Opportunistic File Transfer over a Fading Channel

under Energy and Delay Constrairits

Heng Wang and Narayan B. Mandayam
Wireless Information Network Laboratory (WINLAB)
Department of Electrical and Computer Engineering
Rutgers University, 73 Brett Road, Piscataway, NJ 08854-8060

Email: hwang, narayan@winlab.rutgers.edu

Abstract

We consider binary (on/off) power control strategies for transferring a fixed size file (finite
number of packets) over fading channels under constraints on both transmit energy and trans-
mission delay. The goal is to maximize the probability of successfully transferring the entire
file over atime-varying wireless channel modeled as a finite state Markov process. We consider
two scenarios for the delay constraints: an aveidglay constraint and a strict delay constraint.

The resulting optimal policies are shown to be a function of the channel state information (CSI),
the residual battery energy at the transmitter and also the number of residual packets in the trans-
mit buffer. It is observed that the probability of successful file transfer increases significantly

when the CSl is exploited opportunistically.
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1 Introduction

With the development of personal communication services, portable terminals such as mobile tele-
phones and notebook computers are expectdibtased more frequently and for longer times.
Hence power consumption will become even mamportant than it is now. One of the major con-

cerns in supporting such mobile applications sdmergy conservation antanagement in mobile
devices. There is considerable work on the energy saving approaches in the literature. These range
from energy management in communication devices to various layers of the protocol stack by intel-
ligently using knowledge about the traffic, the ohal and the network. For example, from network
architecture design [1] to software strategies [2], from media access and logical link control proto-
cols [3] to data compression and source codingydtious sorts of energy efficient strategies have

been discussed.

In second generation wireless communicatietworks, power control is mainly intended to
provide each user an acceptable connection by editimig unnecessary interference in the pre-
dominantly voice only network [5]. In next generation wireless systems, satisfying the Quality-of-
Service (QoS) requirements of heterogeneous services is more complicated. There has been recent
work on exploring both adaptive link level and #3191 level strategies for wireless communication
over fading channels. Reference [6] gives anremav of the coding and modulation schemes un-
der power constraints. Reference [7] analyzes the information-theoretic limits of fading channels
from a single-user system point of view. A packet traffic scheduling problem is described by Collins
and Cruz in [8], with a delay constraint, wheae optimal policy is found to minimize the average

transmit power.

All of the above works discuss the energy cenation control problem by assuming there is
an infinite supply of information to be transfedreln this work, however, we analyze the power
control problem in transferring a finite-size ddile under a total energy constraint as well as de-
lay constraints. In this papené channel model considered is that of a slow fading channel. Two

performance metrics are taken into consideration:



e Probability of Success: the probability of successfully traresting the entire file within the

given energy budget.

e FileTransfer Delay: the total time spent in transferring the file.

In this work, to simplify the problem, we allow only two transmit power levels: a constant power

or zero power (i.e., no transmission). A randaed power control scheme is discussed, i.e., the
transmitter can select either power level with a certain probability. The power control problem is
(given the total energy and the file size) to find the optimal policy that maximizes the probability of
success under either an average delay constrainttocedelay constraint. The paper is organized

as follows. Section 2 reviews the channel model. The communication system model is described
in section 3. In section 4 and 5, we present results for the average delay constrained problem and

the strict delay constrained problem, respectively.

2 Finite State Markov Channel (FSMC) M odel

In many wireless communication situationbaages in the propagation environment occur on a
very slow time scale with respect to the signaling rate. Thus, in high rate packet data systems, it is
reasonable to assume that the channel symbols ipacieet experience the same “channel state”.
Thus the channel state is randdmt constant over one packet dtion. For such a slow fading
channel, we assume that, the received signaleige ratio (SNR) remains at a constant level for

the entire packet duration. Therefore, in each packet durdtigrihe channel can be modeled as

an AWGN channel, i.e.,
y=Vha+n 1)

wherez andy are input and output signals respectivelyis the AWGN noise, and is the fading
attenuation factor. For the Rayleigh fading channes distributed exponerally with probability

density functionf;,(z) = + exp{—%} for z > 0. If the power of the background noise is normal-



ized to 1,h characterizes the average received SNR. In this work, we assume that the packet rate is

constant and the packet duratidi is given as/\t 2 Rip, whereR,, is the packet rate.

