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Abstract

We consider binary (on/off) power control strategies for transferring a fixed size file (finite

number of packets) over fading channels under constraints on both transmit energy and trans-

mission delay. The goal is to maximize the probability of successfully transferring the entire

file over a time-varying wireless channel modeled as a finite state Markov process. We consider

two scenarios for the delay constraints: an average delay constraint and a strict delay constraint.

The resulting optimal policies are shown to be a function of the channel state information (CSI),

the residual battery energy at the transmitter and also the number of residual packets in the trans-

mit buffer. It is observed that the probability of successful file transfer increases significantly

when the CSI is exploited opportunistically.
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1 Introduction

With the development of personal communication services, portable terminals such as mobile tele-

phones and notebook computers are expected tobe used more frequently and for longer times.

Hence power consumption will become even moreimportant than it is now. One of the major con-

cerns in supporting such mobile applications is the energy conservation andmanagement in mobile

devices. There is considerable work on the energy saving approaches in the literature. These range

from energy management in communication devices to various layers of the protocol stack by intel-

ligently using knowledge about the traffic, the channel and the network. For example, from network

architecture design [1] to software strategies [2], from media access and logical link control proto-

cols [3] to data compression and source coding [4],various sorts of energy efficient strategies have

been discussed.

In second generation wireless communication networks, power control is mainly intended to

provide each user an acceptable connection by eliminating unnecessary interference in the pre-

dominantly voice only network [5]. In next generation wireless systems, satisfying the Quality-of-

Service (QoS) requirements of heterogeneous services is more complicated. There has been recent

work on exploring both adaptive link level and system level strategies for wireless communication

over fading channels. Reference [6] gives an overview of the coding and modulation schemes un-

der power constraints. Reference [7] analyzes the information-theoretic limits of fading channels

from a single-user system point of view. A packet traffic scheduling problem is described by Collins

and Cruz in [8], with a delay constraint, wherean optimal policy is found to minimize the average

transmit power.

All of the above works discuss the energy conservation control problem by assuming there is

an infinite supply of information to be transferred. In this work, however, we analyze the power

control problem in transferring a finite-size data file under a total energy constraint as well as de-

lay constraints. In this paper the channel model considered is that of a slow fading channel. Two

performance metrics are taken into consideration:
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• Probability of Success: the probability of successfully transferring the entire file within the

given energy budget.

• File Transfer Delay: the total time spent in transferring the file.

In this work, to simplify the problem, we allow only two transmit power levels: a constant power

or zero power (i.e., no transmission). A randomized power control scheme is discussed, i.e., the

transmitter can select either power level with a certain probability. The power control problem is

(given the total energy and the file size) to find the optimal policy that maximizes the probability of

success under either an average delay constraint or a strict delay constraint. The paper is organized

as follows. Section 2 reviews the channel model. The communication system model is described

in section 3. In section 4 and 5, we present results for the average delay constrained problem and

the strict delay constrained problem, respectively.

2 Finite State Markov Channel (FSMC) Model

In many wireless communication situations, changes in the propagation environment occur on a

very slow time scale with respect to the signaling rate. Thus, in high rate packet data systems, it is

reasonable to assume that the channel symbols in onepacket experience the same “channel state”.

Thus the channel state is randombut constant over one packet duration. For such a slow fading

channel, we assume that, the received signal-to-noise ratio (SNR) remains at a constant level for

the entire packet duration. Therefore, in each packet duration�t, the channel can be modeled as

an AWGN channel, i.e.,

y =
√

hx + n (1)

wherex andy are input and output signals respectively.n is the AWGN noise, andh is the fading

attenuation factor. For the Rayleigh fading channel,h is distributed exponentially with probability

density functionfh(x) = 1
h̄

exp{−x
h̄
} for x ≥ 0. If the power of the background noise is normal-
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ized to 1,h characterizes the average received SNR. In this work, we assume that the packet rate is

constant and the packet duration�t is given as�t
�
= 1

Rp
, whereRp is the packet rate.

