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Abstract—Advances in cognitive radio networks have primarily
focused on the design of spectrally agile radios and novel spectrum
sharing techniques that are founded on expected utility theory
(EUT). In this paper, we consider the development of novel spec-
trum sharing algorithms in such networks taking into account
human psychological behavior of the end-users, which often devi-
ates from EUT. Specifically, we consider the impact of end-user
decision making on pricing and management of radio resources in
a cognitive radio enabled network when there is uncertainty in the
quality of service (QoS) guarantees offered by the service provider
(SP). Using prospect theory (a Nobel-Prize-winning behavioral
economic theory that captures human decision making and its
deviation from EUT), we design data pricing and channel alloca-
tion algorithms for use in cognitive radio networks by formulating
a game theoretic analysis of the interplay between the price offer-
ings, bandwidth allocation by the SP, and the service choices made
by end-users. We show that, when the end-users under-weight the
service guarantee, they tend to reject the offer, which results in
under-utilization of radio resources and revenue loss. We propose
prospect pricing, a pricing mechanism that can make the system
robust to decision making and improve radio resource manage-
ment. We present analytical results as well as preliminary human
subject studies with video QoS.

Index Terms—Game theory, prospect theory, probability
weighting, prospect pricing.

I. INTRODUCTION

C OGNITIVE Radio Networks (CRNs) [1] and advanced
spectrum sharing techniques have been studied exten-

sively over the past decade [2]. In general, game theory plays
a major role in studying the economical effects that CRNs
could bring to the Service Providers (SPs), as well as the opti-
mal radio resource management for the SPs when designing
spectrum sharing rules and algorithms. Some examples of the
applications of game theory in CRNs include auction-based
spectrum sharing [3], data pricing [4], power control and alloca-
tion [5], [6], Quality of Service (QoS) management [7], [8], and
security [9].

Among the aspects mentioned above, QoS guarantee and
data pricing are particularly interesting to us. One reason is
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that QoS is often hard to guarantee in CRNs, mainly due
to spectrum uncertainty under a CRN setting [10]–[12]. For
example, the uncertainty in available spectrum due to inter-
fering users (or even primary users) can result in situations
where the service cannot be guaranteed for the time period
required by the user. When the SP opportunistically acquires
available spectrum by performing spectrum sensing herself
[11], a mis-detection will cause the user to experience large
noise and low service guarantee when accessing the channel.
In fact, the result of a Federal Communications Commission
(FCC) survey, which aims to provide the users information on
the service qualities of offerings by different SPs when mak-
ing their decisions to purchase, has shown that the advertised
transmission rate (which affects the QoS) was not 100% guar-
anteed even in the broadband internet [13], [14]. The above
issues naturally lead to the problem of data pricing, since the
guarantee of the service quality contributes to the users’ deci-
sion making process. Furthermore, research has shown that a
user’s subjective perceptions of the service quality often devi-
ates from the actual service quality [15]–[17]. This indicates
that pricing should not be entirely based on the QoS with-
out taking the users’ subjective perceptions of the service into
consideration.

An even more important reason that motivates this work
is that we believe that end-user behavior plays an important
role under a CRN setting, and many algorithms designed for
CRN can be potentially impacted by those behaviors. Examples
include situations where a secondary user needs to decide
whether or not to access spectrum based on the uncertainty in
the spectrum sensing performed. Alternately, when a primary
user chooses to lease her unoccupied spectrum to secondary
users by algorithms based on non-cooperative games or auction
mechanisms, the secondary users have to decide on whether or
not to lease the spectrum, and how much to pay for it given the
uncertainty surrounding the QoS. The above scenarios demand
an understanding and accurate modeling of an end-user’s deci-
sion making process, so that the primary users, when leasing
their spectrum resources, can more accurately evaluate their
expected outcomes.

This leads to the basic structure of our work. We investigate
a secondary system, where an SP acquires bandwidth from pri-
mary users, and sells broadband internet service to end-users.
In particular, we assume that the service cannot be fully guaran-
teed, and we model the uncertainty involved in the guarantee of
the service with the probability that the service quality actually
meets the advertised service quality and assume that this piece
of information is available to the end-users when they make
decisions, an idea inspired by [13], [14]. Next, we model the
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impact of end-user’s decision making process using Prospect
Theory (PT) [18], a Nobel-Prize-winning theory that is par-
ticularly successful in modeling and explaining how people’s
decisions under risks and uncertainty deviate from the frame-
work of Expected Utility Theory (EUT) [19]. We study the
impact of the end-users’ decision making process on the profit
and radio resource management of the SP, when they have a
skewed view on the service guarantee. To combat this impact,
we propose prospect pricing, which focuses on possible strate-
gies for the SP including bandwidth reallocation, rate control,
bandwidth expansion/reduction, and admission control, all of
which can be achieved under a CRN setting, and study their
capabilities of recovering the revenue for the SP. Our results
relate the SP’s bandwidth resources with her ability to dynam-
ically manage her radio resources so as to obtain the same
amount of revenue as originally anticipated without consider-
ing the end-users’ skewed perceptions. We show that under
some conditions, the impact of the end-users’ perception is
large enough so that the SP simply cannot obtain the amount
of revenue originally anticipated.

The rest of the paper is organized as follows. In Section II,
we introduce the related work on data pricing, the background
on PT, as well as the works that applies PT to wireless commu-
nications scenarios. In Section III, we model the interactions
between the end-users and the SP as a Stackelberg game, while
the conditions under which the existence of a pure strategy NE
can be guaranteed are discussed in Section IV. In section V,
we discuss the impact of the Probability Weighting Effect
(PWE) on the end-user’s decision making process, the rev-
enue of the SP. Section VI discusses the prospect of recovering
the revenue of the EUT game via prospect pricing. Numerical
results are shown in Section VII while in section VIII, we dis-
cuss psychophysics experiments with human subjects of video
QoS over wireless channels so as to model the parameter used
to characterize the probability weighting effect.

II. RELATED WORK

A. Prospect Theory: A Brief Introduction

The rationality assumption in game theory [20], which states
that a player’s decision making process is often assumed to
be completely following the axioms and theorems established
in Expected Utility Theorey [19], has long been questioned
by behavioral science [21]. Although EUT explains most of
the people’s decision making successfully, paradoxes have
been observed in real life that contradict the predictions of
EUT. Alternative theories explaining human’s decision making
processes were raised in the 1970s, with the most successful
one being Prospect Theory [18], whose main differences with
EUT are

1) Probability Weighting Effect (PWE): the weight of the
payoff of each possible outcome is different from the
probability of the occurrence of that outcome.

2) Framing Effect (FE): the payoff of each outcome is
framed into either gain or loss relative to a reference point.

These two features can be illustrated with a variation of the
famous Allais’s Paradox [22], which is also used in [18].

In the experiment, two problems were sequentially presented
to a group of 100 participants. Each problem contains 2 alter-
natives. For the first problem, the participants were asked to
choose between
• A: $2500 with probability 0.33; $2400 with probability

0.66; $0 with probability 0.01;
• B: $2400 with certainty,

while in the second problem between
• C: $2500 with probability 0.33; $0 with probability 0.67;
• D: $2400 with probability 0.34; $0 with probability 0.66.

