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Abstract— A wireless ad hoc network is modeled as a three-tier
hierarchical network comprised of low-power source nodes that
communicate with a wired access-point via an intermediate relay
node. Such a model is appropriate for hybrid ad hoc networks
where cooperation between the sources may not be possible or
desirable. It is shown that constraining the relay to transmit and
receive in either different time slots or frequency bands for a
fixed total time and bandwidth yields the same capacity bounds.
The rates achieved by cooperative strategies are compared with
the rates achieved by traditional multi-hopping and are shown to
be substantially better than for certain channels and geometries.

I. I NTRODUCTION

The demand for ubiquitous communications is driving the
development of a variety of wireless devices and technologies
that facilitate ad hoc communications. Such devices, under
different size and processing constraints, can form a network
of sensor nodes that monitor events and collect data or share
bandwidth and energy resources to facilitate communication
with each other or a backbone network. The challenge lies
in designing such networks to ensure an efficient use of the
limited bandwidth and power resources.

In their seminal work on the throughput of wireless ad hoc
networks [1], Gupta and Kumar showed that for a network
of n homogeneous nodes that cooperate to forward data,
the throughput per node falls asymptotically with increasing
number of nodes. This decrease in throughput is a direct result
of interference and bandwidth restrictions where each node
allocates some of its throughput to forwarding packets for
neighboring nodes. They also showed that introducing wireless
relay nodes does not change the scaling properties. In [2], Liu
et al limit cooperation between source nodes by introducinga
regular network of base stations (access points) connectedby
a high-bandwidth wired network within the ad hoc network
of n source nodes. They show that in such ahybrid ad hoc

*Supported in part by the NSF under grant no. ITR-0205362.
†Supported in part by the NSF under grant no. CCR-0325673.

network where each source node transmits atW bits/sec, a
scaling in network throughput capacity asΘ(mW ) can be
achieved when the number of base stations,m, scales faster
than

√
n thus requiring a significant investment in the wired

infrastructure.

Consider a three-tier hierarchical network that results from
the introduction of wireless relay nodes serving exclusively
as forwarders in a hybrid wireless network of sources and
base stations described above. For a network where the source
nodes have a one-hop link to the nearest relay, and forwarding
(cooperation) is limited to the relays, determining the relay
density and bandwidth allocation that minimizes the numberof
access points while preserving throughput is an open problem.
While relays may not reverse the scaling behavior, it is
possible that they reduce the required number of wired access
points and also lower the power consumption of the source
nodes, both valuable resources in an ad hoc network.

In addition to these general and theoretic networking issues,
there are operational advantages to hierarchical heterogeneous
layering that cannot be achieved with a “flat” homogeneous
network. For example, dedicating select nodes with appro-
priate power and processing capabilities as relays preserves
the limited battery resources of source nodes and facilitates
scalable routing [3]. The relay layer also helps eliminate
complex economic or social incentives needed to encourage
cooperation in general ad hoc networks. Thus, for a variety of
applications, a relatively small number of higher-level network
elements with access to more power and better processing
capabilities could greatly improve the performance of the
overall system in terms of reliability, longevity, and flexibility.

In [4], capacity bounds and cooperative strategies for asim-
ple hierarchical ad hoc network formed by a cluster of nodes
that communicate with an access point via a relay node are
presented. The network is modeled as a multiple-access relay
channel (MARC) with Gaussian noise and fading. Two modes
of relay operation that result from placing constraints on its



simultaneous transmit-receive capabilities are considered. In
this paper, we show that the case of constraining the relay
to transmit and receive in different time slots is equivalent to
using orthogonal frequency bands under identical symbol time
and bandwidth constraints. We also compare the performance
of traditional multi-hopping with the cooperative strategies
presented in [4]. The paper is organized as follows. In Section
II, we briefly discuss the model and the cooperative strategies.
In Section III, the rate bounds resulting from constrainingthe
relay in time and frequency are compared. In Section IV, we
consider two example geometries for a two-source network
and compare the performance of different communication
strategies.