A Markov channel model can be built to characterize the time-varying behavior of the Rayleigh

fading channel as follows [9]. Select a sequence of fading thresholds:0 = h(0) < h(1) < · · · <

h(K) = ∞, by which we partitionh into a finite number of SNR intervals. Then the channel is said

to be in states(k) if h ∈ [h(k), h(k+1)), k = 0, 1, · · · , K − 1. The steady state probabilities of the

channel state are given by

qk =
∫ h(k+1)

h(k)
fh(x) dx, k = 0, 1, · · · , K − 1 (2)

where we assume that the transitions occur only into neighboring (or same) states and the channel

stays in each state for a specified packet duration�t. As in [9], the transition probabilities are

approximated by the ratio of the expected number of level crossings of the state SNR boundary to

the average number of blocks per second in that state. They are given by

pk,k+1 =
Γ(h(k+1))

qkRp

, k = 0, · · · , K − 2 pk,k−1 =
Γ(h(k))

qkRp

, k = 1, · · · , K − 1. (3)

wherepi,j is the state transition probability froms(i) to s(j). Rp is the block rate andΓ(·) is the

expected number of level crossings [10] given asΓ(x) =
√

2πx
h̄

fd exp{−x
h̄
}, wherefd is the max-

imum Doppler frequency defined asfd = v
λ

with v being the speed of the vehicle andλ being the

wavelength. This fading channel model is verified to be precise when the fading process is slow

(i.e., the transition probabilitypi,j � 1) [9].

Given a channel states(k), considering a fixed size data packet, we assume that the probability

of correct reception of the packet isµk and it is monotonically increasing in the channel states. For

a given modulation scheme and packet size, we evaluateµk as a function of the average SNR in that

state. We now present in the following howµk is evaluated for the example of BPSK modulation.

Let B denote the packet size in the number of bits. Given the received SNRh, the probability of

correct reception of one packet is given as
[
1 −Q(

√
2h)

]B
, whereQ(x) = 1√

2π

∫ ∞
x e−

t2

2 dt. In the
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above we have assumed that a packetis successfully transferred only if all the bits in it are correctly

received since no channel coding is employed here. Hence, in states(k), the probability of correct

reception of one packet can be obtained by averaging over the corresponding channel state interval1:

µk =
1

qk

∫ h(k+1)

h(k)

[
1 − Q(

√
2h)

]B
fh(x) dx k = 0, · · · , K − 1 (4)

3 System Model

The system model is shown in Figure 1. The size of the data file isL packets and the total energy

budget is given asE Joules. Consider a time-slotted system where one time slot corresponds to the

constant packet duration (�t). By storing all theL packets in a buffer temporarily, the transmitter

tries to transfer the data packets consecutively through a wireless link. In each time slot,[ti, ti+1),

i = 0, 1, · · · , one packet can be transmitted with a certain transmit powerPi. As far as the ARQ

(Automatic Repeat Request) mechanism [11] is concerned, the simplest “stop and wait” scheme

is used here to overcome transmission errors. We also assume there is an instantaneous error-free

feedback channel that informs the transmitter of the reception status (”success” or ”failure”). Upon

the immediate notification of a packet reception failure, the mobile will arrange to re-send the same

packet until it is correctly received. Note that there may be a feedback delay in notifying the trans-

mitter of the CSI. In Figure 1,DC = 0 denotes that the transmitter has the perfect CSI of the current

slot before transmission.DC = n implies that the transmitter only knows the CSI fromn slots be-

fore. Further, letDC = ∞ denote the case that the transmitter has no CSI. In this work, we will

show that the system performance can be improved significantly by exploiting the CSI in compar-

ison with the transmission strategy without using CSI. Hence, we will focus on the analysis in the

scenarios withDC < ∞ in the remainder of this paper. Before we formulate the power control

problem, we present the following preliminaries

1Here, we assume that the total transmission time is long enough such that in any channel state, the SNR process
h(t) is ergodic.
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Definition 1 LetE1 denote the event that allL packets are successfully transmitted within the en-

ergy budget ofE Joules and letE0 denote the event that some of theL packets are not transferred

correctly when the communication is terminated, i.e.,

E1
�
= “File transfer success” and E0

�
= “File transfer failure” .

Note that eventE0 occurs when there is neither enough energy nor enough time to transmit the

residual packets in the buffer. We assume the communication will be terminated once we find that

it is impossible to transmit all the residual packets with the residual energy or in the remaining time.

Hence, we define the communication window as follows:

Definition 2 The communication window of the file transfer (denoted byN) is defined as the time

duration from the starting time point to the time point when either eventE1 or E0 occurs.