According to EUT, the expected utility of each alternative
can be calculated by taking the expectation of payoff amount for
different outcomes, which, for an alternative with M outcomes
o1 to oM and their corresponding occurring probabilities o1 to
oM , can be computed with

UEU T =
M∑

i=1

vEU T (oi )pi . (1)

It can be easily verified that

UEU T (A) = 2500× 0.33+ 2400× 0.66+ 0× 0.01

= 2409 > 2400 = UEU T (B), (2)

while

UEU T (C) = 2500× 0.33 = 825 < 850

= 2500× 0.34 = UEU T (D). (3)

Thus, if the participants make their decisions following the pre-
diction of EUT, i.e., choosing the alternative that maximizes the
expected utility, then the participants should prefer A to B in
problem 1 and D to C in problem 2. However, the result shows
that the majority (82%) of the participants chose B in problem 1
and the majority (83%) of the participants chose C in problem 2.

The results violate the predictions of EUT, but under the
framework of PT, they can be well explained. Under PT, peo-
ple are assumed to choose the alternative that maximizes the
prospect, which can be computed with

UPT =
M∑

i=1

vPT (oi )w(pi ). (4)

The definition of prospect is very similar to the definition of
the expected utility, except that pi is weighted by an inverse-
S-shaped Probability Weighting Function (PWF) w(·), which
characterizes the PWE analytically. In addition, vEU T (oi ) is
replaced by vPT (oi ), which depicts the FE. Figure 1 illus-
trates the idea of PWE by Prelec’s PWF. The PWF captures
the feature that people often over-weight low probabilities and
under-weight moderate and high probabilities. The value func-
tion captures the effect of loss aversion on people, i.e., the same
amount of loss usually looms larger than the same amount of
gain to a person.

The result of the experiment can be explained immediately
with the above setup. In problem 1, since alternative B provides
a guaranteed payoff, that payoff becomes the reference point
when framing the payoff of each outcome under the other alter-
native. Thus, $2500 becomes a gain of $100, while $0 becomes
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Fig. 1. Prelec’s probability weighting function with three different values α

indicating different levels of skewness.

a loss of $2400. It can then be readily seen that if the probability
0.01 is over-weighted as depicted in Figure 1, then most people
would have indeed preferred B to A. The same argument applies
to problem 2. In our work, we adopt Prelec’s PWF, which is first
proposed in [23], and parametrized by α ∈ (0, 1]:

w(p) = exp
{−(− ln p)α)

}
. (5)

However, most of the conclusions in this work can be easily
generalized to other inverse-S-shaped PWFs. We also report on
psychophysics studies with human subjects to experimentally
determine the value of α in section VIII. Note that we do not
consider the role of FE in this paper and that is a topic for future
study.

B. Data Pricing

Pricing of wireless data has been widely studied for over a
decade. Most of the work focuses on proposing mechanisms
that offer control over the network’s traffic while maximizing
the revenue of the service provider. A comprehensive survey
of the most typical strategies adopted by the SPs over the past
years, offering either wired or wireless services, can be found
in [24]. Traditionally, the SPs use flat-rate pricing strategies
as well as usage-based pricing strategies, which offer limited
ability on managing network traffic. More complicated pricing
strategies are adopted later on, for example Paris Metro pric-
ing [25], time-of-day pricing [26], [27], and congestion level
based pricing [28]. Those strategies are harder to implement,
but offer better performances in managing the congestion level
of the network, as well as higher service guarantee as they make
some users back off when purchasing the service by making
them aware of the actual cost of accessing the network when
the congestion level is high by setting a higher price.

However, even with advanced pricing strategies, the uncer-
tainty involved in the guarantee of the service cannot be
avoided. In particular, in wireless communication, the uplink
and downlink rates cannot be guaranteed due to noise and inter-
ference, which cannot be accurately predicted at the time the
service is purchased. Thus, the end-users often have to make
difficult choices between several alternatives of accessing the
network, in which the service quality she gets is stochastic.

Fig. 2. System model

Recently, there has been a category of work that study this
particular type of decision making problem of the end-users
with Prospect Theory, spanning a number of areas including
communication networks [29]–[35], and smart energy manage-
ment [36], [37]. The subject of pricing is addressed in [29],
[30], and in our previous work [38], [39]. In [38], we studied
the same problem of this work under a more specific setting,
i.e., assuming there exists only one end-user. We studied the
conditions under which an NE exists, and found the NE that
gives the SP maximum revenue. We then studied the case when
the end-user follows the decision making process of PT, and
showed that the SP cannot avoid revenue loss if she wants to
retain the same NE or the same revenue under the PT game. In
[39], we generalized the framework to the multiuser setting.

III. A STACKELBERG GAME MODEL

We study the scenario under a CRN shown in Figure 2, where
the secondary system has a service manager, or SP, who actively
manages and allocates available radio resources and sells ser-
vice to N end-users. The scenario where N = 1 is a special
case and is studied in [38]. The bandwidth is assumed to be
obtained from primary users by means of trading, an assump-
tion that’s frequently considered to maximize the bandwidth
utilization [40], [41]. Meanwhile, the data is assumed to be
obtained from the service offerings of higher tier ISPs. The
interaction between the SP and the end-users is modeled into
a Stackelberg game. The SP is aware of the number of users
within its service range, and moves first by investing necessary
resources, and making offers to the users. The end-users then
decide whether or not to accept the service. The decisions are
assumed to be made at the same time.

We define an offer made by the SP under the EUT
game as a triple {b, rEU T (b), �BW EU T }, which corresponds
to the rate b, the price of the service at that rate deter-
mined by a predefined pricing function rEU T (b), and
a specific allocation of the SP’s bandwidth denoted by
�BW EU T = {BW1,EU T , . . . , BWN ,EU T }, which satisfies the
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TABLE I
PARAMETERS INVOLVED AND THE LOCATIONS OF THEIR DEFINITIONS AND INTRODUCTIONS

total bandwidth constraint | �BW EU T | = BWmax,EU T . On the
user side, we assume that the actual service rate for the i-th
user is a random variable Bi , and the service guarantee at rate
b is a function that only depends on the channel between the
user and the SP, the rate offered and the amount of bandwidth
allocated to that user, and has the following form

F̄Bi (b; BWi,EU T ) := P(Bi > b|BWi,EU T ). (6)

For a fixed rate b, increasing BWi,EU T raises the service
guarantee.