II. GAUSSIAN MARC: MODEL AND STRATEGIES

A. Model

A model for anM -source Gaussian MARC consists ofM+
1 inputs signalsXki, k = 1, 2, . . . , M+1 from the sources and
the relay node, and two output signalsYM+1,i andYM+2,i at
the relay and destination, respectively, wherei is a time index
[4]. The channel is usedn times and the received signals at
terminalsM + 1 andM + 2 are

YM+1,i =

(

M
∑

k=1

hM+1,kiXki

)

+ ZM+1,i (1)

YM+2,i =

(

M+1
∑

k=1

hM+2,kiXki

)

+ ZM+2,i (2)

where Zji, j ∈ {M + 1, M + 2} is proper (circularly
symmetric) complex Gaussian noise with zero-mean and unit
variance. The transmitted signals from thekth source and the
relay are constrained in power as

n
∑

i=1

E(|Xki|2)
/

n ≤ Pk k = 1, 2, . . . , M + 1 (3)

The parameterhjki is the fading experienced by the signal
from thekth transmitter at thejth receiver in theith symbol
and is assumed known only at thejth receiver. In this analysis,
analogous to [4], we consider two kinds of fading channels:

1) constant no fadinghjki = 1
/√

d
γ
jk for all i ∈ [1, n]

wheredjk is the distance between thejth receiver and
the kth source andγ is the path-loss exponent.

2) ergodic phase-fading withhjki = ejθjki

/√

d
γ
jk where

θjki is a uniformly distributed random variable between
[−π, π].

The analysis for these models generalizes to other types of
fading such as Rayleigh fading [5].

The above model permits the relay to transmit and receive
simultaneously. In general, however, physical and practical
constraints limit the relay to either transmit or receive, thereby
resulting in aconstrained-MARC (C-MARC) (see also [6]). In

[4], the C-MARC was defined as the MARC of (1)−(3) with
the constraints

YM+1 = 0 if XM+1 6= 0 (4)

and that XM+1 = 0 for a fraction α of the total time.
The advantage of this approach is that one can apply the
theory developed for the MARC directly to the C-MARC.
This definition, however, constrains the relay to employ time
division duplexing (TDD) between its transmit and receive
states.

Alternatively, the relay can transmit and receive at the same
time but in non-overlapping frequency bands. Thus, the relay
employs frequency division duplexing (FDD) by receiving in
a fractionα of the total bandwidthW and transmitting in the
fraction(1−α)W . The sources and destination, in general, use
both bands to transmit and receive respectively. DefiningX

(α)
mi

and X
(1−α)
mi as themth transmitted signals in the bands of

bandwidthαW and(1 − α) W respectively, we writeXmi =

(X
(α)
mi , X

(1−α)
mi ) for all i andm ∈ [1, M+1] with X

(α)
M+1,i = 0.

We call the former frequency band theα band and the latter
the (1 − α) band. The power constraint (3) is applied to the
FDD model in the same way as the TDD model. The received
signals are

YM+1,i = (Y
(α)
M+1,i, 0) (5)

YM+2,i = (Y
(α)
M+2,i, Y

(1−α)
M+2,i) (6)

where at thejth receiver,j ∈ [M + 1, M + 2], Y
(α)
ji and

Y
(1−α)
ji in the α and (1 − α) bands are

Y
(α)
ji =

(

j−1
∑

k=1

hM+1,kiX
(α)
ki

)

+ Z
(α)
ji (7)

Y
(1−α)
ji =

(

j−1
∑

k=1

hM+1,kiX
(1−α)
ki

)

+ Z
(1−α)
ji (8)

The variablesZ(α)
ji andZ

(1−α)
ji are zero-mean proper complex

Gaussian noise variables in the corresponding bands with
varianceα and1 − α respectively.