N can be used to characterize the file transfer delay. Note thatN is a random variable which varies

with the channel as well as the energy constraint. At each time instantti, i = 0, 1, · · · , N − 1, we

will determine the transmit powerPi based on the current system state. To simplify the mathemati-

cal analysis in this work, we only admit two power levels for the transmit power:Pi = P whereP

is a fixed power; andPi=0. If Pi = P , the transmitter attempts to transmit with powerP . If Pi = 0,

the transmitter remains silent for one packet slot. The transmission action is defined as follows:

Definition 3 At time instantti, for i = 0, 1, · · · , N − 1, let “ai = λ” ( 0 ≤ λ ≤ 1) denote the

following randomized transmission action:

Pi =




P, with probabilityλ

0, with probability1 − λ
(5)

Further, we assume that the energy consumed for one packet transmission is�E Joules, where

�E = P · �t. Without loss of generality, we assume the total energy budgetE is an integer

multiple of�E, i.e.,E = ME · �E for some integerME. Then we define the system state space

as below.
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Definition 4 The system state spaceS �
= {v = (s, e, l)}, wheres ∈ {s(0), s(1), · · · , s(K−1)} is

the CSI,e ∈ {0,�E, · · · , ME�E} is the residual energy in Joules, andl ∈ {0, 1, · · · , L} is the

number of residual packets in the buffer.

The initial statev0 = (s, E, L). Note that the CSI ”s” is the obtained channel state information

from n slots before ifDC = n. If applying a transmission action, the state transition probabilities

between any two statesv = (s(k), e, l) andw = (s(k′), e′, l′) are given bypvw(a) = Prob{w|v, a}.

It follows

pvw(a = λ) =




(1 − λ) · pkk′, e′ = e, l′ = l

λ · pk,k′µ̃k, e′ = e −�E, l′ = l − 1, for e > �E andl > 0

λ · pk,k′(1 − µ̃k), e′ = e −�E, l′ = l, for e > �E andl > 0

0, otherwise
(6)

where all the probabilitiespk,k′ are the transition probabilities given by equation (3) andµ̃k is prob-

ability of correct reception of one packet when the CSI iss(k). Since the CSI depends onDC , we

can writeµ̃k = µk for DC = 0, or µ̃k =
K−1∑
j=0

p(n)
kj µj for DC = n > 0, wherep(n)

k,j is then-step

channel state transition probability andµk being the correct probability of packet reception in (4).

Then-step transition probability of the channel states can be derived from the one-step transition

probabilities given in equation (3).

Definition 5 The sequence of transmission actions in the communication window is called a trans-

mission policyπ, i.e.,π = (a0, a1, · · · , ai · · · , aN−1).

Note that if the probabilityλ is either 1 or 0 for all the actions in a policy, this policy is called a

deterministicpolicy. In other words, only two actions are allowed:ai = 1 which denotesPi = P

with probability 1, andai = 0 which representsPi = 0 with probability 1. Further, if all the actions

are independent of the system timeti, the transmission policy is called astationarypolicy. Given

a transmission policyπ, the probability of successful file transfer is denoted as

R(π) = Pr {E1 | π} (7)
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For anyπ, it follows thatR(π) = 0, if ME < L. To avoid this degenerate situation, in this paper,

we assume that at the initial timet0, there is enough energy to transfer the entire file, i.e.,ME ≥ L.

4 Power Control with Average Delay Constraints

The goal is to find the optimal power control policy that maximizes the probability of successful

file transfer while guaranteeing that the averagecommunication window is less than a pre-specified

value. To formulate this problem mathematically, we need to define the following sets.

Definition 6 At initial timet0, the system is on any channel state with residual energyE Joules and

L remaining packets in the buffer. The initial state set is given asU0 = {(s, E, L) | s = s(k), k =

0, 1, · · · , K−1}. At timetN , the communication is terminated. LetUe denote the set of final states

that correspond to the situation that there is not enough energy for transmitting the residual packets,

i.e.,Ue = {(s, e, l) | e < l�E }. LetUl denote the set of final states that correspond to the situation

that all the packets have been transmitted correctly, i.e.,Ul = {(s, e, l) | l = 0 }.

