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Abstract— Wireless sensor networks are typically deployed
over an information field to sense and gather information from
a distributed physical process. Resource allocation problems
considered in the literature often ignore the underlying in-
formation field and rather consider a uniform distribution of
information. In this paper, we propose an information field
model that partitions the observation space into a grid, with
independent information being generated at each point in the
grid. Given this model, we find the optimal node distribution
over the field that maximizes the network information capacity
or the total information gathered over the lifetime of the network.
The optimal node distribution is obtained by considering the
equivalent problem of optimal energy distribution and flow over
the information field that maximizes the information capacity.

I. INTRODUCTION

With advances in miniaturization of radio transceivers and
their integration with low-power computing platforms, large
scale networks of tiny wireless sensors are becoming a
reality. It is envisaged that these networks will be useful
in environmental monitoring, factory automation, in hostile
environments like battlefields, and in disaster management.
While the size of these sensors and their diminishing cost
enable deployment in large numbers, the flip side is that these
sensors are highly energy constrained and battery replacement
is prohibitive in most applications. Thus the biggest challenge
in building sensor networks is the development of power-aware
protocols - for discovery, routing, scheduling, and physical
layer communication - that maximize the operational lifetime
of these networks.

Typically, sensor networks are deployed over a particular
geographic region or an information field and the task of the
sensors is to extract information about a distributed physical
process in the field, and collaboratively forward it to a set of
collector or sink nodes. In the rest of the paper we use the
term information field to also refer to the physical process
being sensed. It is important to know the characteristics
of the underlying information field in order to evaluate the
performance of a sensor network in terms of its information
capacity, which is the total information gathered over the
lifetime of the network. In this paper, we introduce the notion
of an information-rate density function based on the entropy
rate of the underlying physical process. This density function
is used to characterize the information field over which the
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sensor network is deployed. The data rates of the sensor nodes
are governed by the information-rate density and the density
of nodes in the field.

Much of the early work has focused on developing power-
aware routing protocols ([1], [2], [3]) and topology control
algorithms ([4], [5]). The general approach followed was that
of minimizing the total energy consumed in the network
by forwarding packets over minimum energy paths. These
paths were computed heuristically using distributed shortest
path algorithms with edge costs representing the required
transmission power. However such an approach can burden
some of the nodes common to several shortest paths thus
depleting them of their energy faster. In order to avoid such
a problem, [1] and [3] also proposed routing algorithms with
node costs factoring in the node energy reserves.

Rather than trying to minimize the energy consumed per
packet using different edge and node costs, [6] and [7] directly
address the problem of achieving the desired global objective,
that of maximizing the network lifetime. The problem is
formulated using a flow-based approach and is transformed
into a linear program when network lifetime is defined as the
time until the death of the first node. Reference [8] evaluates
the performance of distributed shortest path algorithms with
different heuristic costs, by quantifying their performance
relative to the optimal linear program solution. In [9] the flow-
based linear program formulation is extended to the case of
aggregating networks.

In all of the literature mentioned above, the sensor nodes
are assumed to have arbitrary data rates irrespective of the
information field in which the network is deployed. In [10],
the extreme case of a continuous deployment of sensors is
considered and information-rate density is defined as the total
information rate of the sensors per unit area. The authors also
study the problem of finding an optimal node distribution
in the field that maximizes the network lifetime. However,
the optimization is performed only over a particular class
of node distributions and is not general in nature. Reference
[11] studies the maximum lifetime sensor deployment problem
with coverage constraints. Most recently the optimal energy
distribution has been studied in [12] in the context of limited
energy networks.

In this paper, we study the problem of finding the opti-
mal node distribution given the underlying information field
model. We generalize the linear program formulation in [6]



to find out both the optimal initial energy distribution over
the information field and the optimal flow that together max-
imize the network lifetime. As discussed in Section IV, the
optimal initial energy distribution provides a simple solution
to the problem of finding the optimal node distribution in the
information field, without having to consider different classes
of node distributions as in [10].

In the next section we describe the system model used in the
paper and in Section III we setup the problem of maximizing
the lifetime given a total energy constraint among the nodes.
Section IV contains a discussion and simulation results that
illustrate the usefulness of the optimal energy distribution. We
conclude in Section V.