We remark that, in general, any node in a hierarchical
network can sleep, transmit or receive for some fraction of
the total time with constraints on the average power in each
mode and over all modes as in (3) [7]. Thus, the capacity
analysis of constrained relay channels should, in general,take
into account the positive probabilities (fraction of time)of each
node being in one of three modes,sleep, listen, or talk (SLoT),
at any time [7]. For the C-MARC considered here, we assume
that the probability that the sources listen or the destination
transmits is zero. In the next section we show that a relay
network with time-duplexed SLoT constraints is equivalentto
a relay network with frequency duplexed nodes and the same
SLoT constraints for a fixed total bandwidth, symbol time, and
average power.



B. Bounds and Cooperative Strategies

A rate-tuple (R1, R2, . . . , RM ) is said to beachievable if
there are encoders and decoders such that the probability that
the destination node makes an error in decoding any of the
M messages is less thanε for all positive ε. The capacity
region is the closure of the set of achievable rate tuples. Outer
bounds on the capacity region of the MARC and C-MARC
can be obtained in a manner similar to the well-known cut-set
bounds for networks and are presented in [4]. Inner bounds are
obtained by constructing codes and computing their achievable
rates.

In [4], coding strategies for the classic single-source relay
channel [8] are extended to obtain various strategies for the
MARC and C-MARC. The cooperative strategy of [8, theorem
1] is generalized as thedecode-and-forward (DF) strategy
where the relay decodes the source messages before forward-
ing them to the destination. For the C-MARC, an additional
strategy ofpartial decode-and-forward (P-DF) results when
the relay is limited to decoding only one of the two message
streams from each source while the destination decodes both
over both fractions. Thecompress-and-forward (CF) strategy
extends the strategy of [8, theorem 6] where the relay fa-
cilitates reliable detection at the destination by forwarding a
quantized version of its received signal to the destinationwhile
theamplify-and-forward (AF) strategy considers a simple relay
that forwards an amplified version of its received signal to the
destination.

III. T IME VS. FREQUENCY DUPLEXING

For a Gaussian C-MARC, outer bounds and achievable
strategies are presented in [4] for a TDD relay. We now show
that for the strategies considered in [4] and the assumption
that the channel state information (CSI) is unknown at the
transmitters, the same rate bounds are obtained if the relay
employs FDD. We fix the bandwidthW and symbol timeT
and assume that the sources and destination use all available
time and bandwidth to transmit and receive, respectively. Thus,
for TDD the sources and relay share the same bandwidth while
for FDD the sources and relay transmit at the same time. The
transmitter nodes are subject to the same power constraintsin
both cases.

Consider the DF strategy. For a fixedW and T , the rate
bounds at the relay in the fraction (time or frequency)α are

∑

m∈G

Rm ≤ αI(X(G); YM+1|X(Gc)) (9)

whereX
(α)
M+1 = 0 andG ⊆ {1, 2, . . . , M} such thatX(G) =

{Xm : m ∈ G}. The destination decodes the source messages
using the received symbols from the sources in both fractions

and from the relay in the1 − α fraction for both TDD and
FDD. The resulting bounds are
∑

m∈G

Rm ≤
(

αI(X(G); YM+2|X(Gc))+
(1 − α) I(X(G), XM+1; YM+2|X(Gc))

)

(10)
For the case where the source and relay operating modes are
known at all transmitters and receivers, Gaussian signalling
maximizes the rates in (9) and (10) for Gaussian channels [9].

For the C-MARC, we assume that themth source,m ∈
[1, M ], allocatesP (α)

m and P
(1−α)
m as the average power in

the fractions (time or frequency)α and 1 − α respectively,
such thatαP

(α)
m + (1 − α)P

(1−α)
m ≤ Pm. Then, the received

SNR at the relay for anyG ⊆ S for the TDD case is
∑

m∈G |hM+1,m|2 P
(α)
m where, as defined in Section II, the

noise power over the bandwidthW is unity. For the FDD
case, the same SNR is achieved at the relay since now both
the signal and noise power in theα band are scaled byα thus
yielding the same rate bounds at the relay in both cases. We
can similarly show that the source signals have the same SNR
at the destination in each fraction for both TDD and FDD.

