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On the Sum-Capacity of Degraded Gaussian
Multiple-Access Relay Channels
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Abstract—The sum-capacity is studied for a �-user physically
degraded Gaussian multiple-access relay channel (MARC). De-
code-and-forward (DF) is shown to achieve the sum-capacity and
capacity region for a subclass of degraded Gaussian MARCs in
which the multiple-access link from the sources to the relay is
the bottleneck link. For the remaining subclass, DF is shown to
achieve the�-user sum-capacity when the sources are symmetric,
i.e., they transmit with the same transmit power. The optimality
of DF is conjectured for the case of asymmetric sources.

Index Terms—Gaussian and degraded Gaussian MARC, mul-
tiple-access relay channel (MARC), polymatroids, sum-capacity.

I. INTRODUCTION

T HE multiple-access relay channel (MARC) is a network in
which several users (sources) communicate with a single

destination in the presence of a relay [1]. The coding strategies
developed for the relay channel [2], [3] extend readily to the
MARC [4], [5]. For example, the strategy of [3, Theorem 1],
now often called decode-and-forward (DF), has a relay that de-
codes user messages before forwarding them to the destination
[4], [5]. Similarly, the strategy in [3, Theorem 6], now often
called compress-and-forward (CF), has the relay quantize its
output symbols and transmit the resulting quantized bits to the
destination [5].

Capacity results for relay channels are known only for a few
special cases such as the class of degraded relay channels [3]
and its multirelay generalization [6], [7], the class of semi-deter-
ministic relay channels [8], the class of orthogonal relay chan-
nels [9], [10], the class of Gaussian relay without delay channels
[11], [12], and the class of ergodic phase-fading relay channels
[4].

For the class of physically degraded relay channels, the de-
gradedness condition requires that the received signal at the des-
tination be independent of the source signal when conditioned
on the transmit and receive signals at the relay. For the Gaussian
case, this simplifies to the requirement that the signal received at
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the destination be a sum of the signal at the relay and an indepen-
dent additive white Gaussian noise component, conditioned on
the transmitted signal at the relay. This condition immediately
suggests that requiring the relay to decode the source signals
should be optimal. In fact, for this class, applying this degrad-
edness condition simplifies the cut-set outer bounds to coincide
with the DF bounds.

We define a -user physically degraded (henceforth referred
to simply as degraded) Gaussian MARC as one where the
multiple-access signal received at the destination from the
sources and relay is a sum of the received signal at the relay
from all sources and an independent additive white Gaussian
noise signal, conditioned on the transmit signal at the relay. For
this channel, we develop the DF rate region as an inner bound
on the capacity region using Gaussian signaling at the sources
and relay.

We obtain outer bounds on the capacity region of the de-
graded Gaussian MARC by specializing the cut-set bounds of
[13, Theorem 14.10.1] to the case of independent sources [14]
and by applying the degradedness condition. Applying the phys-
ically degradedness condition to the cutset outer bounds, how-
ever, does not simplify the bounds to those achieved by DF. In
fact, the inner and outer bounds differ in their input distributions
as well as the rate bounds.

Our motivation in developing the -user sum-capacity for
this channel stems from the observation that if the physically
degraded destination can decode the signals from all sources, as
required of it, so can the relay, i.e., DF must be sum-capacity
optimal. To this end, we first show the optimality of Gaussian
signaling in the outer bounds. This in turn allows us to show
that both the inner (DF) and the outer bounds on the -user
sum-rate are functions of the correlation coefficients, one for
each source–relay signal pair. In fact, for appropriate choice of
the DF correlation coefficients, the inner and outer bounds on
the -user sum-rate (and only that) can be shown to be the
same.

This simplification, however, does not imply that DF is sum-
capacity optimal. This is due to the fact that for any choice of
input and output distributions, the inner and outer bound rate
regions are given by an intersection of two polymatroids, one
resulting from the multiple-access region at the relay and the
other from the multiple-access region at the destination.

Applying a single-known result in matroid theory on the in-
tersection of two polymatroids [15, Ch. 46], we show that the in-
tersection of two polymatroids can be classified as either an ac-
tive or an inactive case when the constraints on -user sum-rate
planes at the two receivers are active or not active in the final in-
tersection, respectively. Thus, we show that the sum-rate for the
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active cases is a minimum of the two -user sum-rates while
that for an inactive case is a sum of the rate-sums achieved
by a subset of users and its complement at the relay and des-
tination, respectively. Thus, for an active case, the inner and
outer bounds on the -user sum-rate are the same. However,
unlike the -user sum-rates, the outer bounds on the rate-sum
for any subset of users is at least as large as the inner bounds, and
thus, for an inactive case, the maximum inner and outer bound
sum-rate may not be the same.

Despite this, applying polymatroid theory allows us to
broadly classify the class of degraded Gaussian MARCs into
one of two disjoint subclasses. The first subclass is one in
which the relay-to-destination channel is a high-capacity link
such that the -user multiple-access link from the sources to
the relay becomes a bottleneck link. For this subclass, we show
that DF achieves the sum-capacity and the capacity region
when each source allocates all its power to transmitting its
signal to the relay, and thus, does not allocate any power to
cooperating with the relay to achieve coherent combining gains
at the destination.

The second subclass is the one in which the -user multiple-
access link from the sources to the relay is not a bottleneck link
as a result of which one or more sources cooperate with the relay
to enhance their sum-rate at the destination. For this subclass,
we can show that DF is optimal only if the source and relay
correlation coefficients that maximize the -user DF sum-rate
result in a polymatroid intersection that is an active case. While
we can precisely determine the sum-rate maximizing source and
relay correlation coefficients, referred to as max-min rules, it is
not straightforward to verify that there exists a max-min rule
that results in an active case.

For the second subclass, we show that DF is optimal when
the source powers are the same, i.e., for a symmetric degraded
Gaussian MARC in which the -user multiple-access link from
the sources to the relay is not a bottleneck link. The symmetry
allows us to prove that there exists a max-min rule that results
in an active case. Finally, we exploit the symmetric solution to
argue and conjecture that DF is sum-capacity optimal for any
channel belonging to the second subclass.