Denote the i-th user’s benefit upon receiving guaranteed ser-
vice at rate b with hi (b). Since the SP offers constant rate,
we can see that if the user accepts the offer, she pays a price
rEU T (b), and with probability F̄Bi (b; BWi,EU T ) she receives
successful service, and with probability FBi (b; BWi,EU T ) :=
1− F̄Bi (b; BWi,EU T ) the channel cannot successfully deliver
the service at rate b and the user experiences an outage. Hence,
denoting the acceptance probability of the i-th user as pi , the
expected utility of the i-th user can then be represented as

Uuser,i (pi , b, BWi,EU T ) = pi [−rEU T (b)

+ hi (b)F̄Bi

(
b; BWi,EU T

)+ hi (0)FBi (b; BWi,EU T )
]

+ (1− pi )hi (0). (7)

As a natural assumption, we assume that hi (0) = 0 for all
users. Thus, Uuser,i (pi , b, BWi,EU T ) = pi [−rEU T (b)+
hi (b)F̄Bi (b; BWi,EU T )]. Note that the above model of the
user’s utility function is a special case of a more general
scenario where the SP constantly adapts her transmission rate
according to the channel’s capacity. Under this general set-
ting, Uuser,i (pi , b, BWi,EU T ) = pi [E[hi (Bi )]− rEU T (b)]+
(1− pi )hi (0). This general form of the user’s expected utility
reduces to (7) when the user’s benefit function is a step
function, i.e., hi (Bi ) = hi (b) > 0 for Bi > b and hi (0) for
Bi < b with b being the advertised rate by the SP, which is
equivalent to assuming that the user is insensitive to the actual
service rate higher than advertised, and is extremely sensitive
when the service delivered is below rate b. More general cases
involving more complicated form of hi (Bi ) can be studied, but

involves tedious work on analyzing the properties of E[hi (Bi )]
under the EUT game and PT game1.

As for the SP, a cost ci (b, BWi,EU T ) is incurred upon her
when she makes an offer at rate b to the i-th user. Specifically,
we assume an affine cost function for each individual user

ci (b, BWi,EU T ) = c1b + c3 BWi,EU T , (8)

since the SP invests in resources based on the number of users
in its service range. c1 and c3 are the cost for unit data rate
and bandwidth. The fixed cost for the SP is ignored. Hence, the
expected utility of the SP can be expressed as

US P

(
�p, b, �BW EU T

)
=

N∑
i=1

[
pi
[
rEU T (b)− ci

(
b, BWi,EU T

)]
+ (1− pi )

(−ci
(
b, BWi,EU T

))]
. (9)

We place a few more natural assumptions on our model.
Firstly, rEU T (b) and hi (b) are assumed to be monotonically
increasing and concave. The service guarantee for each user
is assumed to converge to 0 as the offered rate tends to ∞
under fixed bandwidth. Meanwhile, the service guarantee for
a user is a monotonically increasing function with respect to
the bandwidth allocated to that user.

Lastly, we summarize the parameters we use in Table I.

IV. EXISTENCE OF MULTIPLE NASH EQUILIBRIA

OF THE EUT GAME

With the above settings, the conditions for the existence of
an NE can be characterized. Consider two cases, with one
involving only a single user, and the other involving multi-
ple users. For simplicity, we dub the first case as a Single-
User-Single-Provider (SUSP) game, and the second case as a
Multiple-User-Single-Provider (MUSP) game.

Theorem 1 (The existence of multiple Nash Equilibria (NE)):
Assuming that ∀i ,

rEU T (b∗1,EU T ) > ci (b
∗
1,EU T , BWmax,EU T ), (10)

1The computation of expectation of a continuous random variable under the
probability weighting effect can be dealt with the help from [42], [43].
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where

b∗1,EU T = argmax
b

(rEU T (b)− ci (b, BWmax,EU T )), (11)

then there exists a pure strategy NE for the MUSP game2 if and
only if there exists a pure strategy NE for at least one of the
SUSP game consisting of one of the N users and the SP, under
which the SP allocates the entire bandwidth she has to that user.

The detailed proof can be found in [39].
Remark 1: It is worth pointing out that we do not consider

mixed strategy NE in the MUSP game. This is because,
assuming that under an NE the acceptance probability of
the users is represented by �p, the offered rate is b, and
the allocation of the bandwidth is represented by �BW EU T ,
we have US P ( �p, b, �BW EU T ) =∑i∈SEU T

pi (rEU T (b)−
ci (b, BWi,EU T )) = p̄|SEU T |rEU T (b)− |SEU T |c1b −
c3 BWmax,EU T , where p̄ is the average acceptance proba-
bility of all the users within set SEU T . In order to reach a mixed
strategy NE, the SP must find a rate b and a corresponding
bandwidth allocation �BW EU T such that all the users are indif-
ferent between accepting and denying the offer. However, the
expression also shows that the users’ acceptance probabilities
represented by �p only affect the SP’s decisions through their
average p̄. Hence, for any combinations of offered rate and
bandwidth allocation that induce a mixed strategy NE, the
acceptance probabilities of the users can be arbitrary as long
as the average acceptance probability remains fixed and the SP
cannot obtain a higher revenue through offering the service to
a subset of SEU T . Hence, the SP does not have control over
the individual user’s acceptance probability under a mixed
strategy NE.

We next specifies a procedure with which the SP finds the
strategy that leads to the revenue-maximizing NE. This strategy
includes a service offering, and the corresponding bandwidth
allocation. We define the minimum amount of bandwidth that
can be allocated to user i at rate b to be

BWi (b) = F̄−1
Bi

(
rEU T (b)

hi (b)
, b

)
,

which is equivalent to the amount of bandwidth that satisfies

F̄Bi (b; BWi (b)) = rEU T (b)

hi (b)
,

and we assume that the SP knows this piece of information for
all users. The procedure is specified in algorithm 1.

In algorithm 1, the SP first categorizes all pure strategy
NE according to the number of users that accepts the offer.
For an NE where n users accept the offer, the SP goes on to
find the rate such that when n users accept the offer, the rev-
enue is maximized while the minimum bandwidth needed to
support the service to the selected users satisfies the total band-
width constraint. However, if there exists an S with a larger
size, then the strategy will not lead to an NE. Hence we set
the revenue to 0 so that it will not be selected. The revenues

2We use the phrase “pure strategy NE" to refer the NE where the users accept
the service with probability 1. The case where the users decline the service offer
is excluded from our context.

Algorithm 1. Locating the revenue-maximizing NE

1: Input: SEU T , rEU T (b), BWmax,EU T , and for all i’s hi (b)

and BWi (b).
2: Output: The revenue maximizing strategy (b∗1,EU T , rEU T

(b∗1,EU T ), �BW EU T ).
3: for n = |SEU T | to 1 do
4: b∗1,EU T [n]← argmaxbnrEU T (b)− nc1b, s.t.,

minS⊆SEU T ,|S|=n
∑

j∈S BW j (b) < BWmax,EU T .
5: US P,EU T [n]← nrEU T (b∗1,EU T [n])− nc1b∗1,EU T [n]−

c3 BWmax,EU T

6: if ∃S ⊆ SEU T , |S| > n, such that
∑

j∈S BW j (b∗1,EU T ) <

BWmax,EU T then
7: US P,EU T [n]← 0
8: end if
9: end for

10: n∗ ← argmaxnUS P,EU T [n]
11: b∗1,EU T ← b∗1,EU T [n∗]
12: S∗ ← argS,|S|=n

∑
j∈S BW j (b∗1,EU T ) < BWmax,EU T

13: BWi ← BWi (b∗1,EU T )+ ε if i ∈ S, and BWi ← 0
otherwise

under different choices of n are then compared, and the rev-
enue maximizing NE is located for a specific n∗. Lastly, the
SP selects a possible choice of S with size n∗, and allocate
slightly more than the minimum bandwidth needed for each
user so that they accept the offer with probability 1. Finally,
note that under the revenue-maximizing n∗, the choice of S is
unique, which consists of the n∗ users with the lowest values
of BWi (b∗1,EU T ).