A time-duplexed relay can transmit at most
PM+1 /(1 − α) in its transmit fraction 1 − α subject
to (3) resulting in a received SNR at the destination
of |hM+1,M+2|2 PM+1 /(1 − α) . On the other hand, a
frequency-duplexed relay transmits over alln time symbols,
with average powerPM+1 in each symbol, achieving a
receive SNR|hM+1,M+2|2 PM+1 /(1 − α) at the destination
in the band(1 − α)W where(1 − α) is the noise power in
that band. Thus, the SNR at the destination for the TDD and
FDD case are the same for all nodes, resulting in the same
achievable rates for the DF strategy for both cases.

The above argument also holds for the P-DF strategy and
the CF strategy. In both cases, the constraint on bandwidth or
time translates to scaling the mutual information by a factor
α or 1−α while cooperation, if any, between the sources and
relay is achieved in the1−α fraction at the destination. We do
not consider the AF strategy for a FDD relay when the sources
also transmit in the1 − α fraction as it does not lend itself
to the same interpretation of a multiple-access inter-symbol
interference (ISI) channel at the destination that it does for
TDD. Finally, we remark that the analysis can be generalized
to allow the source and destination nodes to have a positive
probability of being in sleep mode. It can then similarly be
shown that the C-MARC rate bounds obtained when all the
nodes time-duplex between their three SLoT modes are the
same as those obtained if all nodes used orthogonal frequency
bands for the three modes.

IV. W IRELESSEXAMPLES

In [4], two example geometries are considered to illustrate
the gains achieved by using a relay relative to direct transmis-
sion. We consider the same geometries here as shown in Fig.



1. While the two geometries chosen clearly illustrate capacity
achieving strategies, they are also reflective of the typical
performance achieved by the various strategies consideredhere
for an arbitrary placement of source and relay nodes. Case 1
is a geometry with a symmetric positioning of the sources
with respect to the relay and destination while case 2 is a
collinear geometry with both sources at the origin and the
destination a unit distance away from the origin. In both cases,
the relay moves along the line connecting the destination with
the origin. We compare the cooperative strategies described in
Section II with traditional multi-hop routing, where messages
from the sources are forwarded to the destination in two hops,
the first from the source to the relay in the fractionα and
the second from the relay to destination in the fraction1−α.
Without any loss of generality, we assume that all transmit
nodes employ TDD for this analysis.

In multi-hop routing, the sources do not transmit when
the relay forwards thereby conserving power. To make a fair
comparison, we apply the same restriction on the C-MARC
by imposing a sleep state on the source nodes in the1 − α

time fraction to obtain a Gaussian orthogonal multiple-access
relay channel. We also make appropriate modifications to the
resulting rate bounds for the DF, P-DF, CF, and AF rate bounds
in [4]. A direct consequence of this restriction is that the
DF and P-DF strategies simplify to the same strategy that
we shall henceforth refer to as DF. Further, as is common in
multi-hop routing, we half-duplex the transmitters by setting
α = 1 /2 . We remark that for this SLoT choice the sources
and relay transmit in orthogonal channels, and there now exists
an equivalent frequency-duplexed representation for the AF
strategy with the same rates achieved by both TDD and FDD
under the constraints discussed in Section III.

We present and analyze the results separately for the two
fading models we consider, namely, the constant non-fading
and the ergodic fast fading channel. For the following analysis
the path loss exponentγ is chosen as4 and all logarithms are
evaluated with respect to base 2 so that the resulting rates are
in units of bits per channel use.

A. No Fading

The sum-rate for the DF, AF, CF, and multi-hop (MH)
strategies, in addition to the outer bounds (OB) are plottedas a
function of the relay’s position in Figs. 2 and 3 for cases 1 and
2 respectively andP1 = P2 = P3 = 2. The rate bounds for
the DF, CF, AF, and OB are obtained by settingX

(1−α)
m = 0

for m = 1, 2 in the C-MARC bounds presented in [4]. The
rate bounds for the MH strategy are given by the set of rate
pairs(R1, R2) that satisfy, for allG ⊆ {1, 2},
∑

m∈G

Rm ≤ min
{

αI(X(G); Y3|X(Gc)), (1 − α) I(X3; Y4)
}

(11)
for an input distributionαp(x1)p(x2) + (1 − α)p(x3) that is
chosen Gaussian to maximize rates over a white Gaussian
fading channel. Finally, the disadvantage of half-duplexing is

d41=1d31

d32

Destination

d

S1

S2

(0,0)