This paper is organized as follows. In Section II, we present
a model for a degraded Gaussian MARC and briefly overview
polymatroids and their intersections. We summarize our main
results in Section III and prove them in Sections IV, V, and VI.
We conclude in Section VII.

II. CHANNEL MODEL AND PRELIMINARIES

A -user degraded Gaussian MARC has user (source)
nodes, one relay node, and one destination node (see Fig. 1).
The sources emit the messages , , which are
statistically independent and take on values uniformly in the sets

. The channel is used times so that the rate of
is bits per channel use where

bits. In each use of the channel, the input to the channel from
source is while the relay’s input is . The channel outputs

and , respectively, at the relay and the destination are

(1)

Fig. 1. A two-user Gaussian degraded MARC.

(2)

(3)

where and are independent Gaussian random variables
with zero means and variances and , respectively, such
that the noise variance at the destination is

(4)

We assume that the relay operates in a full-duplex manner,
i.e., it can transmit and receive simultaneously in the same band-
width. Further, its input in each channel use is a causal
function of its outputs from previous channel uses. We write

for the set of sources, for
the set of transmitters, for the set of receivers,

for all , and to denote the
complement of in .

The transmitted signals from source and the relay have a
per-symbol power constraint

(5)

One can equivalently express the relationship between the input
and output signals in (3) as a Markov chain

(6)

For , (6) simplifies to the degradedness condition in
[3, eq. (10)] for the classic (single-source) relay channel. A de-
graded Gaussian MARC is symmetric if , for all . Thus,
the class of symmetric degraded Gaussian MARCs is character-
ized by four parameters, namely, and .

The capacity region is the closure of the set of rate
tuples for which the destination can, for
sufficiently large , decode the source messages with an
arbitrarily small positive error probability. As further nota-
tion, we write . We write and to denote
vectors whose entries are all zero and one, respectively, and

to denote the capacity of an additive
white Gaussian noise channel with signal-to-noise ratio (SNR)

. We use the usual notation for entropy and mutual information
[13], [16] and take all logarithms to the base so that in each
channel use our rate units are bits.
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A. Polymatroids

In the sequel, we use the properties of polymatroids to de-
velop the inner and outer bounds on the -user sum-rate. Poly-
matroids have been used to develop capacity characterizations
for a variety of multiple-access channel models including the
MARC (see, for example, [17]–[19]). We review the following
definition of a polymatroid.

Definition 1: Let and be
a set function. The polyhedron

for all

is a polymatroid if satisfies
1) (normalization)
2) if (monotonicity)
3) (submodularity).

Remark 1: The submodularity property in Definition 1 above
is equivalent to requiring, for all in with ,

, , that satisfies [15, Ch. 44]

This property is used in [20] to show that the rate regions
achieved at both the relay and the destination in a full-duplex
MARC are polymatroids.

We use the following lemma on polymatroid intersections
to develop optimal inner and outer bounds on the sum-rate for

-user orthogonal MARCs.

Lemma 1 ([15, p. 796, Corollary 46.1c]): Let
and , for all , be two polymatroids such
that and are nondecreasing submodular set functions on

with . Then

(7)

Lemma 1 states that the maximum sum of , for all de-
noted by , that results from the intersection of two polyma-
troids, and , is given by the minimum
of the two -variable planes and only if both
sums are at most as large as the sum of the orthogonal planes

and , for all . We refer to the re-
sulting intersection as an active case.

When there exists at least one for which the
above condition is not true, an inactive case is said to result.
For such cases, the maximum -variable sum in (7) is the sum
of two orthogonal rate planes achieved by two complementary
subsets of users. As a result, the -variable sum bounds
and are no longer active for this case, and thus, the region
of intersection is no longer a polymatroid with faces.

An inactive case results when

for an (8)

Thus, the condition in (8) for an inactive case precludes an ac-
tive case. Furthermore, the inactive cases are also mutually ex-
clusive. For a -user MARC, there are possible inactive
cases. An active case on the other hand satisfies the condition

for all
(9)

In Fig. 2, for two two-dimensional polymatroids, we illustrate
the five possible choices for from an intersection of

and . Cases and are inactive
cases while cases and are active cases. The sum-
rate is a minimum of the sum-rates at the two receivers for the
active cases , , and . For the inactive cases and , the
constraints on are no longer active and the sum-rate is
given by the bounds and ,
respectively.

III. MAIN RESULTS

We summarize our main results in this section. We begin with
the outer bounds.

A. Outer Bounds

In Section IV, for a MARC we present the cut-set outer
bounds specialized to the case of independent sources. We
further simplify the bounds for the degraded model and show
that Gaussian signaling at the sources and relay is optimal for a
Gaussian MARC. We define the cross-correlation between
the Gaussian input signals and at source and the relay,
respectively, as

for all (10)

such that

(11)

Let denote the vector of cross-correlation coefficients , for
all and

(12)

We write to denote a collec-
tion of cross-correlation vectors and let denote a vector
of nonnegative weights such that

(13)

The following theorem summarizes an outer bound on the ca-
pacity region of the degraded Gaussian MARC.

Theorem 1: The capacity region of a degraded
Gaussian MARC is contained in the region given as

(14)
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Fig. 2. Five possible intersections of � and � for a two-user Gaussian MARC.

where the rate regions , , are given by

(15)

The bounds and are given by

if

otherwise

(16)
and

(17)

where

(18)

Remark 2: For , the bounds in (16) and (17) simplify to
the first and second bound, respectively, for the degraded relay
channel in [3, Theorem 5].

Remark 3: In the expression for in (17), the
terms involving the cross-correlation coefficients quantify the
coherent combining gains that result from choosing correlated
source and relay signals. On the other hand, the expression
for in (16) quantifies the upper bounds on the rate
achievable at the relay when one or more source signals are
correlated with the transmitted signal at the relay.