Note that whenDC = n > 0, the transmission starts at timet0 and the CSI at timet−n is assumed

to be known by the transmitter. If the system state attN belongs toUl, the file transfer has been

completed successfully. If the final state is inUe, then the file transfer has failed. Hence, it follows

that the eventsE1 andE0 can be represented in terms of the final statevN asE1 ⇐⇒ vN ∈ Ul

andE0 ⇐⇒ vN ∈ Ue. Given a transmission policyπ, the probability of successful file transfer is

given as

R(π) = EU0{R(π,v0)} (8)

whereR(π,v0) = Prob{vN ∈ Ul} if starting fromv0 andEU0 denotes the expectation over the set

of initial statesU0. The average value of the communication windowN is given as

Navg(π) = EU0{Navg(π,v0)} (9)
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whereNavg(π,v0) = Eπ
v{N(π,v0)}. Eπ

v is the expectation over the system statev when using

policy π, andN(π,v0) denotes the corresponding window size.

Note thatNavg(π) andR(π) are two conflicting performance metrics. To increase the probabil-

ity of success, the transmitter will wait for some high SNR channel states for transmission, which

lowers the retransmission probability at the expense of increased delay. On the contrary, to decrease

the delay, the transmitter can transmit as soon as possible regardless of the channel states, which

certainly lowers the probability of success. Thenwe define two extreme policies as follows.

Definition 7 For a finite channel state model withs(k), k = 0, 1, · · · , K − 1, assumes(K−1) is the

best state, i.e.,µK−1 > µk, k = 0, 1, · · · , K − 2 and the steady state probability of every state

qk > 0, k = 0, 1, · · · , K − 1. Policyπs is defined as

a(v = (s, e)) =




λ, s = s(k∗) andv /∈ Ul ∪ Ue;

0, otherwise.
(10)

whereλ > 0. k∗ = K − 1 for DC = 0, or k∗ = arg max
k

{p(n)
k,K−1} for DC = n > 0 with p(n)

k,K−1

being the n-step channel state transition probability.

WhenDC = 0, πs is such a policy that the transmitter chooses to transmit with powerP only on the

best state; otherwise, the transmitter remains silent and waits. ForDC = n > 0, πs is such a policy

where the transmitter chooses to transmit on the state which has the highest transition probability

to the best channel state aftern successive transitions.

Definition 8 Policyπd is defined as

a(v) =




1, v /∈ Ul ∪ Ue;

0, otherwise.
(11)

πd is the policy where the transmitter chooses to transmit on every channel state. We now state the

following claim.
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Claim 1

πs = arg max
π

R(π); and πd = arg min
π

Navg(π). (12)

The above claim is fairly intuitive and straightforward to prove and a formal proof is omitted here.

We instead focus on the qualitative implications of the Claim in the following. Note that the maxi-

mization in the 1st equation in Claim 1 has no delay constraint and the policyπs waits for either the

best channel state (whenDc = 0) or the best CSIk∗ (whenDC = n > 0). As a result, the resulting

R(πs) is independent of the value of probabilityλ > 0. Instead,λ only affects the communication

time for completion of the file transfer. Considering the 2nd equation, transmitting everywhere is

the fastest strategy to transmit all the packets or to exhaust all the energy. Henceπd results in the

smallest average communication window. These two policies give two extreme solutions in the

tradeoff between the probability of success and the file transfer time. In practice, for some delay

sensitive services, we would like to maximize the probability of success while keeping the average

delay below an acceptable range. The mathematical formulation of the average delay constrained

problem is given as

Problem A: Given a certainDC < ∞,

max
π

R(π) subject to Navg(π) ≤ ND (A)

The delay constraintND has to satisfyND ≥ Navg(πd). Otherwise, Problem A has no solution. In

order to solve Problem A, we will take the approach of solving its Lagrangian dual problem (see

[12], p. 176). The Lagrangiandual problem can be written as:

Problem A’

min
β≥0

{
max

π

[
R(π) − βNavg(π)

]
+ βND

}
(13)

Theorem 1 Problem A’ has the same solution as Problem A.
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The proof is given in Appendix A. In addition, the following corollary can be inferred to illustrate

qualitative properties of the optimal solution.

Corollary 1 Letπ∗ denote a solution of Problem A. We have

R(π∗) =




0, ND < D1;

R1 + R2−R1

D2−D1
(ND − D1), D1 ≤ ND < D2

R2, ND ≥ D2

(14)

whereD1 = Navg(πd), D2 = Navg(πs), R1 = R(πd) andR2 = R(πs). Further the delay constraint

shall be met with equality, i.e.,Navg(π
∗) = ND.

The above corollary shows that the probability of success increases as the delay constraint is relaxed

and it is proved in Appendix B.