V. THE IMPACT OF PROSPECT THEORY ON END-USER

DECISIONS

In the remainder of this paper, we consider the impact of
Prospect Theory on end-users’ decisions of whether or not to
accept a service offer, its impact on the radio resources and the
revenue of the SP. In particular, we focus on the effect of end-
user’s weighting of the service guarantee, i.e., the PWE aspect
of PT. We shall see that, when the end-users under-weight the
service guarantee, they tend to reject the offer, which leads to
an under-utilization of the SP’s radio resources and a loss in
revenue.

For the MUSP game, we study the condition under which
the system is robust to the PWE in the sense of retaining all the
users without having to change the service offer. The result is
summarized as follows.

Theorem 2: If all the users under-weight the service guaran-
tee, and the same offer inducing the pure strategy NE under the
EUT game is offered to the same set of users, then the NE is
preserved under PWE if and only if ∀i ∈ SEU T ,

BWi,EU T > F̄−1
Bi

(
λi , b∗1,EU T

)
, (12)

where

λi = w−1 (F̄Bi

(
b∗1,EU T ; BWi (b

∗
1,EU T )

))
. (13)
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Proof: For the i-th user, the necessary and sufficient
condition for him to accept an offer at rate b∗1,EU T and price

rEU T (b∗1,EU T under the impact of PWE is hi (b∗1,EU T )w(F̄Bi

(b∗1,EU T ; BWi,EU T )) > rEU T (b∗1,EU T ), i.e., w(F̄Bi (b
∗
1,EU T ;

BWi,EU T )) > F̄Bi (b
∗
1,EU T ; BWi (b∗1,EU T )). Since the

probability weighting function is monotonically increas-
ing, and thus have an inverse, we have BWi,EU T >

F̄−1
Bi

(w−1(F̄Bi (b
∗
1,EU T ; BWi (b∗1,EU T ))), b∗1,EU T ). �

The above result indicates that, in order to retain all the
users without changing the service offer, the total amount of
bandwidth of the SP must be “sufficient":

BWmax,EU T =
∑

i∈SEU T

BWi,EU T

>
∑

i∈SEU T

F̄−1
Bi

(
λi , b∗1,EU T

)
. (14)

When α = 1, w(p) = p, and the PT game reduces to EUT
game. As α decreases, w−1(p) increases for every fixed p that
satisfies w(p) < p, and hence the right hand side of the above
inequality increases, indicating that when PWE is introduced
and the users under-weight the service guarantee, the SP must
invest in more bandwidth than the amount required under the
EUT game in order to retain all the users with the same offer.

VI. PROSPECT PRICING

In this section, we introduce the idea of prospect pricing to
make the system robust against the PWE experienced by the
users. For the MUSP game, the SP needs to perform prospect
pricing by setting a new price rPT (b) at the offered rate b when
the bandwidth of the system does not satisfy the condition spec-
ified in equation (14). The goal of prospect pricing consists the
following two aspects.
• Retain the Radio Resource Management (RRM) con-

straints when PWE is introduced. The RRM constraints
for the MUSP game are defined as follows⎧⎪⎪⎨

⎪⎪⎩
SEU T = SPT ,

b∗1,EU T = b∗1,PT ,

BWmax,EU T = BWmax,PT ,
�BW EU T = �BW PT

. (15)

The constraints restrict the SP to offer service of the same
rate to the same set of users when PWE is introduced.
They also restrict the SP to allocate the same amount of
bandwidth to each user within the set.
• Retain the revenue of the EUT game when the end-users

under-weight the service guarantee.
We first show that, in the MUSP game the SP cannot retain

her revenue and the RRM constraints simultaneously, provided
that all the users under-weight the service guarantee, i.e., the
SP cannot strictly retain all RRM constraints without suffering
a revenue loss. We then show that by partially relaxing the RRM
constraints, it is possible for the SP to retain her revenue under
the EUT game.

Theorem 3: When (14) is not satisfied, and when all the
users under-weight the service guarantee, Prospect Pricing can

be used to retain strict RRM constraints, at the cost of the SP
losing revenue of at least

L R RM = max
i∈SEU T

{
rEU T

(
b∗1,EU T

)
−hi

(
b∗1,EU T

)
w
(
F̄Bi

(
b∗1,EU T ; BWi,EU T

))}
.

The detailed proof can be found in [39].
Next, we discuss four other strategies that can be used by the

SP along with prospect pricing. These include
• Bandwidth reallocation: the SP reallocates the available

unoccupied bandwidth among the users. In a CRN, the
SP is capable of performing this since she needs to real-
locate her bandwidth whenever a channel allocated to a
secondary user is occupied by a primary user.
• Admission control: the SP offers the service to a set of

users SPT which is a subset of SEU T .
• Bandwidth expansion/reduction: the SP invests in a dif-

ferent amount of bandwidth BWmax,PT . This can be
achieved when the spectrum of the SP is leased from
primary users, which has been a commonly adopted
assumption [11].
• Rate control: the SP offers a different rate b∗1,PT to

the users, similar to rate adaptation often used in CRN
algorithms.

Note that, except for bandwidth expansion/reduction, the other
strategies requires maintaining the total bandwidth constraint,
i.e., BWmax,EU T = BWmax,PT . The allocation of the band-
width among the end-users, however, can be arbitrary. When
(14) is not satisfied, we want to find out whether the above four
strategies, when applied together with prospect pricing, could
help the SP retain the revenue she would get if the users fol-
lows decision making process of under the EUT framework.
The results are described below.

A. Bandwidth Reallocation

In bandwidth reallocation, the SP has the freedom to change
the amount of bandwidth allocated to each user, subject to the
total bandwidth constraints. The rate offered must also be the
same.

Theorem 4: With bandwidth reallocation, the revenue loss
can be reduced, but not fully recovered.