B. Inner Bounds

The DF rate region is obtained using Gaussian signaling at
the sources and relay and a block Markov superposition code
[4, Appendix A] (see also [20]) . Let and denote vectors
with entries and , respectively, for all such that

(19)
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The following theorem summarizes the DF rate region.

Theorem 2: The DF rate region for a degraded Gaussian
MARC is

(20)

where the rate region , , is

for all (21)

The rate bounds and at the relay and destination, re-
spectively, are

and (22)

(23)

From Theorems 1 and 2, one can verify that the outer and
innner bounds on the -user sum-rate are identical by setting

for all . In the sequel, we show that the DF
bounds are concave functions of and for all , and thus,
so are the -user sum-rate outer bounds. Thus, maximizing
the -user DF sum-rate bound is equivalent to maximizing the

-user sum-rate outer bound. Note that the outer bound rate re-
gion in (14) requires time-sharing because with the exception of

, the bounds for all are in general not convex.
The following theorem summarizes our results on the ca-

pacity region and the sum-capacity of a -user degraded
Gaussian MARC.

Theorem 3: The capacity region of a -user de-
graded Gaussian MARC is

if

otherwise

where

for all (24)

The sum-capacity of a degraded Gaussian MARC is

if

(25)

if

and

is an active case, and (26)

otherwise (27)

where for

for all and (28)

(29)

such that is the unique solution of

given by

(30)

for

and (31)

we have

(32)

for

and for all (33)

For a symmetric degraded Gaussian MARC that satisfies the
condition in (26), DF achieves the sum-capacity

for

for all

Remark 4: In the sequel, for DF, we define the entries and
of and , respectively, for all as power fractions. In

fact, is the fraction of the total power that source allocates
to transmitting a new message in a block of channel uses. On
the other hand, the entry , for all is a fraction of its total
power that the relay allocates to cooperating with source .

Conjecture 1: DF achieves the sum-capacity of degraded
Gaussian MARCs.

IV. OUTER AND INNER BOUNDS: RATE REGION

A. Outer Bounds Rate Region

In this section, we present a proof of Theorem 1 in which an
outer bound on the capacity region of a degraded
Gaussian MARC is presented. To this end, we begin with an
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outer bound on the capacity region of a MARC which is pre-
sented in [14] using the cut-set bounds in [13, Theorem 14.10.1]
as applied to the case of independent sources. We summarize the
bounds below.

Proposition 1: The capacity region is contained in
the union of the set of rate tuples that satisfy,
for all ,

(34)

where is a time-sharing random variable and the union is over
all distributions that factor as

(35)

Remark 5: Thetime-sharing random variable ensures that
the region in (34) is convex. One can apply Caratheodory’s the-
orem [21] to this -dimensional convex region to bound the
cardinality of as .

Consider the outer bounds in Proposition 1. For a degraded
MARC applying the degradness definition in (6) simplifies
(34) as

for all (36)

for the same joint distribution in (35).
In Appendix I, we specialize the bounds in (36) for the

Gaussian degraded MARC. For a fixed , we show that the
outer bounds are maximized for Gaussian signaling at the
sources and the relay, i.e., for , for all , and

. The cross-correlation coefficient between
and is defined as , for all in (10). In Appendix I, we
show that , for all , satisfy (11).

For a given set of transmit powers, , we write
and to denote the first and second terms,

respectively, in (36), for every . In Appendix I, we prove
that and are given by (16) and (17), respec-
tively.

Proof of Theorem 1

From (12), we see that the set of all correlation vectors ,
denoted as , is a closed convex set. The bound in
(16), in general, is not a concave function of for any .
In Appendix III, for a fixed , we show that is a
concave function of . Using this we then show that
is a concave function of . In Appendix II, we show that for
all , in (17) is a concave function of .

The rate region enclosed by the outer bounds is ob-
tained as follows. From (36), (16), and (17), for any choice
of , the rate region is an intersection of the multiple-ac-
cess rate regions at the relay and destination, enclosed by the
bounds and , respectively, for all . Since

is not a concave function of , the region can be
enlarged by considering all possible convex combinations of

to obtain . For the -dimensional convex region ,
we apply Caratheodory’s theorem [21] to express every rate
tuple in as a convex combination of at
most rate tuples, where each rate tuple is obtained for a
specific choice of .

Thus, for every choice of a set of cross-correlation vec-
tors denoted as and a vector

of nonnegative weights satisfying (13), the rate re-
gions and are given by (15). Fi-
nally, the region is obtained as a union of
and over all choices of and is given
by (14) in Theorem 1 where we have used the fact that is
a convex region.

Lemma 2: The regions and
are polymatroids.

Proof: In [20], it is shown that for DF, the multiple-access
rate regions at the relay and destination are polymatroids.
One can use similar techniques to show that the regions

and are polymatroids and
we omit it in the interest of space. Note that for the optimal
Gaussian input distribution, this implies that
and are polymatroids for every choice of

.

The region in (14) is a union of the intersections of the
regions and , where the union is taken
over all convex combinations of . Since is convex, we
obtain the boundary of by maximizing the weighted sum

over all and for all . Specifically, we
determine the sum-rate when for all . The con-
vexity of also implies that every point on the boundary
of results from the intersection of the two polymatroids

and for some .

B. DF Rate Region

A DF code construction for a discrete memoryless MARC
using block Markov encoding and backward decoding is devel-
oped in [4, Appendix A] (see also [20]) and we extend it here
to the degraded Gaussian MARC. We first summarize the rate
region achieved by DF below.

Proposition 2: The DF rate region is the union of the set of
rate tuples that satisfy, for all

(37)
where is a time-sharing random variable, are
auxiliary random variables, and the union is over all distribu-
tions that factor as

(38)
Proof: See [20].

Remark 6: Thetime-sharing random variable ensures that
the region of Theorem 2 is convex.