A Markov channel model can be built to characterize the time-varying behavior of the Rayleigh
fading channel as follows [9]. Satit a sequence of fading thresholds= 1r(® < A1) < ... <
hE) = o0, by which we partitiorh into a finite number of SNR intervals. Then the channel is said
to be in states® if h € [p®) p*+D) k= 0,1,---, K — 1. The steady state probabilities of the

channel state are given by

qk:/<k> fo(lx)de, k=0,1,--- K—1 2
h

where we assume that the transitions occur omly heighboring (or samejates and the channel
stays in each state for a specified packet duration As in [9], the transition probabilities are
approximated by the ratio of the expected numifdevel crossings of the state SNR boundary to
the average number of blocks per second in that state. They are given by

]_"(h(k+1))
qup ’

F(h(’“))

k:O’ ,
kaRp

pk’kJrl: ,K—Q pk’k,1: k:L,K—l (3)

wherep; ; is the state transition probability fromt” to s). R, is the block rate and(-) is the
expected number of level crossings [10] givei'as) = \/?fd exp{—7}, wheref;, is the max-
imum Doppler frequency defined gs =  with v being the speed of the vehicle andbeing the
wavelength. This fading chaninmodel is verified to be precise when the fading process is slow
(i.e., the transition probability; ; < 1) [9].

Given a channel staté®), considering a fixed size data packet, we assume that the probability
of correct reception of the packetig and it is monotonically increasing in the channel states. For
a given modulation schemedpacket size, we evaluatg as a function of the average SNR in that
state. We now present in the following hqw is evaluated for the example of BPSK modulation.
Let B denote the packet size in the number of bits. Given the received/§ite probability of

correct reception of one packet is given[asr Q(\/ﬁ)]B, whereQ(z) = % I ¢=% dt. Inthe



above we have assumed that a packeticcessfully transferred onliyall the bits in it are correctly
received since no channel coding is employed here. Hence, insStathe probability of correct

reception of one packet can be obtained by avepgver the corresponding channel state intérval

1 h(k+1)

i 1-Qwan)|’ filwyde k=0, K -1 (@)

o qr Jh*)

3 System Model

The system model is shown in Figure 1. The size of the data filepiackets and the total energy
budget is given ag’ Joules. Consider a time-slotted system where one time slot corresponds to the
constant packet duratiod\¢). By storing all thel. packets in a buffer temporarily, the transmitter
tries to transfer the data packets conse@lithrough a wireless link. In each time sl@, ¢, 1),

i = 0,1,---, one packet can be transmitted with a certain transmit pdwehs far as the ARQ
(Automatic Repeat Request) mechanism [11] is concerned, the simplest “stop and wait” scheme
is used here to overcome transmission errors. M @assume there is an instantaneous error-free
feedback channel that informsatkransmitter of the reception stat{isuccess” or "failure”). Upon

the immediate notification of a packet receptioituiiee, the mobile will arange to re-send the same
packet until it is correctly received. Note that taenay be a feedback delay in notifying the trans-
mitter of the CSI. In Figure 1)~ = 0 denotes that the transmitter has the perfect CSI of the current
slot before transmissior) = n implies that the transmitter only knows the CSI franslots be-

fore. Further, letD-. = oo denote the case that the transmitter has no CSl. In this work, we will
show that the system performance can be improved significantly by exploiting the CSI in compar-
ison with the transmission strategy without using CSI. Hence, we will focus on the analysis in the
scenarios withD- < oo in the remainder of this paper. Before we formulate the power control

problem, we present the following preliminaries

'Here, we assume that the total transmission time is long enough such that in any channel state, the SNR process
h(t) is ergodic.



Definition 1 Let F; denote the event that all packets are successfully transmitted within the en-
ergy budget o2 Joules and lety, denote the event that some of thpackets are not transferred

correctly when the communication is terminated, i.e.,

2

A 1] M ” 1] M M ”
E, = “File transfer success” and £ File transfer failure” .