Proof: In order to retain strict RRM constraints, all the
users must accept the same offer containing the same rate and
bandwidth, i.e., ∀i ∈ SEU T , rPT (b∗1,EU T ) < hi (b∗1,EU T )w(F̄Bi

(b∗1,EUT ;BWi,EUT)). Hence, we have rPT(b∗1,EUT) < mini∈SEU T

{hi (b∗1,EU T )w(F̄Bi (b
∗
1,EU T ; BWi,EU T ))}. However, mini∈SEUT

{hi (b∗1,EUT)w(F̄Bi (b
∗
1,EUT ;BWi,EUT))}<rEUT(b∗1,EUT). Hence,

in order to retain strict RRM constraints, the SP must take a
revenue loss of at least L R RM = rEU T (b∗1,EU T )−mini∈SEU T

{hi (b∗1,EU T ) w(F̄Bi (b
∗
1,EU T ; BWi,EU T ))} = maxi∈SEU T {rEU T

(b∗1,EU T )− hi (b∗1,EU T )w(F̄Bi (b
∗
1,EU T ; BWi,EU T ))}. Allowing

reallocation of the bandwidth will reduce the revenue loss,
since the revenue loss allowing bandwidth allocation L B A

is the minimum revenue loss over all possible bandwidth
allocation, and the bandwidth allocation under strict RRM
constraints is only one instance.
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We next show that allowing reallocation of the bandwidth
cannot help the SP to fully recover the revenue by contradic-
tion. Since the service is offered to the same set of users and
the offered rate remains the same, the price must be the same in
order to retain the revenue, i.e., rEU T (b∗1,EU T ) = rPT (b∗1,EU T ).
Assume that there exists a bandwidth allocation such that ∀i ∈
SEU T , rPT (b∗1,EU T ) < hi (b∗1,EU T )w(F̄Bi (b

∗
1,EU T ; BWi,PT )).

Then we must have ∀i ∈ SEU T ,

BWi,PT > F̄−1
Bi

(
w−1

(
rPT (b∗1,EU T )

hi (b∗1,EU T )

)
; b∗1,EU T

)

= F̄−1
Bi

(
λi ; b∗1,EU T

)
. (16)

Hence, the summation over the set SEU T yields the condi-
tion specified in (14), contradicting the assumption that the
bandwidth is insufficient in the first place. �

Note that the SP can acquire the optimal bandwidth allo-
cation under the PT game by minimizing L R RM with respect
to the amount of bandwidth allocated to each user. Hence the
reduction of L R RM is 0 if the original bandwidth allocation
under the EUT is the same as this optimal bandwidth allocation
scheme.

Next, we explore other ways of relaxing the RRM constraints
the SP can resort to in order to recover her revenue. We dis-
cuss a set of necessary and sufficient conditions under which
the revenue can be recovered.

B. Admission Control

The SP is allowed to violate the RRM constraints by select-
ing SPT ⊂ SEU T . Upon excluding one user, the SP is able
to reallocate the bandwidth to other users to increase service
performance.

Proposition 1: The necessary and sufficient condition for the
SP to recover her revenue is to have sufficient bandwidth under
the EUT game. Mathematically,

BWmax,EU T =
∑

i∈SPT

BWi,PT

> min
SPT⊂SEU T

∑
i∈SPT

F̄−1
Bi

(
w−1 (λi,AD

) ; b∗1,EU T

)
,

(17)

with

λi,AD =
|SEU T ||SPT | rEU T (b∗1,EU T )−

( |SEU T ||SPT | − 1
)

c1b∗1,EU T

hi (b∗1,EU T )
.

(18)

Proof: We start by showing necessity. In order to retain
revenue, we must have |SEU T |(rEU T (b∗1,EU T )− c1b∗1,EU T )−
c3BWmax,EU T = |SPT |(rPT (b∗1,PT )−c1b∗1,PT )−c3BWmax,PT ,
where b∗1,EU T = b∗1,PT , and BWmax,EU T = BWmax,PT .
Hence, ∃rPT (b∗1,PT ) and SPT s.t., |SEU T |(rEU T (b∗1,EU T )−
c1b∗1,EU T ) = |SPT |(rPT (b∗1,PT )− c1b∗1,PT ), i.e., the form of
the pricing function under the PT game at rate b∗1,PT is

rPT (b∗1,PT ) =|SEU T |
|SPT | rEU T (b∗1,EU T )

−
( |SEU T |
|SPT | − 1

)
c1b∗1,EU T . (19)

In order for the users to accept the offer, we must have ∀i ∈
SPT ,

rPT (b∗1,PT ) < hi (b
∗
1,PT )w(F̄Bi (b

∗
1,PT ; BWi,PT )), (20)

i.e., ∀i ∈ SPT , the amount of bandwidth under the PT game is
lower bounded by

BWi,PT > F̄−1
Bi

(
w−1

(
rPT (b∗1,PT )

hi (b∗1,PT )

)
; b∗1,PT

)

= F̄−1
Bi

(
w−1 (λi,AD

) ; b∗1,EU T

)
. (21)

Since the total bandwidth is constrained to BWmax,EU T , we
have

BWmax,EU T =
∑

i∈SPT

BWi,PT

>
∑

i∈SPT

F̄−1
Bi

(
w−1 (λi,AD

) ; b∗1,EU T

)
, (22)

which can be further lower bounded by taking the minimum
over all SPT ⊂ SEU T .

We next prove sufficiency. Firstly, if the above condition is
satisfied, then we must have a set SPT ⊂ SEU T and a corre-
sponding price under the NE rPT (b∗1,PT ) such that ∀i ∈ SPT ,
equation (20) holds. This is obvious, as we can simply choose
the price as given by equation (19) and allocate BWi,PT slightly
higher than the minimum amount required.

Hence, the only thing left to show is that

|SPT |(rPT (b∗1,PT )− c1b∗1,PT ) > c3

∑
i∈SPT

BWi,PT . (23)

This is also true since the left hand side minus the right hand
side is just the revenue of the SP under the EUT game. By
assumption, this revenue must be positive. �

C. Bandwidth Expansion/Reduction

As suggested by the name, the SP is allowed to violate
the RRM constraints such that BWmax,PT �= BWmax,EU T . By
doing this, the SP is also allowed to reallocate her bandwidth
among the users. A set of necessary and sufficient conditions is
given as follows.

Proposition 2: The necessary and sufficient condition for the
SP to recover her revenue under the EUT game is that she has
sufficient bandwidth under the EUT game. Mathematically,

BWmax,EU T >
1

c3
{|SEU T |rEU T (b∗1,EU T )− sup

BWPT

sup
�BW PT

min
i∈SEU T

[|SEU T |hi (b
∗
1,EU T )w

(
F̄Bi (b

∗
1,EU T ; BWi,PT )

)−
− c3 BWPT ]}, (24)
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where the outer supremum is to find the optimal total amount
of bandwidth BWPT under the PT game. The inner supremum
is to find the optimal bandwidth allocation subject to the con-
straint that the total amount of bandwidth under the PT game is
BWPT .