Remark 7: The independent auxiliary random variables ,
, help the sources cooperate with the relay.
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Proof of Theorem 2

For the degraded Gaussian MARC, we employ the following
code construction. We generate zero-mean, unit variance, in-
dependent and identically distributed (i.i.d.) Gaussian random
variables , , and , for all , such that the channel
inputs from source and the relay are

(39)

(40)

where and are power fractions at source
and the relay, respectively, for all . The set of all vectors

with entries for all is given by (19). Sub-
stituting (39) and (40) in (37), for any , we obtain

for all
(41)

where and , the bounds at the relay and destination
respectively, are given by (22) and (23), respectively. From the
concavity of the function it follows that , for all , is
a concave function of . In Appendix II, we show that
is a concave function of and . The DF rate region, ,
achieved over all , where is a convex set, is then
given by Theorem 2.

Lemma 3: The rate region is convex.
Proof: To show that is convex, it suffices to show that
and , for all , are concave functions over the convex

set of . This is because the concavity of and ,
for all , ensures that a convex sum of two or more rate tuples in

, each corresponding to a different value of tuple,
also belongs to , i.e., satisfies (21) for .

Lemma 4: The rate regions and are polymatroids.
Proof: See [20, Sec. IV]. For the Gaussian input distribu-

tion in (39) and (40), this implies that and
are polymatroids for every choice of , i.e.,
and are completely defined by the corner (vertex)
points on their dominant -user sum-rate face [15, Ch. 44].

The region in (20) is a union of the intersection of the
regions and achieved at the relay and des-

tination, respectively, where the union is over all .
Since is convex, each point on the boundary of is ob-
tained by maximizing the weighted sum over all ,
and for all . Specifically, we seek to determine the op-
timal policy that maximizes the sum-rate when

for all . From (20), we see that every point on the
boundary of results from the intersection of the polyma-
troids and for some .

V. -USER SUM-RATE: OUTER AND INNER BOUNDS

In Section IV, we developed inner DF and outer bounds on
the rate region of a degraded Gaussian MARC. Comparing the
two bounds, we make the following observations.

1) For any choice of and , the rate regions
and ,

for the inner and outer bounds, respectively, are obtained
from an intersection of two polymatroids. Thus, from
Lemma 1 their intersection is either an active case or an
inactive case.

2) The functions and denoting the outer
bounds on the -user sum-rate are concave functions of

. For the inner bounds, the functions and
are concave functions of .

Following the observation in 1), we can use Lemma 1 to deter-
mine the -user sum-rate for both the inner and outer bounds.
The following lemma summarizes the maximum -user sum-
rate given by the outer bounds.

Lemma 5: For each such that

, the maximum -user sum-rate outer bound re-
sulting from the intersecting polymatroids and

is

if Condition 1
otherwise

(42)

where Condition 1 in (42) is given by

Condition 1

for an (43)

Remark 8: The condition in (43) is an application of (8) and
determines whether the intersection of two polymatroids is an
active or an inactive case with respect to the -user sum-rate.

Remark 9: In (42) and (43), we write the -user sum-rate
outer bounds as and due to the fact that and

are concave functions of (see Appendices III and II).

Proof : The proof follows from applying Lemma 1 to the
maximization of for each choice of .

One can similarly write the expression for the -user DF
sum-rate. The following lemma summarizes the expression for
the -user sum-rate achieved by DF.

Lemma 6: For any , the maximum -user DF sum-
rate resulting from the intersecting polymatroids

and is

if Condition 2
otherwise (44)

where

(45)

(46)

and the Condition 2 in (44) is given by

Condition 2 for an
(47)

Remark 10: The condition in (47) determines whether the
intersection of two polymatroids is either an active or an inactive
case with respect to the -user sum-rate.
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Fig. 3. Illustration of Cases 1, 2, and 3.

Proof : The proof follows from applying Lemma 1 to the
maximization for each choice of .

From (42), we see that does not exceed the min-
imum of the two -user sum-rate outer bounds and

. Similarly, from (44), does not ex-
ceed the minimum of the two -user sum-rate inner bounds

and . Thus, for the inner bounds, we
have

(48)

Similarly, we have

(49)

We first consider the problem of maximizing the -user DF
sum-rate bounds. Based on this analysis, we will argue that it is
sufficient to consider the largest -user sum-rate outer bounds
in (49).

A. DF: Maximum -User Sum-Rate

Consider the optimization problem

(50)

We write to denote a max-min rule optimizing (50)
and write to denote the set of all maximizing (50).
We use a technique similar to that used in finding the minimax
detection rule in a two hypothesis testing problem (see, e.g.,
[22, Ch. II.C]). This allows us to show that a general solution
to the max-min optimization in (57) simplifies to three cases
[22, Ch. II.C] of which two of them correspond to the cases in
which the maximum achieved by one of the two functions is
smaller than the other, while the third corresponds to the case in
which the maximum results when the two functions are equal
(see Fig. 3). For and defined in (22)
and (23), respectively, we can show that the solution simplifies
to the consideration of only two cases. The following theorem
summarizes the solution to the max-min problem in (50). The
detailed proof is developed in Appendix IV.

In the following theorem and the sequel, we write and to
denote -length vectors whose entries are all unity and zero,
respectively.

Theorem 4: The max-min optimization in (50) simplifies to
the following two cases:

Case 1: if

(51a)

Case 2: if (51b)

where is given by (32), and are given by (33), the
entries of the optimal are given by (28), and , defined in
(29), is the unique value satisfying the quadratic

given by (30).
Proof: Using techniques similar to those used in minimax

hypothesis testing, in Appendix IV we show that the following
three cases result:

Case 1:

Case 2:

Case 3: (52)

From (22), we see that is maximized for .

In Appendix II, it is shown that is a concave

function of and is maximized for and
given by (28).

Case 1: From (52), Case 1 results when the maximum
-user sum-rate at the relay, , is less than the corre-

sponding rate at the destination, ,
where we have used the fact that is independent of for

The resulting condition for Case 1 is

Case 1 Condition: (53)

Thus, for this case, each source allocates all its power to trans-
mitting a new message, i.e., does not allocate any power to co-
operating with the relay.

Case 3: Since is maximized for ,
Case 3 results when . One can verify
that . However, from (22), and
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thus, since the condition for this case in (52) cannot be satisfied,
this case is infeasible.