Note that Problem A’ can be formulated into a constrained Markov decision problem (MDP)

and solved by an infinite horizon dynamic programming (DP) approach [13,14] (Appendix C). The

achieved optimal transmission policy is stationary and is only a function of the channel state, the

residual energy level and the number of remaining packets in the buffer.

4.1 Numerical Results

In real file transfer systems, deterministic policies are generally employed. As an illustration, we

use deterministic policies in the following numerical examples (i.e.,a = 1 or a = 0). Consider

a FSMC model withK = 8 channel states by partitioning the channel into SNR intervals with

identical steady state probabilities. The corresponding SNR intervals and the probability of correct

reception of one packet are shown in Table 1. Assume the transmission bit rate is 2 Mbps, the file

size is 10 Kbits, and the frame size is 500 bits. Then we have�t=0.25 ms andL=20. The energy

budget is assumed to beME=50 and the maximum Doppler frequencyfd is 75 Hz.

Assume the transmitter knows the perfect CSI (DC = 0) and the average delay constraintND=45

slots. Figure 2(a) and Figure 2(b) show 2 slices of the optimal policy whenl = 18 andl = 5, re-

spectively. The shaded regions signifya = 1 (i.e., to transmit one packet with probability 1) and the



12

white regions representa = 0 (i.e., to remain silent with probability 1). Note that when the residual

energy is not enough to transmit the residual packets (i.e., the region withe < l�E), the commu-

nication will be terminated (as shown in figures bya = 0 as well). By observing the numerical

results, we find that, at any instant, if there is more residual energy or less packets in the buffer, the

optimal policy is less selective (i.e., the transmitter can transmit on some low SNR channel states

as well). This is because the looser constraints result in a less selective transmission strategy. A

similar behavior (not shown here) is observed withDC > 0 when the fading process is slow (i.e.,

the transition probability of channel statepij � 1).

Figure 3 shows the minimum probability of failure1−R(π∗) corresponding to different values

of DC varying with the Doppler frequencyfd. The curve labeled withDC = ∞ corresponds to the

channel-independent policy. When the CSI is unavailable, the probabilityof success is independent

of the residual energy and packets. Thus, the ”always transmit” policy (i.e., choosea = 1 on any

state) is used here for the case ofDC = ∞. For all other cases withDC < ∞, the optimal policy

π∗ is channel dependent. It is found that the probability of success increases significantly whenDC

decreases.

WhenDC = 0, it is observed that the maximum probability of success increases monotoni-

cally with the Doppler frequency. Since the fasterfading (i.e. higher Doppler frequency) causes

higher transition probabilities between channel states, it implies that the system may visit the high

SNR states more frequently. Though it also increases the probability of visiting low SNR states,

the transmitter does not transmit on those states according to the optimal policy shown in Figure

2. Therefore, under constraints on both energy anddelay, the increase of transition probability re-

sults in a higher probability of success. It suggests that the channel variation can benefit the system

when using a channel dependent transmission strategy. However, whenDC > 0, it is not always

true. This is because there is a tradeoff between exploiting the channel variation and estimating the

channel precisely. Since the FSMC model is validonly for slow fading situations, this phenomenon

cannot be observed clearly in the given numericalresults. We present a more detailed discussion

of this tradeoff in Appendix D.
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5 Power Control with Strict Delay Constraints

The goal is to find the optimal binary power control policy that maximizes the probability of suc-

cessful file transfer when the communication window is strictly constrained to beN ≤ ND. For

any given transmission policyπ, R(π) = Prob{E1 | π} = 0, if ND < L. To avoid this degenerate

case, we assume the delay constraintND ≥ L. The problem can be formally stated as

Problem B: Given a certainDC < ∞,

max
π

R(π) subject to N(π) ≤ ND (B)

Besides the sets of final statesUl andUe in Definition 6, we now introduce for this scenario an

additional set of final states.

Definition 9 Let Ut denote the set of final states that correspond to the situation that there is not

enough time for transmitting the residual packets, i.e.,Ut = {vi = (s, e, l) |ND − i < l}, wherei

is time index.

We have the relationship between the eventsE0, E1 and the sets of final states asE1 ⇐⇒ vN ∈ Ul

andE0 ⇐⇒ vN ∈ Ue ∪ Ut. GivenND, the definition of the probability of success is

R(π∗) = EU0{R(π∗,v0)} (15)

whereR(π,v0) = Prob{vN ∈ Ul | π,v0}. Problem B can be formulated into a Markov decision

problem and solved by a finite horizon DP algorithm (Appendix C). The achieved optimal trans-

mission policy is non-stationary, which means theoptimal decision rules depend both on the state

information and on the time indexi.