Note that event, occurs when there is neither enough energy nor enough time to transmit the
residual packets in the buffer. We assume tharwinication will be terminated once we find that
itis impossible to transmit all the residual packets with the residual energy or in the remaining time.

Hence, we define the communication window as follows:

Definition 2 The communication window of the file transfer (denotedbys defined as the time

duration from the starting time point to the time point when either e¥grdr £, occurs.

N can be used to characterize the file transfer delay. Noté\thsia random variable which varies
with the channel as well as the energy constraint. At each time instant 0,1,---, N — 1, we

will determine the transmit powe?; based on the current system state. To simplify the mathemati-
cal analysis in this work, we only admit two power levels for the transmit powes: P whereP

is a fixed power; an®;=0. If P, = P, the transmitter attempts to transmit with powrerlf P, = 0,

the transmitter remains silent for one packet slot. The transmission action is defined as follows:

Definition 3 At time instant;, fori = 0,1,--- , N — 1, let“a; = A" (0 < A < 1) denote the

following randomized transmission action:

P, with probability A
P = )
0, with probabilityl — A
Further, we assume that the energy consumed for one packet transmissiéhJsules, where
AE = P - At. Without loss of generality, we assume the total energy budgstan integer

multiple of AE, i.e.,E = Mg - AE for some integed/r. Then we define the system state space

as below.



Definition 4 The system state spade2 {v = (s,e,l)}, wheres € {s© s ... s&-D}ig
the CSle € {0, AE,---, Mg/AFE} is the residual energy in Joules, ahd {0,1,---, L} is the

number of residual packets in the buffer.

The initial statev, = (s, E, L). Note that the CSI 3" is the obtained channel state information
from n slots before ifD- = n. If applying a transmission action, the state transition probabilities
between any two states= (s, e, 1) andw = (s*), ¢/, ') are given by, (a) = Prob{w|v, a}.

It follows

(1= A) - prwrs e =el =1

A - Dk k! ks e =e—AE,I'=1-1, fore>AFandl >0
Npw(L—fig), € =e—AE, =1, fore> AFE andl > 0

pvw(a - )\)
(6)

0, otherwise

where all the probabilitieg;, ;- are the transition probabilities given by equation (3) apds prob-

ability of correct reception of one packet when the CS{f$. Since the CSI depends di, we

can writefiy = . for Do = 0, o fiy, = Ki:l piu; for Do = n > 0, wherep)) is then-step
channel state transition probability ang bje:i(;\g the correct probability of packet reception in (4).
Then-step transition probability of the channel states can be derived from the one-step transition

probabilities given in equation (3).

Definition 5 The sequence of transmission actions m¢bmmunication window is called a trans-

mission policyr, i.e.,m = (ag, a1, -+ ,a; -+ ,an—_1).

Note that if the probability is either 1 or O for all the actions in a policy, this policy is called a
deterministigoolicy. In other words, only two actions are allowed:= 1 which denotes’, = P
with probability 1, andi; = 0 which represent®; = 0 with probability 1. Further, if all the actions
are independent of the system timgthe transmission policy is calledssationarypolicy. Given

a transmission policy, the probability of successful file transfer is denoted as

R(m) = Pr{E, |7} (7)



For anyr, it follows that R(w) = 0, if Mg < L. To avoid this degenerate situation, in this paper,

we assume that at the initial timg there is enough energy to transfer the entire file, A8;,> L.

4 Power Control with Average Delay Constraints

The goal is to find the optimal power controllmy that maximizes the probability of successful
file transfer while guaranteeing that the averagemmunication window is less than a pre-specified

value. To formulate this problem mathematically, we need to define the following sets.

Definition 6 Atinitial timet,, the system is on any channel state with residual eneérdggules and

L remaining packets in the buffer. The initial state set is givetias- {(s, £, L) |s = s*), k =
0,1,---, K —1}. Attimety, the communication is terminated. LLétdenote the set of final states
that correspond to the situation that there is not enough energy for transmitting the residual packets,
ie.,U.={(s,el) e <IAE}. LetU, denote the set of final states that correspond to the situation

that all the packets have been transmitted correctly, i/le= {(s,e, )|l =0}.