Case 2: Finally, for Case 2, we first show that since
is independent of , it is sufficient to choose

in (28) to maximize which in turn simplifies
to be purely a function of . For defined in

(29), we can further simplify and as
functions of and show that they are monotonically increasing
and decreasing functions of , respectively. Thus, a unique
satisfies and is given by (30) such
that where is defined in (51).
Since (29) describes a -dimensional plane in the space,
the max-min rule for Case 2 is given by the set

satisfies (29) and (54)

satisfies (28) for every (55)

The three cases are mutually exclusive such that Case 2 results
when the condition for the other two cases are not satisfied.
Since Case 3 is not feasible, the condition for Case 2 is

Case 2 Condition: (56)

The expressions and for the -user sum-rate outer
bounds do not exactly match and , respectively, for the
inner bounds. However, we now show that it suffices to consider
the largest outer bounds obtained by maximizing the minimum
of and over all . Our motivation
to do so stems from the observation that for both the inner and
outer bounds, the sum-rate maximization simplifies to the same
bounds and thus, it is sufficient to consider only the largest outer
bounds.

B. Outer Bounds: Maximum -User Sum-Rate

Consider the optimization problem

(57)

Analogously to the DF analysis, one can similarly show that the
max-min problem in (57) simplifies to considering three cases.
For and defined in (16) and (17), respectively, one
can show that the solution simplifies to the consideration of only
two cases. The following theorem summarizes the solution to
the max-min problem in (57). The proof is similar to that for the
inner bounds and is omitted in the interest of space.

Theorem 5: The max-min optimization in (57) simplifies to
the following two cases:

Case 1: if (58a)

Case 2:

if (58b)

where and are given by (33)

(59)

such that is the unique solution satisfying
and is given by

(60)

for given by (30) and (31).
Proof: The proof of Theorem 5 follows along the same

lines as that for Theorem 4, and thus, we briefly outline the proof
below. Using techniques similar to minimax hypothesis testing,
we can show that the following three cases result:

Case 1:

Case 2:

Case 3: (61)

From (16), we see that is maximized for . In
Appendix II, it is shown that is a concave function of

and is maximized for

for all
(62)

Case 1: From (61), Case 1 results when the max-
imum -user sum-rate is less than . Since

and , the condition
for this case is the same as that for DF under Case 1, i.e., it is
given by (53).

Case 3: Since is maximized by a with entries
given by (62), Case 3 results when .
One can verify that . However, from (16),

and thus, this case is infeasible.
Case 2: Finally, for Case 2, using (59), we can simplify

and as functions of . As a result, we have
and . Thus, we obtain

such that . Since (59)
describes a -dimensional plane in the space, the for
Case 2 is given by the set

satisfies (59) (63)

Finally, since the three cases are mutually exclusive, and Case 3
is not feasible, the condition for Case 2 is the same as that for
DF in (56).

Thus, from Theorems 4 and 5 we see that the maximiza-
tion in (50) and (57) yields the same solution. Furthermore, the
maximizations in (50) and (57) are independent of whether the
max-min rules and , respectively, results in an ac-
tive or an inactive case.

In the following section, we show that for the condition for
Case 1 implies an active case. For Case 2, not all max-min rules
will result in an active case. However, irrespective of the kind
of intersection, we have that the largest inner and outer bounds
on the -user sum-rate are equal.
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VI. CAPACITY THEOREMS

In this section, we develop a proof for Theorem 3. The fol-
lowing theorems help us in developing a proof for Theorem 3.

Theorem 6: For a degraded Gaussian MARC in which the
source and relay powers satisfy the Case 1 condition

the -user sum-capacity and capacity region are
given by

and (64)

(65)

where is given by (24).
Proof: The proof of (64) follows directly from comparing

the largest inner and outer bounds on for Case 1 in Theo-
rems 4 and 5. We now prove that DF also achieves the capacity
region for Case 1.

Let and . For this choice of , the
bounds and can be expanded for this case using (22)
and (23), respectively, as

(66)

(67)

The condition for Case 1 in Theorem 4 requires

(68)

Expanding (68), we have, for any

(69)

(70)

where (70) follows from (4). Thus, implies
that for all , i.e.,
Recall that we chose . From (22), we see that the
choice of does not affect . Further, a nonzero does
not increase . However, it can decrease for some or all

as

i.e.,

Finally, since for Case 1, and
, DF achieves the capacity region for Case 1 since

This proves (65). Note that the optimal signaling scheme for
Case 1 is for the sources to use all their power to transmit a new
message.

We now consider Case 2. The following theorem summarizes
our results for this case.

Theorem 7: For a degraded Gaussian MARC in which the
source and relay powers satisfy the Case 2 condition

(71)

the -user sum-capacity is

if there exists an s.t.

is an active case

if is an

inactive case for all

For the class of symmetric degraded Gaussian MARCs

for

Proof: From Theorems 4 and 5, when the condition in
(71) is satisfied, the largest DF bound on the -user sum-rate
matches the largest -user sum-rate outer bound. In fact, this
bound is achievable only if there exists at least one max-min rule

for which is an active
case.

Let denote the set of that result in active
cases. From Lemma 6 and Theorem 4, we can write the max-
imum -user DF sum-rate when as

if
if (72)

where and are given by (46) and (45), respectively,
and is given by (32).

In Theorem 4, it was shown that when (71) holds, the
max-min rules are such that and .
However, for any max-min rule it is not straightfor-
ward to show that an active case results.

We now show that for class of symmetric Gaussian MARC
channels, when the condition in (71) holds, DF achieves the

-user sum-capacity. For this class, since , from sym-
metry, in (23) can be maximized by choosing

for all in (29) such that

(73)

From (29), since , there exists an
that achieves in (72).