Proof: We start by showing necessity. In order to retain
revenue, we must have |SEU T |(rEU T (b∗1,EU T )− c1b∗1,EU T )−
c3BWmax,EU T = |SPT|(rPT (b∗1,PT)−c1b∗1,PT)−c3 BWmax,PT ,
where SEU T = SPT , and b∗1,EU T = b∗1,PT . Hence, the form
of the pricing function under the PT game at rate b∗1,PT
is rPT (b∗1,EU T ) = rEU T (b∗1,EU T )+ c3|SEU T | (BWmax,PT −
BWmax,EU T ). Once again, equation (20) must hold ∀i ∈ SEU T

in order for the users to accept the offer, hence ∀i ∈ SEU T ,

rEU T (b∗1,EU T )+ c3

|SEU T | (BWmax,PT − BWmax,EU T )

< hi (b
∗
1,EU T )w(F̄Bi (b

∗
1,EU T ; BWi,PT )). (25)

This implies that the left hand side of the above equation must
be smaller than the minimum of the right hand side with respect
to i . It also implies that there exists a way of allocating band-
width BWmax,PT under the PT game such that BWmax,EU T >
1
c3
{|SEU T |rEU T (b∗1,EU T )−mini∈SEU T [|SEU T |hi (b∗1,EU T )

w(F̄Bi (b
∗
1,EU T ; BWi,PT ))− c3 BWmax,PT ]}, which further

implies (24).
We next show sufficiency. Similar to the case of admission

control, the form of rPT has been specified. Also, there exists
a way of allocating the bandwidth among the users such that
equation (25) holds ∀i ∈ SPT . This can be achieved by sim-
ply choosing w(F̄Bi (b

∗
1,EU T ; BWi,PT )) to be the minimizing

solution for the right hand side of (24). �
Remark 2: We can obtain a result parallel to the

above proposition, which bounds the maximum amount
of allowed skewness of the PWE of the users given
the bandwidth of the SP. From equation (25), we can
equivalently have hi (b∗1,EU T )w(F̄Bi (b

∗
1,EU T ; BWi,PT ))−

c3|SEU T | BWmax,PT > rEU T (b∗1,EU T )− c3|SEU T | BWmax,EU T .
Hence, for each BWmax,PT we requires the existence
of an allocation of the bandwidth under the PT game,
such that we have rEU T (b∗1,EU T )− c3 BWmax,EU T <

sup �BW mini [|SEU T |hi (b∗1,EU T )w(F̄Bi (b
∗
1,EU T ; BWi,PT ))−

c3 BWmax,PT ], where �BW subjects to the total bandwidth
constraints under the PT game. For any BWmax,PT , the
optimal way of maximizing the left hand side of the above
inequality by allocating the bandwidth is to make the weighted
guarantee the same for all the users. Hence, upon assum-
ing this guarantee is x , the above relationship becomes
|SEU T |hi (b∗1,EU T )x − c3

∑
i∈SEU T

F̄−1
Bi

(w−1(x); b∗1,EU T ) >

rEU T (b∗1,EU T )− c3 BWmax,EU T . Hence, in order for
a valid BWmax,PT to exist, we must have c3 <

supx
|SEU T |hi (b∗1,EU T )x−(rEU T (b∗1,EU T )−c3 BWmax,EU T )∑

i∈SEU T
F̄−1

Bi
(w−1(x);b∗1,EU T )

, where x is

constrained to the region where probability is under-weighted,
i.e., (e−1, 1].

Note that, although the constraint is on c3 (which appears on
both sides of the condition), it actually reveals a constraint on
w. If no PWE is involved, i.e., w(p) = p, then this constraint
is always satisfied. This is because we can select x such that the

denominator on the right hand side is the total bandwidth of the
SP under the EUT game. In this case, x is lower bounded by
the minimum service guarantee of all the users under the NE of
the EUT game. However, as the PWE sets in, the denominator
of the right hand side increases monotonically, indicating that
in order for the SP to recover the revenue under the EUT game,
the user’s cannot have a too skewed perception of the proba-
bility. In case of Prelec’s PWF, it means that for every value
of BWmax,EU T , there is a minimum α below which the SP is
unable to recover her revenue. This is also a necessary and suffi-
cient condition for the SP to recover her revenue under the EUT
game.

D. Rate Control

Lastly, we consider the option of rate control, which allows
the SP to optimize over the rate she offers to the users, the
bandwidth allocation, but constraining the total bandwidth to be
the same as in the EUT game. Here, a necessary and sufficient
condition is specified as follows.

Proposition 3: A necessary and sufficient condition for the
SP to recover her revenue under the EUT game is that the SP
has sufficient bandwidth under the EUT game. Mathematically,

BWmax,EU T =
∑

i∈SEU T

BWi,PT

> inf
b1,PT

∑
i∈SEU T

F̄−1
Bi

(
w−1 (λi,RC

) ; b1,PT

)
,

(26)

where

λi,RC =
rEU T (b∗1,EU T )+ c1(b1,PT − b∗1,EU T )

hi (b1,PT )
. (27)

Proof: Starting from the same equation, in order for
the SP to recover the revenue, there must exist a price under
the NE of the PT game such that |SEU T |(rEU T (b∗1,EU T )−
c1b∗1,EUT)− c3 BWmax,EUT = |SPT |(rPT(b∗1,PT)− c1b∗1,PT)−
c3 BWmax,PT , where now we have SEU T = SPT and
BWmax,EU T = BWmax,PT . Thus, rEU T (b∗1,EU T )−
c1b∗1,EU T = rPT (b∗1,PT )− c1b∗1,PT , and the form of the pric-
ing function under the PT game at rate b∗1,PT is rPT (b∗1,PT ) =
rEU T (b∗1,EU T )+ c1(b∗1,PT − b∗1,EU T ). Once again, the con-
dition for the users to accept the offer (20) must apply.
Hence, ∀i ∈ SEU T , rEU T (b∗1,EU T )+ c1(b∗1,PT − b∗1,EU T ) <

hi (b∗1,PT )w(F̄Bi (b
∗
1,PT ; BWi,PT )). Thus,

BWi,PT > F̄−1
Bi

(
w−1 (λi,RC

) ; b∗1,PT

)
, (28)

indicating that

BWmax,EU T =
∑

i∈SEU T

BWi,PT

> inf
b1,PT

∑
i∈SEU T

F̄−1
Bi

(
w−1 (λi,RC

) ; b1,PT

)
.

(29)
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Here b1,PT > 0 and satisfies the constraint such that
hi (b1,PT )− c1b1,PT < rEU T (b∗1,EU T )− c1b∗1,EU T , but can be
further constrained if we desire to avoid letting the SP to recover
the revenue by offering the users a substantially lower rate.

The sufficiency follows immediately if we choose b1,PT to
be the minimizing solution of the above equation. �

Remark 3: The result shown above automatically implies
that the probability weighting function of the users cannot be
too skewed. In case of Prelec’s PWF, as α decreases, the right
hand side monotonically increases, showing that for every orig-
inal design of the EUT game, there is a minimum α below
which the SP cannot recover her revenue.

E. Summary

The result shown by the previous subsections also indicates
that the maximum amount of revenue that could be retained
by combining each of the strategies of bandwidth expan-
sion/reduction, rate control, admission control with prospect
pricing is different. Since the relative performance of the three
methods above can be evaluated by comparing the minimum
amount of bandwidth needed for the SP to recover her antic-
ipated revenue, the method that corresponds to the lowest
threshold is most robust. With further assumptions regarding
the forms of the service guarantee and the user’s benefit, we
compare the performance of those three strategies numerically
in the next section.