Note that wherD- = n > 0, the transmission starts at timyeand the CSI at timeé_,, is assumed
to be known by the transmitter. If the system statéyabelongs tal;, the file transfer has been
completed successfully. If the final state idin then the file transfer has failed. Hence, it follows
that the eventdy; and E, can be represented in terms of the final stateas &, <— vy € U,
andE, < vy € U.. Given a transmission policy, the probability of successful file transfer is

given as
R(m) = By, {R(m,vo)} (8)

whereR(m, vo) = Prob{vy € U,} if starting fromv, andE,, denotes the expectation over the set

of initial statesl/;,. The average value of the communication winddws given as

Navg (1) = Evjo{ Navg (T, v0) } (9)



where N, (7, vo) = EJ{N(m, vo)}. EJ is the expectation over the system state/hen using

policy w, and N (7, vo) denotes the corresponding window size.

Note thatV,,,(7) andR(r) are two conflicting performance metrics. To increase the probabil-
ity of success, the transmitter will wait for some high SNR channel states for transmission, which
lowers the retransmission probability at the expense of increased delay. On the contrary, to decrease
the delay, the transmitter can transmit as soon as possible regardless of the channel states, which

certainly lowers the probability of success. Thvea define two extreme policies as follows.

Definition 7 For a finite channel state model with*), k = 0,1, -- , K — 1, assume&*—1 is the
best state, i.eyx 1 > u, K = 0,1,--- | K — 2 and the steady state probability of every state

g >0,k=0,1,---, K — 1. Policyr, is defined as

A\, s=s*)andv ¢ U, UU,;
a(v = (s,e)) = (10)
0, otherwise

n

where) > 0. k* = K — 1for Do = 0, or k* = argm]?x{p%@l} for Do = n > 0 with P;(c,z)el

being the n-step channel state transition probability.

WhenD. = 0, 7, is such a policy that the transmitter chooses to transmit with péarly on the
best state; otherwise, the transmitter remains silent and waitd)fef n > 0, 7, is such a policy
where the transmitter chooses to transmit on thiee stdich has the highest transition probability

to the best channel state aftesuccessive transitions.

Definition 8 Policy n, is defined as

1, A" ¢ Ul U Ue;
a(v) = (11)
0, otherwise
74 1S the policy where the transmitter chooses tograit on every channel state. We now state the

following claim.
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Claim 1
Ty = arg max R(m); and m; = arg min Ny (7). (12)

The above claim is fairly intuitive and straightfeard to prove and a formal proof is omitted here.

We instead focus on the qualitative implications of the Claim in the following. Note that the maxi-
mization in the 1st equation in Claim A& no delay constraint and the policywaits for either the

best channel state (whépn. = 0) or the best CSk* (whenD- = n > 0). As aresult, the resulting
R(m,) is independent of the value of probability> 0. Instead ) only affects the communication

time for completion of the file transfer. Considering the 2nd equation, transmitting everywhere is
the fastest strategy to transmit all the packets or to exhaust all the energy. Hieeselts in the
smallest average communication window. These palicies give two extreme solutions in the
tradeoff between the probability of success arglfile transfer time. In practice, for some delay
sensitive services, we would like to maximize the probability of success while keeping the average
delay below an acceptable range. The mathematical formulation of the average delay constrained

problem is given as

Problem A: Given a certainDs < oo,
max R(m) subjectto Ng,(m) < Np (A)

The delay constrain¥, has to satisfyN, > N,,, (7). Otherwise, Problem A has no solution. In
order to solve Problem A, we will take the appoh of solving its Lagrangian dual problem (see

[12], p. 176). The Lagrangiadual problem can be written as:

Problem A’

it { max [R(m) — BNowy ()] + BN | (13)

Theorem 1 Problem A’ has the same solution as Problem A.
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The proof is given in Appendix A. In addition, the following corollary can be inferred to illustrate

gualitative properties of the optimal solution.