From symmetry, no subset of users achieves a larger rate at
one of the receiver than any other subset, i.e., for and

, for all , is an active case.
Thus, the maximum sum-rate is achievable, and since, this
is the largest outer bound on the -user sum-rate, DF achieves
the sum-capacity for the symmetric class of channels.
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For completeness, one can also show that for the outer bounds
when (71) is satisfied, a whose entries , for all ,
results in an active case. The proof follows simply from setting

where (74)

That (74) satisfies (12) follows from the fact that since
for all we have

(75)

For the symmetric case, this implies that there exists a

(76)

satisfying (75). In fact, for in (73), we obtain
, i.e., the symmetric in (76) is

feasible and results in an active case.

Combining the above two theorems, we obtain the proof for
Theorem 3. We now present arguments supporting Conjecture 1
in Section III.

A. Arguments for Conjecture 1

From Theorems 6 and 7, we see that the class of degraded
Gaussian MARCs can be divided into two disjoint subclasses.
Furthermore, in Theorems 6 and 7, we have proved Conjecture 1
for one of the subclasses and for a special case of the other
subclass.

The first subclass is one in which the source and relay SNRs
satisify a condition identified as Case 1 throughout the sequel.
The condition requires the SNR on the relay to destination
link to be sufficiently large that the bottleneck link on the

-user sum-rate is the multiple-access link from the sources
to the relay. For this subclass, we have shown that the entire
region achieved at the relay lies within that achieved at
the destination, and that DF achieves the capacity region of a
degraded Gaussian MARC for this subclass.

The second subclass is the class of degraded Gaussian
MARCs for which the condition of Case 1 does not hold.
For this subclass, using Theorems 4 and 5, we show that
the largest bound on the -user sum-rate results when the
sum-rate to the relay from the sources is reduced from the
maximum by reducing some or all ,
thereby increasing the sum-rate at the destination, until the

-user sum-rates at both receivers are the same. The set of
max-min rules, i.e., , that achieve the equal sum-rate
requirement are given by (28)–(30).

For this subclass, using Theorems 4 and 5, in Theorem 7
we prove that DF achieves the sum-capacity if there exists a
max-min rule such that is an
active case. Specifically, for the class of symmetric degraded
Gaussian MARCs, we showed that
results in an active case and achieves the sum-capacity.

Since we can show the optimality of DF for the first disjoint
subclass and under symmetric source powers for the second sub-
class, Conjecture 1 addresses the second subclass. In fact, it im-
plies that an active case will always occur for the second sub-
class, irrespective of source powers.

However, for the second subclass with arbitrary source
powers, showing that at least one max-min rule results in an
active intersection does not appear straightforward. Here we
argue that it will be so, thereby supporting Conjecture 1.

Our intuition for Conjecture 1 stems from the fact that
the physically degraded condition implies that if the sources
transmit at rates that allow reliable decoding at the destination,
then their signals can also be decoded by the relay. Thus,
in general, for the second subclass, there must be an active
case. Clearly, for the symmetric case this results from setting

for all .
Consider now the asymmetric case where the sources powers

are not all the same. Without loss of generality, consider
such that . In Theorem 4, we

showed that the solution satisfying (30) is given by

(77)

where

and (78)

and

(79)

From (77) and (78), one can see that since only the term
depends explicitly on the powers of all sources, , and

hence, scales linearly with
as .

Let denote the optimal for the symmetric class. For
the symmetric case where , for all we have

for all , where we write to denote the sym-
metric case. When , are reduced from ,
from (77) and (78), we have that also decreases from ,

and thus, , and hence, is a feasible solu-
tion.

To argue that DF achieves the sum-capacity, we need to argue
that an active intersection exists for some satisfying (79).

We conjecture that choosing ,
for all , should suffice. This conjecture is motivated by the ob-
servation that for asymmetric source powers, the sources with
larger powers achieve larger rates at both the relay and the des-
tination, and vice versa. This is in contrast to an inactive case
in which a subset of sources achieve large enough rates at one
of the receivers while the remaining subset achieve sufficiently
large rates at the other receiver such that the intersection of the
two multiple-access polymatroids is an inactive case. Thus, with
asymmetric source powers, an inactive case will require an
whose entries are not all equal. For example, one could choose

such that source 1 achieves a large rate at the relay
and sufficiently smaller values for , , such that the re-
maining sources achieve a larger rate at the destination.

Finally, in Appendix V, we show that for the same choice of
the source–relay correlation coefficients for both the inner
and outer bounds, the outer cutset bounds are at least as large as
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the inner DF bounds for all . This implies that for every
, there exists a with entries

for all

that results in an active case for the outer bounds, i.e., DF
achieves the sum-capacity for the active class.

B. Numerical Examples

It is straightforward to find numerical examples for Case 1
where DF achieves the capacity region. We focus on Case 2 and
present two examples where DF achieves the sum-capacity of a
two-user degraded Gaussian MARCs, with for one and

for the other.

Example 1: Consider a two-user degraded Gaussian MARC
with , , , , and

. These SNR values satisfy the condition for Case
2 in (71), and thus, the DF sum-rate is maximized by a set of

where satisfies

(80)

and for every choice of satisfying (80), is given by (28).
The set of feasible has entries with for
each such satisfying (80) such that . For these
SNR parameters, the set and for each ,
the correlation values , for all . result
in the vector .

Example 2: We next consider a two-user example with
, , , , and
. These SNR values also satisfy the condition for

Case 2 in (71), and thus, the DF sum-rate is maximized by a set
of where satisfies

(81)

The set of feasible has entries with for
each such satisfying (81) such that . Note
that subject to (81), decreases as increases and vice versa.
For these SNR parameters, the set consists of
with entries and that are restricted to and

, respectively. Thus, the fractions
, as conjectured, result in an active case.

Finally, for the two-user degraded Gaussian MARC, a nu-
merical example illustrating , i.e., the set of max-min
rules that result in an active case, does not appear straightfor-
ward despite using a wide range of ratios of to , i.e., not all
rate–maximizing intersections are such that one of the sources
achieve better rates at one of the receivers while the other source
achieves a better rate at the other receiver. This is in line with
our conjecture, as at any receiver, the noise seen by both sources
is the same, and thus, the source with smaller power typically
achieves smaller rates at both receivers. It may be possible to
increase the rate achieved at the destination by increasing the
relay power; however, large values of relay power will result in
the bottleneck case for which the condition for Case 1 will hold.