VII. NUMERICAL RESULTS

A. Experiment Setup

In this section, we demonstrate some of the conclusions
drawn above. We consider a scenario where N = 10 users are
spread uniformly within a single cell with a radius of 800
meters. There are no interference between different users, and
we assume that the SP offers the service to all the users. Each
user experiences a combination of path loss, shadowing, and
Rayleigh fading. The guarantee of the service for each user
in this setup is one minus the outage probability of the fad-
ing channel between the user and the base station and the rate
offered is the encoding rate at the transmitter. The path loss and
shadowing are calculated using a simplified model [44]

Pri = Pt + K − γ log10
d

d0
+ ϕi,d B, (30)

where Pt and Pri are the transmitted signal power and the
received signal power at the i-th user in decibels, K is a con-
stant taking the value −20 log10(4πd0/λ). γ is the path loss
exponent, d is the distance between the user and the base sta-
tion antenna, and d0 is the reference distance for the antenna
far-field. In addition, ϕi,d B is a Gaussian random variable that
captures the effect of shadow fading. Finally, the guarantee
function for each user can be expressed as

F̄Bi (b) = exp

⎧⎨
⎩− 2

b
BWi,EU T − 1

Pri /(N0 BWi,EU T )

⎫⎬
⎭ . (31)

TABLE II
PARAMETERS USED FOR SIMULATION

Fig. 3. Revenue loss of the SP normalized by the revenue under
EUT game. N = 10, hi (b) = 10−2 × (b × 10−3)0.65, rEU T (b) =
2× 10−3 × (b × 10−3)0.82, c1 = 1

3 × 10−6, c3 = 10−8, ci (b; BWi,EU T ) =
c1b + c3 BWi,EU T b∗1,EU T ≈ 7Mbps, BWmax,EU T ≈ 14M H z.

where N0 is the power spectral density (PSD) of the noise,
BWi,EU T represents the bandwidth allocated to the i-th user,
and b represents the encoding rate of the SP.

The specific parameter values used in the simulations are
shown in Table II.

B. Bandwidth Reallocation

In Figure 3, the minimum revenue loss with and without
enforcing strict RRM constraints are shown. The horizontal axis
represents different values of α, the parameter that captures the
level of probability weighting of the users, while the vertical
axis represents the revenue loss normalized by the revenue the
SP makes under the EUT game. The total amount of bandwidth
is 10 percent more than the minimum bandwidth needed for all
the users to accept the offer with probability 1, and is allocated
in a way such that each user receives 10 percent more band-
width than the minimum amount needed for her to accept the
offer under the EUT game. The blue curve shows the minimum
revenue loss when strict RRM constraints are enforced, while
the red curve corresponds to the case where the SP is allowed
to violate the RRM constraints by reallocating the bandwidth
among the users. As can be seen from the graph, when α = 1,
the users weight the service guarantee accurately, and no rev-
enue is lost. As α decreases, the system with blue curve starts to
lose revenue first, and the revenue loss is always higher than that
corresponding to the system that allows bandwidth reallocation,
which corresponds to our result in Theorem 3. It can also be
seen from the plot that the system with strict RRM constraints
do not start losing revenue until α is smaller than 0.94. This is
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Fig. 4. Price of the SP at rate b∗1,EU T normalized by the price under

the EUT game. N = 10, hi (b) = 10−2 × (b × 10−3)0.65, rEU T (b) = 2×
10−3 × (b × 10−3)0.82, c1 = 1

3 × 10−6, c3 = 10−8, ci (b; BWi,EU T ) =
c1b + c3 BWi,EU T , b∗1,EU T ≈ 7Mbps, BWmax,EU T ≈ 14M H z.

Fig. 5. With prospect pricing, the minimum amount of bandwidth needed to
recover the revenue in full and the maximum amount of revenue attainable
under the PT game with the total bandwidth constraint BWmax,EU T .

because of the extra 10 percent of bandwidth, which holds (12)
for all the users when α ≥ 0.94. Finally, we point out that when
α < 0.93, the difference between the revenue losses of the two
systems are roughly 1 percent of the total revenue of the SP.
Since N = 10, this converts to roughly 10 percent of revenue
the SP makes from a single user. The price at rate b∗1,EU T under
the EUT and PT game is shown in Figure 4. We can see that the
price reduction is smaller when the SP is allowed to re-allocate
her bandwidth.

C. Bandwidth Expansion/Reduction

To illustrate the effect of the bandwidth expansion/reduction,
we show minimum amount of bandwidth under the EUT game
required for the SP to recover her revenue and normalize it by
BWmax,EU T , and we show the corresponding maximum rev-
enue under the PT game, normalized by the revenue of the SP
under the EUT game. We also show BWmax,EU T normalized
by itself (which is equal to the horizontal line f (x) = 1). It can
be immediately seen from Figure 5 that, when α is higher than
0.89, the maximum revenue under the PT game goes above 1
after normalization, which implies that the SP is able to recover
her revenue under the PT game completely. The same threshold

Fig. 6. Admission control applied to 50 users distributed in the cell, excluding
up to 3 users.

Fig. 7. Admission control applied to 50 users distributed in the cell, excluding
up to 3 users.

is also exactly the same crossing of the curves showing the
minimum bandwidth requirement under the EUT game and
the horizontal line showing the normalized system bandwidth
under the EUT game. This illustrates our proposition, since on
the right hand side of the crossing, the actual bandwidth of the
SP under the EUT game is above the threshold, which implies
that she is able to recover the revenue completely.

D. Rate Control

It can be expected that the performance of the rate control
would display a similar pattern to the results of bandwidth
expansion/reduction. We thus show the results as a comparison
to the other methods in last subsection.

E. Admission Control

The result of admission control is shown in Figures 6 and 7,
where we have considered a 50-user scenario, and have plot-
ted the pricing function of the SP under the NE versus α for
different levels of admission control. Each time the SP applies
the admission control to the current user set, she drops the user
that consumes most bandwidth. It can be seen from Figure 7
that, when no admission control is applied, the SP suffers rev-
enue loss. However, upon excluding one user, she is able to
redistribute the bandwidth among the remaining users, raise the
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Fig. 8. Minimum bandwidth required for the SP to retain partial RRM
constraints under the PT game without prospect pricing (bandwidth expan-
sion/reduction without prospect pricing) and other methods to retain revenue.

Fig. 9. Maximum normalized recoverable revenue for the SP through band-
width expansion/reduction with/without prospect pricing, rate allocation, and
admission control with 9 out of 10 users.

service guarantee for them. The SP is also able to mitigate the
impact of the PWE and recover her revenue for alpha above a
certain threshold for each different value of |SPT |.

The characterization of the minimum amount of bandwidth
is shown in next subsection.

