
which is modelled as a directed graph. We observe that this
problem formulation can also be applied to the case where
the links operate in non-overlapping frequency ranges. In this
case, some of the link gainsGlj may be zero. The model can
be easily extended to the case when there are bidirectional
links between two nodes (if we assume there are separate
transmitters and receivers), in which case the number of
transmission modes will be22L. In this case, interference at
the receiver which is colocated with the transmitter in another
link is very high. This may result in schedules in which one of
the bidirectional links are active at any given time. If there is a
restriction that only one of the bidirectional links can be active
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Fig. 8. Comparison between rates of the links under different settings

at any given time (or when each node has a single transceiver).
In this case, the number of transmission modes will be only
3L.

In our work, the problem of maximizing the sum rate in all
the links subject to minimum rate constraint is posed as a linear
program. The solution to the linear program gives the optimum
schedule for the transmission modes in the network. But for
a network involvingL links, there is an exponential number
of transmission modes and thus the LP we solve involves
an exponential number of variables. However, we conjecture
that almost always there are only very few active transmission
modes as corroborated by our simulation results.

In the present work, the whole process is centralized since
the spectrum server just solves the linear program to compute
the schedules for each of the links. A heuristic algorithm
to find the best schedule with less measurement overhead
would be an interesting future work to address. This may
involve links reporting the interference seen by them from
all the other links. This would also be a first step to finding a
completely distributed scheduling algorithm. The centralized
approach proposed in this paper would then serve as an upper
bound to the performance of such distributed algorithms.

Throughout this paper, we have assumed that the spectrum
server has knowledge of the link gains. This involves mea-
surement of link gains by the spectrum server. An interesting
issue is how coarse the measurement can be and how it affects
the scheduling algorithm. If the link gains are modelled by a
time-varying fading process, then finer measurements would
be very expensive.

The problem formulation in this work yields itself to many
optimization problems. One such example is to minimize the
sum fraction of times the links are on so that the total transmit
power in all the links is minimized. Another example is to
maximize the sum rate in all the links subject to the condition
that all the links are active for equal amount of time.

In this work, we assume that there is a single hop com-



TABLE I

COMPARISON OF SUM RATE AND INDIVIDUAL RATES

rmin = 0 rmin = 0.5 rmin = 1 rmin = 1.58 Proportional fair
(Max-min fair solution) solution

Sum rate 10.8987 10.2035 9.5082 7.9 7.0632
Link 1 0 0.5 1.0 1.58 0.8324
Link 2 5.3814 4.5640 3.7466 1.58 1.9581
Link 3 0 0.5 1.0 1.58 1.3314
Link 4 0 0.5 1.0 1.58 1.9516
Link 5 5.5173 4.1394 1.0 1.58 0.9896

munication between the source destination pairs. Yet another
interesting issue would be to find the solution for the maximum
sum rate problem if we have a schedule with multiple hops
between the source and destination.

While we have primarily considered links of equal length
for the purposes of numerical illustration, it is of interest to
study the performance of the various scheduling algorithms
for the case of links of unequal lengths as well.

VIII. A CKNOWLEDGEMENT

This work is supported in part by the NSF under grant
number NeTS-0434854 and by the Defense Spectrum Office
(DSO) of the Defense Information Systems Agency. The first
author thanks Jasvinder Singh for useful discussions on the
material in this paper.

APPENDIX

Proof of Theorem 3: The LP which maximizes the minimum
common rate is

max rmin (33)

subject to r = Cx, (33a)

r ≥ rmin1, (33b)

1
T
x = 1, (33c)

x ≥ 0. (33d)

Let r∗ be the optimal value of (33), corresponding to a
schedulex∗ and a set of active transmission modesT ∗ = {i ∈
T : x∗

i > 0}. Note that the idle transmission mode with the
all zero activity vector would never be a part ofT ∗ because,
if it were, we can improve the rates of links inL2 and this
contradicts thatr∗ is the optimal solution of (33). It is required
to prove that at optima, the rate vectorCx = r∗1. We assume
the contrary that the solution to (33) leads to unequal rates
over the set ofL links. We can then partition the sets of links
E into two disjoint non-empty sets

L1 = {l ∈ E : rl > r∗}

and

L2 = {l ∈ E : rl = r∗}.