Remark 11: In the above analysis, we determined the sum-
capacity for a degraded Gaussian MARC under a per-symbol
transmit power constraint at the sources and relay. One can also
consider an average power constraint at every transmitter. The
achievable strategy remains unchanged; for the converse, we
start with the convex sums of the outer bounds in (34) over
channel uses. Recall that is a concave function of the cor-
relation coefficients and power. On the other hand, for all

is not a concave function of the power and cross-corre-
lation parameters. However, we can use the concavity of
to show that the maximum bounds on the sum-rate in Theorem
5 remain unchanged. Finally, we note that as with the symbol
power constraint, here too we require time sharing to develop
the outer bound rate region.

VII. CONCLUDING REMARKS

In this paper, we have studied the sum-capacity of degraded
Gaussian MARCs. In particular, we have developed the rate
regions for the achievable strategy of DF and the cutset outer
bounds. The outer bounds have been obtained using cut-set
bounds for the case of independent sources and have been
shown to be maximized by Gaussian signaling at the sources
and relay.

We have also shown that, in general, the rate regions achieved
by the inner and outer bounds are not the same. This difference
is due to the fact that the input distributions and the rate expres-
sions for the inner and outer bounds are not exactly the same.
In fact, the input distribution for the inner bound uses auxiliary
random variables to model the correlation between the inputs at
the sources and the relay and is more restrictive than the distri-
bution for the outer bound. Despite these differences, Gaussian
signaling maximizes the outer bounds and can be chosen for the
inner bounds. Thus, in both cases the input distributions can be
quantified by a set of source–relay cross-correlation coeffi-
cients.

In both cases, we have also shown that the rate region for
every choice of the appropriate input distribution is an inter-
section of polymatroids. We have used the properties of poly-
matroid intersections to show that the largest inner and outer
bounds on the -user sum-rate is at most the maximum of the
minimum of the two -user sum-rate bounds, with equality
only when the polymatroid intersections is an active case for
which the -user sum-rate constraints are active.

Our analysis led us to broadly classify -user degraded
Gaussian MARCs into two disjoint subclasses. The first sub-
class is one where the multiple-access link from the sources to
the relay is the bottleneck link for which we have shown that
DF achieves the sum-capacity as well as the entire capacity
region.

The second subclass is one in which the multiple-access links
to both the relay (from the sources) and the destination (from
the sources and the relay) are comparable. For this subclass, the
largest -user DF sum-rate bound we developed is achievable
only if the intersection of the two multiple-access polymatroids
is an active case in which the -user sum-rate constraints are ac-
tive. We have shown that an active case occurs when the sources
transmit with the same power (symmetric degraded Gaussian
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MARC) and have presented an argument for our conjecture that
DF is sum-capacity optimal for all degraded Gaussian MARCs.

APPENDIX I
OUTER BOUNDS: PROOF

We now develop the bounds and . Recall
that we write and to denote, respectively, the first
and second bound on in (36) for a constant . Expanding
the bounds on in (36) for a constant , we have

For a fixed covariance matrix of the input random variables
and , one can apply a conditional entropy maximization the-
orem [23, Lemma 1] to show that and
are maximized by choosing the distribution in (35) as jointly
Gaussian. Consider the bound . Expanding , we have

(82)

For Gaussian signals, using the chain rule, we have

(83)

where

and for random vectors and , the conditional covariance
is

(84)

where is the transpose of . We use the fact that and
are independent to expand (83) as

(85)

where is a Gaussian random vari-
able with variance

(86)

Substituting (85) in (82) and using (5) to bound for all
, we obtain

(87)

We define , for all , by

(88)

Using the independence of for all and (88), we write

(89)

Next we use (88) to evaluate . We start by considering the
random variable

Using (88) and the independence of for all , we can write
the variance of as

(90)

where we used (84) to simplify (90). Continuing thus, we con-
sider the random variable . Using
the independence of for all , we thus have

Generalizing the above, we have

for all (91)

Finally, we substitute (91) and (89) in (87) to simplify the first
bound as

if

otherwise.

(92)
Observe that for , we have and , and
thus, (16) simplifies to the first outer bound in [3, Theorem 5] for
the classic single source degraded relay channel. Finally, from
(91), observe that , for all , satisfies

(93)

Consider in (36) with a constant. Expanding using
(2), we have

(94)
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Using (5), (91), and (89), we simplify (94) as

(95)

Writing and to denote the bounds on the
right-hand side of (92) and (95), respectively, we have for a con-
stant , and a given choice of

for all (96)

APPENDIX II
CONCAVITY OF AND

A. Outer Bound

Recall that the cutset bound at the destination, , is
given by (17). We show that is a concave function
of . To prove concavity, one has to show that the Hessian or
second derivative of , , is negative semi-
definite, i.e., for all [24, Sec.
3.1.4]. We write

where

(97)

The gradient is given by

where is an -length vector with entries
for all , is an -length vector with entries

for all , and

The Hessian of , , is given by

(98)

where

such that is an -length vector with entries
for all , and is an -length vector with entries

for all . Using the fact that
and are nonnegative for all , from (98), for any ,
we have

with equality if and only if . In proving the concavity
of , we assume only that , for all . Thus,
from continuity, the concavity also holds for all nonnegative
satisfying (see (12))

(99)

Let denote a vector with entries , for all
For a fixed , we now find the that maximizes
subject to (99) above. For a , we fix such that its
entries , for all , satisfy

(100)

and thus, from (99) we have

(101)

Since is a continuous concave function of it
achieves its maximum at a where

for all

Using the method of Lagrange multipliers, we find that for a
fixed , the that maximize subject to (100) and (101)
has entries given by

B. Inner Bound

Recall that the DF bound, , at the destination is given by
(23). Comparing (17) and (23), for for all

and for all , the DF rate bound in (23)
simplifies to that for the outer bound in (17), and thus, one can
use the same technique to show that is a concave
function of and . For the power fractions , we have

(102)

Let denote a vector with entries , for all
. For a fixed , we determine the optimal maximizing

by fixing the vector such that

(103)

(104)

where . Since is independent of for
, we assume that .
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We now consider the special case in which and
are fixed. We determine a that maximizes sub-
ject to (104) and (103). Since is a continuous con-
cave function of , it achieves its maximum at a where

for all

As before, using Lagrange multipliers, the optimal that max-
imizes , subject to (104), has entries

(105)

APPENDIX III
VERSUS

We show that the function in (16) is a concave func-
tion of for a fixed and for all . Recall the expres-
sion for as

(106)

where we assume that

Observe that is maximized when , i.e.,
for all , and minimized for . Further, comparing

and , one can see that achieves
its minimum, i.e., , for

.