DestinationS1 ,S2 : (0,0)

d31=d32=d

d41=d42=1

Relay

Relay

Case 1

Case 2

d42=1

.6

.6

Fig. 1. Two geometries for a two-sensor MARC

clearly revealed by plotting the maximum achievable rates over
all α for DF and MH as well as OB.

As shown in Fig. 2 and Fig. 3, the DF strategy meets the
outer bounds when the relay is closer to the sources than it is
to the destination. Thisclustering of sources and relay yields
a high rate channel between the sources and relay resulting in
the smaller rates at the destination, same for both DF and
OB, determining the bounds. Clearly from the figures, the
DF strategy demonstrates the usefulness of a relay that is not
physically located between the sources and destination, asis
possible in a network of randomly deployed nodes, provided
the destination uses the received signals from both the sources
and relay to decode. The poor performance of the MH strategy
relative to the other strategies for relay positions not close to
the destination is a direct consequence of the destination not
using the received information from both fractions to decode.
MH achieves the same rates as DF when the relay approaches
the destination.

For relay positions closer to the destination, the CF and
AF strategies approach the outer bounds. The CF and AF
strategies result in a multiple-access system with two receive
antennas at the destination, one receiving the direct signal and
the other, a delayed noisy version of the signal received at
the relay. The choice between AF and CF when the relay
is close to the destination can be made based on energy
and processing limitations of the relay and overall system
latency requirements. The rates for the CF strategy result from
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the destination exploiting the correlation between its received
signal,Y4, and that at the relay,Y3, in addition to decoding
the relay’s signalX3 ( [8, theorem 6]). If the destination did
not exploit this correlation in decodingY3, it can be shown
that for α = 1 /2 and half-duplexed sources, CF simplifies to
the AF strategy.

We remark that the fractionα that maximizes the rates
achievable for each strategy is, in general, not1 /2 for any
arbitrary network geometry. In [10], forM = 1, it is shown
that capacity is achieved whenα is chosen as the fractionα∗

DF

that maximizes the DF strategy. In general, however, for any
choice of source and relay positions,α∗

DF 6= α∗

OB whereα∗

OB

maximizes the outer bounds. However, DF maximized overα,
shown in Figs. 2 and 3 as DF OPT, achieves capacity when
the sources and relay form acluster such thatα∗

DF = α∗

OB.
The optimal OB curve is shown as OB OPT. Maximizing MH
rates overα in (11) results in the sources transmitting full-

duplex (FD) (α = 1) when they are closer than the relay is
to the destination. The advantage of multi-hopping relative
to direct FD for relay positions between the sources and
destination is revealed by the plot MH OPT. These plots also
reveal the region where half-duplexing the sources and relay is
advantageous relative to FD direct. Finally, allowing the source
nodes to transmit cooperatively with the relay in the1 − α

fraction for the same average power will, in general, increase
the outer bounds and achievable rates for all strategies.

B. Ergodic Phase Fading

An ergodic phase fading model is appropriate for hierar-
chical ad hoc networks deployed over fast-changing terrainor
in high-mobility environments. Similar to the no fading case,
the DF and P-DF strategies achieve capacity for the ergodic
channel when the sources and relay form a cluster [4]. For the
present analysis where the sources sleep in the1−α fraction,
the rates obtained for the ergodic phase-fading channel for
the DF and MH strategies simplify to those obtained for the
no fading case. The capacity achieving behavior of DF and
DF OPT over the relay positions [-.525, -.13] and [-.3,.4] is
evident in Figs. 2 and 3 for case 1 and 2 respectively.

Thus, given a choice in the placement of the relay, for
the appropriate channel and transmitter power constraints, a
cooperative strategy can be chosen to achieve the best rate
from the strategies considered here.
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