Corollary 1 Let7* denote a solution of Problem A. We have

0, Np < Dx;
R(m") =q R + ﬁjjﬁi(ND —Dy), Dy < Np <Dy (14)
Ry, Np = D,

whereD; = Ny (7q), D2 = Nayg(7s), R1 = R(my) andR, = R(w,). Further the delay constraint

shall be met with equality, i.e,,,(7*) = Np.

The above corollary shows that the probability of susgesreases as the delay constraint is relaxed

and it is proved in Appendix B.

Note that Problem A can be formulated into anstrained Markov decision problem (MDP)
and solved by an infinite horizon dynamic progwaing (DP) approach [13,14] (Appendix C). The
achieved optimal transmission policy is stationary and is only a function of the channel state, the

residual energy level and the numbér@emaining packets in the buffer.

4.1 Numerical Results

In real file transfer systems, deterministic policies are generally employed. As an illustration, we
use deterministic policies in the following numerical examples (@.e= 1 or a = 0). Consider

a FSMC model withK' = 8 channel states by partitioning the channel into SNR intervals with
identical steady state probabilities. The cop@sding SNR intervals and the probability of correct
reception of one packet are shown in Table 1. Assume the transmission bit rate is 2 Mbps, the file
size is 10 Kbits, and the frame size is 500 bits. Then we Hak0.25 ms and.=20. The energy

budget is assumed to Bé;=50 and the maximum Doppler frequenfyis 75 Hz.
Assume the transmitter knows the perfect G34:(= 0) and the average delay constraky=45
slots. Figure 2(a) and Figure 2(b) show 2 slices of the optimal policy wheri8 and/ = 5, re-

spectively. The shaded regions signify= 1 (i.e., to transmit one packet with probability 1) and the
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white regions represent= 0 (i.e., to remain silent with probability 1). Note that when the residual
energy is not enough to transmit the residual packets (i.e., the regiom with\ ), the commu-
nication will be terminated (as shown in figures by= 0 as well). By observing the numerical
results, we find that, at any instant, if there is more residual energy or less packets in the buffer, the
optimal policy is less selective (i.e., the transmitter can transmit on some low SNR channel states
as well). This is because the looser constraints result in a less selective transmission strategy. A
similar behavior (not shown here) is observed with > 0 when the fading process is slow (i.e.,

the transition probability of channel statg < 1).

Figure 3 shows the minimum probability of failute- R(7*) corresponding to different values
of D¢ varying with the Doppler frequency;. The curve labeled witlh = oo corresponds to the
channel-independent policy. When the CSl iswaikable, the probabilitpf success is independent
of the residual energy and packets. Thus, the "always transmit” policy (i.e., choeskeon any
state) is used here for the casel?f = oco. For all other cases with - < oo, the optimal policy
7* is channel dependent. It is found that thelmability of success increases significantly wiign

decreases.

When D, = 0, it is observed that the maximumairability of success increases monotoni-
cally with the Doppler frequency. Since the fadstading (i.e. higher Doppler frequency) causes
higher transition probabilities between channel states, it implies that the system may visit the high
SNR states more frequently. Though it also incesahe probability of visiting low SNR states,
the transmitter does not transmit on those statrording to the optimal policy shown in Figure
2. Therefore, under constraints on both energydelidy, the increase ofansition probability re-
sults in a higher probability of success. It suggds#s the channel variation can benefit the system
when using a channel dependent saussion strategy. However, whén, > 0, it is not always
true. This is because there is a tradeoff betwegodting the channel variation and estimating the
channel precisely. Since the FSMC model is valndly for slow fading situations, this phenomenon
cannot be observed clearly in the given numeneallts. We present a more detailed discussion

of this tradeoff in Appendix D.
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5 Power Control with Strict Delay Constraints

The goal is to find the optimal binary power control policy that maximizes the probability of suc-
cessful file transfer when the communicati@indow is strictly constrained to b¥ < Np. For
any given transmission policy, R(7) = Prob{E; | 7} = 0, if Np < L. To avoid this degenerate

case, we assume the delay constraipt> L. The problem can be formally stated as

Problem B: Given a certainDo < oo,
max R(7) subjectto N(r) < Np (B)

Besides the sets of final stat€sand U, in Definition 6, we now introduce for this scenario an

additional set of final states.