We write

(107)

where

and (108)

Substituting (107) in the expression for in (106), we
have

(109)

Differentiating with respect to we have

(110)

(111)

where the strict inequality in (111) follows since all terms in
(110) are positive. Further, for any , from (109),
is maximized at , i.e., for for all . Thus, we
see that is a concave decreasing function of .

APPENDIX IV
PROOF OF THEOREM 4

We now prove Theorem 4 and give the solution to the max-
min optimization

(112)

Consider the function

(113)
Observe that is linear in ranging in value from

for to for . Thus,
the optimization in (113) is equivalent to maximizing the min-
imum of the two endpoints of the line over . Maximizing

over , we obtain a continuous convex
function

(114)

From (113) and (114), we see that for any ,
either lies strictly below or is tangential to

. The following proposition summarizes a well-known
solution to the max-min problem in (112) (see [9]).

Proposition 3: is a max-min rule where

The maximum bound on , , is completely determined
by the following three cases (see Fig. 3):

Case 1:

(115)

Case 2:

(116)

Case 3:

(117)

We apply Proposition 3 to determine the maximum bound on
. We study each case separately and determine the max-min

rule for each case. In general, the max-min rule
depends on an optimal . However, for nota-

tional convenience we henceforth omit the subscript in de-
noting the max-min rule. We develop the optimal and
the maximum sum-rate for each case. We first consider Case 3
and show that this case is not feasible.

We develop the conditions and determine the max-min rule
for each case.
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Case 1: Consider the condition for Case 1 in (115). This
condition implies that the case occurs when the maximum
bound achievable at the relay is smaller than the bound at
the destination. From (22), we observe that increases
monotonically with for all and achieves a maximum of

at . Comparing (22) and (23) at , we obtain the
condition for this case as

(118)

Case 2: Next we consider Case 2 in (116). This case oc-
curs when the maximum rate bound achievable at the relay and
destination are equal. The max-min solution for this case is ob-
tained by considering two subcases. The first is the relatively
straightforward subcase where is the max-min rule.
The resulting maximum sum-rate is the same as that for Case 1
with (118) satisfied with equality. Consider the second subcase,
where , i.e.,

(119)

In Appendix II, we show that, for a fixed , , is a concave
function of for all . Furthermore, from (19), for

, in (23) is maximized by a whose entries , for all
, satisfy

(120)

and are given by (28). Observe in (28) that the optimal power
fraction that the relay allocates to cooperating with user is
proportional to the power allocated by user to achieve coherent
combining gains at the destination. Thus, one can formulate the
optimization problem for this case as

maximize

subject to (121)

Using Lagrange multipliers we can show that it suffices to con-
sider in the maximization. Since the optimal in (28)
is a function of , simplifies to a function of
as

We further simplify and as follows.
Choosing and as in (33), and for defined in (29),
we obtain

and

Observe that and are monotonically increasing
and decreasing functions of and thus, the maximization in
(121) simplifies to determining a such that

(122)

We can further simplify (122) using the definitions for the signal
and noise power in (31). From (31), since , (122) has
only one positive solution given by

(123)

The max-min rules for this case is then the set of
such that satisfies (29) for and for each such choice
of , is given by (28). The maximum achievable sum-rate
for this case is then given by

(124)

Case 3: Finally, we consider Case 3. This case occurs when
the maximum bound achievable at the destination is smaller
than the bound at the relay. Observe that in (23)
decreases monotonically with , for all , and, for any ,
achieves a maximum at of

However, substituting in (22), we obtain

(125)

which contradicts the assumption in (117), thus making this case
infeasible.

APPENDIX V
SUM-CAPACITY PROOF FOR THE ACTIVE CLASS

In Theorem 7, we proved that DF achieves the sum-capacity
for an active class of degraded Gaussian MARCs. In this proof
we argue that since the maximum DF sum-rate is the same as
the maximum outer bound sum-rate, every DF max-min rule

that achieves this maximum sum-rate, i.e., for
which is an active case, also achieves
the sum-capacity. We now present a more detailed proof of the
argument.

We begin by comparing the inner and outer bounds. As in the
symmetric case, without loss of generality, we write

for all (126)
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where We then have

(127)
On can verify in a straightforward manner that

Choosing as the DF max-min rule in (28) simplifies
(127) to

(128)

Using Theorem 4, one can then verify that
is achieved by all . Consider a

and a corresponding such that the DF region
is an active case. From Theorem 4, this implies

that

for all
(129)

Using (126), we expand in (17) as a function of
as

(130)

where (130) follows from the fact that , for
all and for all . It is, however, not easy to compare

with . Note, however, that the choice of
in (126) requires the same source–relay correlation values

for both the inner and outer bounds. Furthermore, for every
choice of Gaussian input distribution with the same corre-
lation values for both bounds, comparing the degraded cutset
and DF bounds in (36) and (37), respectively, for a constant ,
we have

for all
(131)

where in (131) we use the fact that conditioning does not in-
crease entropy to show that the cutset bounds at the relay are
less restrictive than the corresponding DF bounds. From (128),
the inequality in (131) simplifies to an equality for and
for when is given by (126). Combining these
inequalities with (129), we then have

for all

Thus, every DF max-min rule that results in an active case poly-
matroid intersection, i.e., every also results in
an active case for the outer bounds when is given by (126).
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