5.1 Numerical Results

As an illustration, we consider the same FSMC model considered before (in Table 1), and choose

�t=0.25ms,fd=100Hz andND=100. ForDC = 0 andND = 100, Figures 4(a) and 4(b) depict
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the snapshots of optimal policies at timei = 0 andi = 82. Wheni = 0, the system has a commu-

nication window of 100 slots. Thus it can afford to wait for possible future better channel states.

Therefore, wheni = 0, the optimal action is to transmitonly when the channel is good enough.

However, wheni = 82 and there are still 18 packets in the buffer, the optimal policy stipulates

transmission everywhere in order to try to sendthe residual 18 packets during the remaining 18

time slots. In other words, the optimal policy gets less selective (almost desperate in this example)

as the residual communication window shrinks.

Figure 5 shows the minimum probability of failure1−R(π∗) varying withfd. The curve labeled

with DC = ∞ corresponds to the case using the channel independent policy. WhenND = 100,

there is not much difference betweenDC = 0, 1 and 2. WhenND = 500, it is apparent that the

probability of success reaches its highest value withDC = 0. For the same reasons discussed in

the previous section,R(π∗) for DC = 0 is found to be increasing asfd increases.

6 Conclusion

In this paper, we considered a finite-size data file transfer problem over a fading channel. Ran-

domized binary power control policies were employed with a total energy budget. The goal was to

maximize the probability of successfully transferring the entire file under either an average delay

constraint or a strict delay constraint. The results show that exploiting the channel state information

opportunistically can substantially increase the probability of successful file transfer. Extensions to

multilevel (continuous) power control yield qualitatively similar results but a detailed analysis and

description is a topic of future study.

A Proof of Theorem 1

If R(π) is a concave function of the policyπ andNavg(π) is a convex function ofπ, then by the

strong duality theorem (see [12], p. 183), ProblemA’ will have the same solution as Problem A.

Therefore, the remainder of this proof is to show the concavity ofR(π) and the convexity ofNavg(π).
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We first present the following preliminaries.

Definition 10 Given a policyπ, assume the transmitter is on statevi at timeti. Then define the

residual communication windowM as the time duration fromti to the point in time when either

eventE1 or E0 occurs.

Lemma 1 For ∀π and any statevi at timei, we have

R(π,vi) =
∑
vi+1

pvivi+1(ai)R(π,vi+1); (16)

R(π,u) = 0 ∀u ∈ Ue; R(π,u) = 1 ∀u ∈ Ul; (17)

LetPr(M = m | π,vi) denote the distribution of the residual communication window. Then it fol-

lows that

Pr(M = m | π,vi) =
∑
vi+1

pvivi+1(ai) Pr(M = m − 1 | π,vi+1); (18)

Pr(M = 0 | π,u) = 1 ∀u ∈ Ue ∪ Ul; R(M = 0 | π,u) = 0 ∀u /∈ Ue ∪ Ul; (19)

Proof: Consider eventsA = {vN ∈ Ul |vi} andB={ vN ∈ Ul |vi+1}. It follows that

R(π,vi) =
∑
B

Prob{A|B} · Prob{B} =
∑
vi+1

Prob{A|B}R(π,vi+1) (20)

Prob{A|B} is equal to the probability of transition fromvi to vi+1 under policyπ, i.e., actionai.

Thus Prob{A|B} = pvivi+1(ai) and equation (16) follows. Equation (17) follows trivially from the

definitions of the setsUe andUl, respectively. Equations (18) and (19) can be proved by following

similar arguments. �

Let π1 andπ2 be two policies such that on each statev, a(v) = λ(1)(v) anda(v) = λ(2)(v)

respectively, i.e.,π1 = (λ
(1)
0 , λ

(1)
1 , · · · ) andπ2 = (λ

(2)
0 , λ

(2)
1 , · · · ). Then we define a new policyπ0

such thatai = γλ
(1)
i +(1−γ)λ

(2)
i for anyγ ∈ [0, 1]. Consider anyv0 ∈ U0. According to Lemma 1,
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R(π0,v0) can be expanded as follows.