Definition 9 Let U; denote the set of final states that correspond to the situation that there is not
enough time for transmitting the residual packets, L&.= {v;, = (s,e,l) | Np — i < [}, wherei

is time index.

We have the relationship between the evéntsE, and the sets of final states B <— vy € U,

andFE, < vy € U, U U;. Given Np, the definition of the probability of success is
R(m") = Eg {R(7", vo)} (15)

whereR(m, vy) = Prob{vy € U;|m, v,}. Problem B can be formulated into a Markov decision
problem and solved by a finite horizon DP algorithm (Appendix C). The achieved optimal trans-
mission policy is non-stationary, which means dmimal decision rules depend both on the state

information and on the time index

5.1 Numerical Results

As an illustration, we consider the same FSMC nmadmsidered before (in Table 1), and choose

At=0.25ms,f;=100Hz andN,=100. ForD- = 0 and Np = 100, Figures 4(a) and 4(b) depict
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the snapshots of optimal policies at time: 0 andi = 82. Wheni = 0, the system has a commu-
nication window of 100 slots. Thus it can afford to ivior possible future btter channel states.
Therefore, when = 0, the optimal action is to transminly when the channel is good enough.
However, when = 82 and there are still 18 packets in the buffer, the optimal policy stipulates
transmission everywhere in order to try to sehd residual 18 packets during the remaining 18
time slots. In other words, the optimal policy gets less selective (almost desperate in this example)

as the residual communication window shrinks.

Figure 5 shows the minimum probability of failure- R(7*) varying with f;. The curve labeled
with Do = oo corresponds to the case using tinaignel independent policy. Wheévy, = 100,
there is not much difference betweél = 0, 1 and 2. WhenV, = 500, it is apparent that the
probability of success reaches its highest value With= 0. For the same reasons discussed in

the previous sectiom?(7*) for D = 0 is found to be increasing g5 increases.

6 Conclusion

In this paper, we considered a finite-size dal@ tiiansfer problem over a fading channel. Ran-
domized binary power control policies were doyed with a total energy budget. The goal was to
maximize the probability of succesdlly transferring the entire file under either an average delay
constraint or a strict delay constraint. The results show that exploiting the channel state information
opportunistically can substantially increase thelgability of successful file transfer. Extensions to
multilevel (continuous) power cordl yield qualitatively similar reslis but a detailed analysis and

description is a topic of future study.

A Proof of Theorem 1

If R(m) is a concave function of the policy and N,,(7) is a convex function ofr, then by the
strong duality theorem (see [12], p. 183), Probl&nwill have the same solution as Problem A.

Therefore, the remainder of this proofis to show the concavity(af) and the convexity aV,,, (7).
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We first present the following preliminaries.

Definition 10 Given a policyr, assume the transmitter is on stateat timet;. Then define the
residual communication window/ as the time duration from; to the point in time when either

eventE; or E occurs.

Lemmal For Vr and any state; at timei, we have

R(’/Ta Vi) = Z pViVi+1 (ai)R(Wa Vz’+1); (16)
Vit
R(m,u)=0 VYueUlU,; R(mu)=1 VueU; (17)

LetPr(M = m|m,v;) denote the distribution of the residual communication window. Then it fol-

lows that

PI’(M =m | T, Vi) = Z Pviviia (az) PI‘(M =m—1 | T, Vi+1); (18)
Vit1

Pr(M =0|r,u)=1 YueU,UU; RM=0|m,u)=0 Yu¢UUU; (19)

Proof: Consider eventsl = {vy € U;|v;} andB={ vy € U; | v;;1}. It follows that

R(m,v;) => Prob{A|B} - Prob{B} = > Prob{A|B}R(m, viy1) (20)