This in turn induces a partition on the setT ∗ of all active
transmission modes for the optimal solution into three disjoint

setsT ∗
1

, T ∗
2

andT ∗
3

such that

T ∗
1

= {i ∈ T ∗ : til = 0, for all l ∈ L2}, (34)

T ∗
2 = {i ∈ T ∗ : til = 0, for all l ∈ L1}, (35)

T ∗
3

= T ∗\{T ∗
1
∪ T ∗

2
}.

T ∗
1

andT ∗
2

contain active transmission modes which consist
of links only from L1 andL2 respectively, andT ∗

3 contains
transmission modes which consist of links in bothL1 andL2.
We consider two cases below.

A. Case (i):T ∗
1

is non-empty

There exists an active transmission modei ∈ T ∗
1

consisting
of links only from L1. Consider the modei′ with activity
vectorti′ given by

tli′ =

{

1, for all l ∈ L2,
0, otherwise.

(36)

Mode i′ consists of all links fromL2. Therefore,cli′ >
0 for l ∈ L2. In the optimal schedulex∗, we know thatx∗

i > 0
but x∗

i′ may be zero. The rate in linkl under schedulex∗ is
rl =

∑

k clkx∗
k. Define for some fixedε1 > 0, the feasible

schedule

x̂ = [x∗
1 . . . x∗

i − ε1 . . . x∗
i′ + ε1 . . . x∗

M−1]
T .

For sufficiently smallε1, the schedulêx will be feasible. Now,
for l ∈ L2, the rater̂l due to schedulêx is

r̂l =
∑

k

clkx̂k = r∗ − cliε1 + cli′ε1 (37)

Sincecli′ > 0 for l ∈ L2,

r̂l = r∗ + cli′ε1. (38)

Thus, we conclude that̂rl > r∗, l ∈ L2. Note thatε1 needs
to be chosen such that for alll ∈ L1, r̂l > r∗. The choice
of ε1 such thatcliε1 < minl∈L1

rl − r∗ ensures that̂rl >
r∗ for l ∈ L1. We can thus improve the rates in all links in
L2. This contradicts the optimality ofr∗. We denote this step
as Increase(1).

B. Case (ii):T ∗
1

is empty

In this case, ifT ∗
3 is empty, thenT ∗ = T ∗

2 and hence all
rates are equal, and the proof is complete. Thus we consider
only the case ofT ∗

3
being non-empty. For an active mode



j ∈ T ∗
3 , there exist non-empty subsets ofL1 andL2, namely

M1 andM2 such that the activity vectortj is given by

tlj =







1, l ∈ M1 ⊆ L1,
1, l ∈ M2 ⊆ L2,
0, otherwise.

(39)

Consider the modej′ for which the activity vectortj′ is given
by

tlj′ =

{

1, if l ∈ M2,
0, otherwise.

(40)

We have assumed that all link gainsGlj are non-zero, that is
there is lesser interference for links inM2 in modej′ than
in modej due to a lesser number of active links in modej′.
Thus for linksl ∈ M2,

clj =
GllPl

∑

k∈M1∪M2,k 6=l tkjGlkPk + σ2

l

(41)

>
GllPl

∑

k∈M2,k 6=l tkj′GlkPk + σ2

l

= clj′ . (42)

Since j ∈ T ∗
3

, x∗
j > 0. For someε2 > 0, we define a

feasible schedule

x̂ = [x∗
1
. . . x∗

j − ε2 . . . x∗
j′ + ε2 . . . x∗

M−1
]T .

Under schedulex∗ and x̂, link l obtains rate

rl =
∑

k

clkx∗
k

and
r̂l =

∑

k

clkx̂k

respectively. Thus,

r̂l − rl = (x̂j − x∗
j′ )clj′ + (x̂j − x∗

j )clj (43)

= ε2(clj′ − clj). (44)

It follows from (41) that r̂1 − rl > 0. Let us call this step
Increase(2).

SinceL2 is a finite set, repeatedly applyingIncrease(1) or
Increase(2) on L2\M2, we can increase the rates of all the
links in L2. This contradicts the optimality ofr∗. The proof
is complete since both cases contradict the fact that the optimal
solution leads to unequal rates in the links.
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