R(π0,v0) =
∑
v1

pv0v1(a0)
∑
v2

pv1v2(a1) · · ·
∑
vN

pvN−1vN
(aN−1)R(π0,vN) (21)

wherevN is assumed to be in final state setUe ∪ Ul. Equation (17) shows thatR(π0,vN) depends

only on the final statevN and does not depend on the policyπ0, i.e.,R(π0,vN) = R(π1,vN) =

R(π2,vN). Further, observing that the transition probabilitypvw(ai) in equation (6) is linear in the

actiona, it follows that

pvw(ai) = pvw(γλ
(1)
i + (1 − γ)(λ

(2)
i )) = γpvw(λ

(1)
i ) + (1 − γ)pvw(λ

(2)
i ) (22)

Using (22) and replacingR(π0,vN) by R(π1,vN) andR(π2,vN), the probability of success ob-

tained by applyingπ0 in (21) can be rewritten as

R(π0,v0) =
∑
v1

pv0v1(a0)
∑
v2

pv1v2(a1) · · ·
∑
vN

[
γpvN−1vN

(λ
(1)
N−1)R(π1,vN)

+(1 − γ)pvN−1vN
(λ

(2)
N−1)R(π2,vN)

]
(∗)
= γR(π1,v0) + (1 − γ)R(π2,v0) (23)

Step (*) is obtained by applying equation (16) backwards fromi = N − 1 to i = 0. Therefore,

R(π0) = γR(π1) + (1 − γ)R(π2). Similarly, we have

Prob{N = m | π0} = γ Prob{N = m | π1} + (1 − γ) Prob{N = m | π2}. (24)

Then,Navg(π0) = γNavg(π1) + (1 − γ)Navg(π2). Hence, the concavity ofR(π) and convexity of

Navg(π) are proved. In fact,R(π) andNavg(π) are linear functions ofπ. �

B Proof of Corollary 1

Define the setG asG = {(x, y) : x = Navg(π), y = R(π), ∀π}. Due to the linearity ofR(π) and

Navg(π), any point on the line segment joining any two points(R(π1), Navg(π1)) and(R(π2), Navg(π2))

also belongs toG (as shown in Figure 6) because a corresponding policyπ0 can be found. Thus,
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G is convex. From Claim 1, it is clear that the policiesπs andπd are at the extremes of the set

of all policies. As shown in Figure 6,D1 (=Navg(πd)) gives the minimum average delay that can

be achieved for all policies. Ifthe average delay constraintND is less thanD1, the probability of

success is zero because no admissible policy can be found. Further,R2 (=R(πs)) is the maximum

probability of success that can be achieved. IfND is bigger thanD2 (=Navg(πs)), πs is the solution

andR2 can be obtained. WhenND is betweenD1 andD2, the boundary of the setG is linear and

is given as

R1 +
R2 − R1

D2 − D1
(ND − D1) D1 ≤ ND < D2 (25)

This boundary also gives the maximum achievable probability of success whenD1 ≤ ND < D2.

From Figure 6, it is seen thatR(π∗) is a continuous non-decreasing function ofND. Therefore,

Navg(π
∗) = ND. �

C Solution Methodology for Problem A’ and Problem B

Problem A’

Note that Problem A’ can be rewritten into two subproblems as follows.

min
β≥0

{fp(β) + βND}, β ≥ 0 (26)

fp(β) = max
π

{R(π) − βNavg(π)} (27)

The above two problems together form a constrained MDP. In particular the problem in (27) can be

solved via an infinite horizon DP algorithm and the problem in (26) can be solved using any standard

search technique. The two optimization problems are iteratively solved until convergence [14]. In

order to introduce the DP algorithm to solve problem in (27), we need the following preliminaries.
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Let us define a functionr(v) such that

r(v) =




1, v ∈ Ul;

0, otherwise.
(28)

Theorem 2 Assuming that the communication window isN under policyπ, the probability of suc-

cessful file transfer from initial statev0 is

R(π,v0) = Eπ
v

{
N−1∑
i=0

r(vi)

}
(29)

Proof: Since the communication window isN , it implies thatvN ∈ Ue or vN ∈ Ul, andvi /∈ Ul

for i = 0, 1, · · · , N − 1. By the definition ofr(v), r(vi) = 0 for i = 0, 1, · · · , N − 1. We can now

write the expectation in equation (29) (actually the conditional probability of success from initial

satev0) as a sequential sum of conditional expectations. It follows that

Eπ
v

{
N−1∑
i=0

r(vi)