Vit+1

Prob{ A| B} is equal to the probability of transition from to v;; under policyr, i.e., actiona;.
Thus Pro§ A|B} = py,v,., (a;) and equation (16) follows. Equation (17) follows trivially from the
definitions of the set&§, andU,, respectively. Equations (18) and (19) can be proved by following
similar arguments. O

Let 7, andm, be two policies such that on each statex(v) = AV (v) anda(v) = AP (v)
respectively, i.eq = (A, AP, ) andm, = AP, AP, --.). Then we define a new policy,

suchthat;; = mg”+(1—y)x<2> forany~ € [0, 1]. Consider any, € U,. According to Lemma 1,

7
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R(my, vo) can be expanded as follows.

7T07V0 vaovl ag va1V2 CL1 vaN 1vN(aN 1)R(7T0,VN) (21)

VN

wherev y is assumed to be in final state $&tU U;. Equation (17) shows thdt(m,, vy) depends
only on the final statery and does not depend on the poligy; i.e., R(m, vy) = R(m,vn) =
R(ms, vy). Further, observing that the transition probabifity, (a;) in equation (6) is linear in the

actiona, it follows that

Pew(@i) = pow(PAY + (1 =1 OA)) = 1o (A) + (1 = P)pvw(AP) (22)

Using (22) and replacin@® (7o, vy) by R(m1, vy) and R(ms, viy), the probability of success ob-

tained by applyingr, in (21) can be rewritten as

R 7T07V0 ZpV()Vl CLO ZpV1V2 al Z |:’ypVN_1VN()\§\1f)—1)R(7T17VN)

VN

+(1— 7)va1vN(>\N1)R(7T27VN)] © YR(71,vo) + (1 — ) R(m2, vo) (23)

Step (*) is obtained by applying equation (16) backwards fiom N — 1toi = 0. Therefore,
R(my) = vR(m) + (1 — v)R(my). Similarly, we have

Prob{N = m|m} = yProb{N =m|m} + (1 — ) Prob{N = m | m}. (24)

Then, Ny, (1) = Y Nawg(m1) + (1 — 7) Nawg(m2). Hence, the concavity ak(7) and convexity of

Nayg () are proved. In factR(w) andN,,,(7) are linear functions of-. O

B Proof of Corollary 1

Define the seti asG = {(z,y) : © = Nayy(7), y = R(w), Vr}. Due to the linearity of?(7) and
Navg (), any point on the line segment joining any two poiffe§7 ), Nawg (1)) and(R(ms), Nayg(12))

also belongs t@- (as shown in Figure 6) because a corresponding patjagan be found. Thus,
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G is convex. From Claim 1, it is clear that the policiesandn, are at the extremes of the set
of all policies. As shown in Figure @), (=Nq.4(74)) gives the minimum average delay that can
be achieved for all policies. the average delay constrail, is less thanD,, the probability of
success is zero because no admissible policy can be found. Futthet(r,)) is the maximum
probability of success that can be achievedVifis bigger thanD, (=N,,, (7)), 75 is the solution
and R, can be obtained. WheN, is betweenD; and D,, the boundary of the sét is linear and

iS given as

Ry — Ry

R
"D, — D

(ND—Dl) D1 SND <D2 (25)

This boundary also gives the maximum estable probability of success whén < Np < Ds.
From Figure 6, it is seen thdt(7*) is a continuous non-decreasing functionof. Therefore,

N(wg(ﬂ-*) :ND- O

C Solution Methodology for Problem A’ and Problem B

Problem A’

Note that Problem A’ can be rewritten into two subproblems as follows.

min{f,(5) +SNp}, 620 (26)
fp(B) = max{R(m) — FNawy (1)} (27)

The above two problems together form a constr@i®P. In particular the problemin (27) can be
solved via an infinite horizon DP algorithm and thelplem in (26) can be solved using any standard
search technique. The two optimization problemesiteratively solved until convergence [14]. In

order to introduce the DP algorithm to solve pratolin (27), we need the following preliminaries.
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Let us define a function(v) such that

r(v) { 1, veU; (28)

0, otherwise.