F. Performance Comparison

In Figure 8, we show the minimum amount of bandwidth
needed for the three methods to help the SP retain revenue
with prospect pricing, and show the minimum bandwidth
needed in order for the SP to retain partial RRM constraints
without prospect pricing. It can be immediately seen from
the graph that the bandwidth expansion/reduction without
prospect pricing requires the largest amount of bandwidth for
low values of α, indicating that it’s the least robust against
the probability weighting effect, and it cannot help the SP to
completely recover her revenue under the EUT game as can
be seen in Figure 9. Secondly, when α is below 0.96, there is
no solution for admission control. This shows that admission
control is not effective against low α when the number of users
is low, since the spare bandwidth recycled from the denied user
cannot efficiently raise the perceived service guarantee of the
remaining users. However, admission control is able to recover
the revenue when α is close to 1. Finally, in this particular

Fig. 10. Experimental platform illustration

case, the rate control is the most efficient method in recovering
the revenue. Part of the reason is that the cost for data rate is
higher than the cost for bandwidth, giving more freedom to the
method of rate control.

VIII. PSYCHOPHYSICS EXPERIMENTS WITH VIDEO QOS

In this section, we provide experimental data which supports
the procedure of modeling the end-user’s probability weighting
effect with Prelec’s PWF. Specifically, we conducted human
subject studies as it relates to the perception of video service
quality and then used these studies to estimate the parameter
α that reflects people’s weighting effect on the uncertainty in
QoS. The experiment was conducted using a testbed shown in
Figure 10 with 23 psychology college students, where each sub-
ject is asked to assess the quality of a 1 hour video comprised of
30 2-minute segments, where each segment of the video is sub-
ject to different packet loss and delay parameters. The testbed
comprises a single compute/communication device (the pro-
grammable ORBIT radio node [45]) with two major software
components (i) a network emulation module (NETEM), and
(ii) a content caching module. The radio modem in the ORBIT
node is used to implement a soft access point which end-users
connect to. All the traffic coming to the access point is subject
to traffic shaping policies as specified in the NETEM module,
specifically to control wireless network performance in terms
of packet loss and delay. To alleviate the artifacts of wide area
internet connectivity on the experimental conditions, we logi-
cally created a local caching functionality in the platform. The
end-user interface device is a laptop used to watch the video.

Using the testbed, for each pair of packet loss and delay
chosen, we are able to objectively measure the corresponding
decoded frames per second at the video player used to display
the video. Our psychophysics experiments have revealed that
the decoded video frames per second serves as the best objec-
tive proxy for the quality of the video among the parameters
chosen, while the feelings about the number of stops and stut-
ters occurred is the best proxy for the subjective ratings on the
overall video quality. The human subjects are also asked to sub-
jectively evaluate on a four level scale the quality of the video
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TABLE III
SUBJECTIVE MEASUREMENT

TABLE IV
OBJECTIVE MEASUREMENT

as they perceive it, with 4 being the highest rating and 1 being
the lowest rating.

Tables III and IV show the subjective (on a scale of 1-4)
and objective (decoded video frames per second) measurements
along with their mean and standard deviation. As can be seen
in the tables, the highest actual video quality corresponds to the
unit in the upper left corner, where no packet loss and delay
are present. The lowest video qualities being rated are the units
just above the blackened out units. The blackened out area of
the tables essentially refers to the situations where there quality
of the wireless channel is so poor that there is no video dis-
played in the player. Even the raw data in terms of the subjective
scores reveals that there is tendency of the human subjects to
“underweight" the best (even perfect) video quality and “over-
weight" the worst case video quality. This effect can also be
observed explicitly in Figure 11, where we show the relation-
ship between the subjective rating and the objective metric with
95% confidence level.

It also follows from the objective measurements in Table IV,
that the x-axis in Figure 11 can be mapped directly as a proxy
for the objective probability of service guarantee. In order to
map the relationship between objective and subjective probabil-
ities to that of a Prelec-like PWE, as a first cut, we use a simple
uniform mapping of the subjective measurements to the region
[0, 1]. The result is depicted in Figure 12, where we obtain the
probability of each frame being displayed successfully as p,
and the probability of the participant believing that the video
is uninterrupted as w(p). The relationship between these two
variables display an inverse S-shaped probability weighting
effect. We fit a parametric function of the Prelec form to the
above data set and the resulting parameter α that minimizes the
mean-squared error (MSE) is found to be α ≈ 0.585.

Fig. 11. Quality of service ratings shown as a function of decoded video frames
per second with 95% confidence level.

Fig. 12. The probability weighting effect can be well approximated with a
Prelec’s PWF with α ≈ 0.585.
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Note that there have been efforts to subjectively evaluate
video QoS [46] that have used various technical measures such
as peak signal to noise ratio (PSNR) but there have been none
to evaluate the probability weighting effect (psychophysics
function) such as undertaken here. The human subject stud-
ies presented here is the first such effort and will be further
expanded to include larger data sets as well as more detailed
mapping techniques to map objective and subjective measure-
ments to the corresponding probabilities of service guarantees
(uncertainty). Further, such psychophysics studies can also
be conducted by the SP for learning each individual user’s
subjective perceptions to objective metrics and can be easily
implemented via appropriate “apps" on end-user devices such
as smart phones.

IX. CONCLUSION AND DISCUSSION

In this work, we considered the impact of end-users’ deci-
sions in regard to service offers in a CRN when there is
uncertainty in the QoS guarantee offered by the SP. We for-
mulated a Stackelberg game to study the interplay between the
price offerings, bandwidth allocation by the SP and the service
choices made by end-users. We characterized the NE of the
game, and showed that when the end-users under-weight the
service guarantee, they tend to reject the service offers which
results in under-utilization of radio resources and revenue loss
for the SP. To combat this effect, we proposed prospect pric-
ing, which combines the pricing strategy of the SP with the
radio resource management strategy available under a CRN set-
ting. In particular, we studied four distinct strategies, namely
bandwidth reallocation, bandwidth expansion/reduction, rate
control, admission control, and studied the capability of each
individual strategy in helping to improve the utilization of radio
resources and enable the SP to recover her revenue loss. Our
results first show that the SP must have sufficient bandwidth
in order to combat the under-weighting effect by the end-users
without prospect pricing, and if the bandwidth is insufficient,
then bandwidth reallocation alone cannot help the SP recover
her revenue. As for the remaining three strategies, our results
show that, for each individual strategy, there is a threshold
dependent on the skewness of the end-users’ PWF and the unit
cost for data rate and bandwidth, such that in order for the SP to
recover her revenue, her total bandwidth under the EUT game
must be above this threshold. We also showed that having suf-
ficient bandwidth that is above this threshold (dependent on the
strategy taken) is also a necessary and sufficient condition for
the SP to be able to recover her revenue. We also compared the
performance of the bandwidth expansion/reduction, rate con-
trol and admission control strategies with numerical examples
that illustrate the threshold effect described above. We also
conducted psychophysics experiments with human subjects to
assess perceived video QoS over wireless channels and mod-
eled the probability weighting effect. The focus of this paper
has been on studying the PWE effects of end-user behavior and
the role FE in influencing end-user behavior is a topic for future
study.
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