}
= r(v0) +

∑
v1

{
pv0v1(a0) · Eπ

v|v1

[
N−1∑
i=1

r(vi)

]}

=
∑
v1

pv0v1(a0)
∑
v2

pv1v2(a1) · · ·
∑
vN

pvN−1vN
(aN−1)r(vN)

(∗)
=

∑
v1

pv0v1(a0)
∑
v2

pv1v2(a1) · · ·
∑
vN

pvN−1vN
(aN−1)R(π,vN) = R(π,v0)

Step (*) follows becauser(vN) = R(π,vN) according to the definition ofr(v) and from (17). �

To calculate the average value of the communication windowN , we define a one stage delay

cost as follows.

cd(v) =




1, v /∈ Ul ∪ Ue

0, v ∈ Ul ∪ Ue

(30)

The above definition imposes a unit delay cost on every interval until the communication is termi-

nated. Once the final state is inUl∪Ue, which means the communication has been terminated, then

we do not count the delay cost any more. Then we can rewrite

Navg(π,v0) = Eπ
v

{ ∞∑
i=0

cd (vi)

}
(31)
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From equations (29) and (31), we can definefp(v0, β) as

fp(v0, β)
�
= max

π

{
Eπ

v

{ ∞∑
i=0

[
r(vi) − cd (vi)

]}}
(32)

wherev0 denotes the initial state. Note thatfp(β) = EU0{fp(β,v0)}. The problem defined in (32)

can be solved using a standard DP algorithm [13].

Problem B

The probability of success can be written as

R(π,v0) = Eπ
v




ND∑
i=0

r(vi)


 (33)

which can be solved by a finite horizon DP algorithm [13]. �

D Tradeoff between Channel Variation and Estimation

In both sections 4 and 5, we pointed out that the maximum probability of successR(π∗) monoton-

ically increases with the Doppler frequencyfd when the CSI feedback delayDC = 0. However,

whenDC > 0, this is not always true. We show this using the following illustrative example. De-

fine only two channel states,s(0) ands(1). Assume that the transition probability between these two

statesp01, p10 are equal, i.e.,p01 = p10 = α. Note that the channel variation is characterized byα.

The channel fluctuates faster with biggerα. If α = 0.5, the CSI is memoryless. Consider a strict

delay constrained problem withE = 50 units andL = 20 packets. Assume the correct probabilities

of packet reception areµ0 = 0.2 andµ1 = 0.8. Figure 7 shows the probability of failure1−R(π∗)

varying with the transition probabilityα.

Whenα = 0, it means that the channel is invariant. Irrespective of whether the CSI is known

or not, the same probability of successR(π∗) will be obtained (DC = 0, 1,∞) because the channel

is time invariant. When the perfect channel state information is known (DC = 0), R(π∗) monoton-

ically increases withα since the optimal policy exploits the current CSI. However, whenDC > 0,
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there exists a tradeoff between exploiting the CSI and estimating the CSI. For slow fading chan-

nels,R(π∗) increases asα increases. It implies that it is accurate to estimate the current channel

state using the CSI fromDC slots before, when the fading process varies slowly. Thus, the optimal

policy can exploit the estimated CSI to achieve higherR(π∗). As the channel varies faster, on the

contrary,R(π∗) decreases asα increases. This is because now it is difficult to exploit the CSI based

on the inaccurate estimation due to the fast variation. Whenα = 0.5, the CSI is unpredictable. It

is equivalent to the case when the channel is unknown. �
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Figure 1: System Diagram

State Index SNR Interval Packet Correct Probabilityµk

0 [−∞, 1.26dB) 0
1 [1.26dB, 4.59dB) 0.0017
2 [4.59dB, 6.72dB) 0.2433
3 [6.72dB, 8.41dB) 0.8156
4 [8.41dB, 9.92dB) 0.9839
5 [9.92dB, 11.42dB) 0.9994
6 [11.42dB, 13.18dB) 1.0
7 [13.18dB,∞) 1.0

Table 1: FSMC states with̄h=10dB
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Figure 2: Optimal Policy with Average Delay Constraints
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Figure 3: Probability of Success vs. Doppler Frequency
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Figure 4: Optimal Policy with Strict Delay Constraints
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Figure 5: Probability of Success vs. Doppler Frequency
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