Theorem 2 Assuming that the communication windowisinder policyr, the probability of suc-

cessful file transfer from initial state, is
N-1
R(m,vo) = EJ { Z r(vi)} (29)

Proof: Since the communication window 1§, it implies thatvy € U, or vy € U, andv; ¢ U,
fori =0,1,---, N — 1. By the definition of-(v), r(v;) =0fori =0,1,--- , N — 1. We can now
write the expectation in equation (29) (actuallg ttonditional probability of success from initial

satev,) as a sequential sum of conditidmxpectations. It follows that

o {Nfr(v»} = 1)+ 3 fe an) 5 [Nfr(v»]}

=0 =1

ZpVOVI (ao) prvz (al) T ZpVN—lvN (aN—l)T(VN)

= ZpVOVI (ao) vava (al) T ZpVN—IVN (aNfl)R(’/n VN) = R(’/T? VO)

VN

—~
*
~

Step (*) follows because(vy) = R(w, v) according to the definition of(v) and from (17). O

To calculate the average value of the communication windgwve define a one stage delay
cost as follows.

1, \% Q_ﬁ Ul U Ue
ca(v) = (30)
0, ve U, uU,

The above definition imposes a unit delay cost on every interval until the communication is termi-
nated. Once the final state islihu U,, which means the communication has been terminated, then
we do not count the delay cost any more. Then we can rewrite

Nayg(m,v) = EJ {i Ca (vi)} (31)

1=0
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From equations (29) and (31), we can deffpev,, 3) as
oo, ) 2 max {E{ 3 1)~ cav0)]} 32)
=0
wherev, denotes the initial state. Note th&t5) = Ey,{ f,(5, vo)}. The problem defined in (32)
can be solved using a standard DP algorithm [13].
Problem B

The probability of success can be written as

Np
waw:m{zmwﬁ (33)
=0
which can be solved by a finite horizon DP algorithm [13]. O

D Tradeoff between Channel Variation and Estimation

In both sections 4 and 5, we pointed out that the maximum probability of sué§es$ monoton-
ically increases with the Doppler frequengywhen the CSI feedback deldy. = 0. However,
whenD¢ > 0, this is not always true. We show this using the following illustrative example. De-
fine only two channel states?) ands(!). Assume that the transition probability between these two
statesqi, p1o are equal, i.epo; = p1p = . Note that the channel variation is characterizedby
The channel fluctuates faster with biggerlf o = 0.5, the CSI is memoryless. Consider a strict
delay constrained problem wi#i = 50 units andL = 20 packets. Assume the correct probabilities
of packet reception ang, = 0.2 andu; = 0.8. Figure 7 shows the probability of failute— R(7*)

varying with the transition probability.

Whena = 0, it means that the channel is invariant. Irrespective of whether the CSI is known
or not, the same probability of succedgr*) will be obtained D = 0, 1, o0) because the channel
is time invariant. When the perfect@hnel state information is knowd¢ = 0), R(7*) monoton-

ically increases witl since the optimal policy exploits the current CSI. However, when> 0,



20

there exists a tradeoff between exploiting the CSI and estimating the CSI. For slow fading chan-
nels, R(7*) increases as increases. It implies that it is accteao estimate the current channel
state using the CSI fror¢ slots before, when the fading process varies slowly. Thus, the optimal
policy can exploit the estimated CSI to achieve higRér*). As the channel varies faster, on the
contrary,R(7*) decreases asincreases. This is because now it is difficult to exploit the CSI based
on the inaccurate estimation due to the fast variation. When0.5, the CSl is unpredictable. It

is equivalent to the caseh&n the channel is unknown. O
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State Index] SNR Interval Packet Correct Probability;

0 [—o0, 1.26dB) 0

1 [1.26dB, 4.59dB) 0.0017

2 [4.59dB, 6.72dB) 0.2433

3 [6.72dB, 8.41dB) 0.8156

4 [8.41dB, 9.92dB) 0.9839

5 [9.92dB, 11.42dB) 0.9994

6 [11.42dB, 13.18dB 1.0

7 [13.18dB,0) 1.0

Table 1: FSMC states with=10dB
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