II. SYSTEM MODEL

When sensor nodes are deployed in an information field,
each node samples the process in its vicinity and for a given
distortion its data rate will be equal to the entropy rate of the
random process measured at that location. Since information
can be spatially correlated, the total information rate of the
sensor network is equal to the joint entropy rate of the random
processes measured at all the nodes. When a large number of
sensor nodes are deployed such that every point in the field
is within the sensing range of at least one sensor, then the
joint entropy of all the nodes can be considered to be the total
information rate of the field. Addition of any further nodes
does not increase the total information rate of the network.
We can now define an information-rate density function for the
information field such that the net volume under the function is
equal to the total information rate of the field. The information-
rate density function is thus a fundamental characteristic of
an information field. Specifically in this paper, we consider an
information field model that partitions the observation space
into a grid with independent information being generated at
each point in the grid.

In our system model, we consider a network of static
wireless sensors that gather data from an information field
and collectively forward the data to a set of collector nodes
within the network. In-network aggregation or compression of
data from different sensors is not considered in this model.
Thus each sensor node in the network acts as a source of data
and as a relay for forwarding data from other sensors to the
sink. The aggregate rate at which information is delivered to
the collector nodes is thus equal to the sum of the source rates
of all the sensors.

As in [6] we consider the pure routing problem and ignore
the effects of interference among the nodes by assuming a
wideband communication model. The lifetime of the network
thus obtained is only an operational lifetime and will always be
an upper bound on the lifetime of a network with interference
among nodes factored in as well. At the physical layer, the
channel is assumed to be an AWGN channel and link gains
are proportional to d−α, where d is the separation between the
transmitter and the receiver and α is the path loss exponent.
The nodes are assumed to transmit at the least power that
would guarantee a fixed SNR at the receiver and thus a fixed

bit error rate for a given modulation scheme. The receiver is
a conventional matched filter based receiver.

The node energy dissipation model is similar to that pro-
posed in [9]. Each node dissipates energy in sensing, transmit-
ting, and receiving data. Energy dissipated in idle receiving
is ignored. We assume that the link capacity requirements
on each node are feasible in that each node is capable (if
necessary) of carrying the burden of routing the combined
information from all the other nodes in the network.

III. PROBLEM FORMULATION

Consider a directed graph G(M,A) where M is the set
consisting of all nodes and A is the set of directed links in the
network. Let C ⊂ M denote the subset of collector or sink
nodes and M −C the complementary subset of sensor nodes.
The set of link flows is denoted by f = {fi,j} where, fi,j is
the rate of information transfer over the directed link (i, j).
Let ri be the rate at which information is generated at node i.
The flow conservation constraint at each sensor node is given
by ∑

j∈M

fj,i + ri =
∑

j∈M

fi,j , ∀i ∈ M − C (1)

Let E i,j
tx denote the cost per data-unit for transmitting over

the link (i, j), Erx be the cost per data-unit for receiving over
any link, and Es the cost per data-unit for sensing at any node.
Let E = {Ei} be the set of initial energies of the sensor nodes
with Ei denoting the initial energy of node i. We assume a
total initial energy constraint (Etotal) on the sensor nodes such
that ∑

∀i∈M−C

Ei ≤ Etotal (2)

The lifetime of node i under flow f and initial energy
distribution E is,

Ti(f ,E) =
Ei∑

j∈M{fi,j · E i,j
tx + fj,i · Erx} + ri · Es

(3)

and we define the lifetime of the network as,

Tnwk(f ,E) = min
∀i∈M−C

Ti(f ,E) (4)

i.e., the time until the death of the first sensor node. The
maximum lifetime of the network over the set of all feasible
flows and the set of all feasible initial energy distributions can
be obtained as

max
f ,E

Tnwk(f ,E) (5)

The maximum lifetime routing problem stated above can
be formulated as a linear programming problem as shown
below. Let f̂i,j(f ,E) = fi,j · Tnwk(f ,E) be the aggregate
information transferred over the link (i, j) during the lifetime
of the network. Since the data gathered by the sensor nodes
is delivered to the collector nodes without any in-network
compression or aggregation, we have

∑

i∈M−C

ri · Tnwk(f ,E) =
∑

i∈M−C, j∈C

f̂i,j(f ,E) (6)



Also since the data rates of the nodes are assumed to be fixed,
the maximum lifetime problem can be stated as follows:

max
f ,E

Tnwk(f ,E) ∼ max
f ,E

∑

i∈M−C, j∈C

f̂i,j(f ,E) (7)

subject to the following constraints:

∑

j∈M

f̂j,i + ri · Tnwk(f ,E) =
∑

j∈M

f̂i,j , ∀i ∈ M − C, (8)

∑

j∈M

{f̂i,j ·E i,j
tx + f̂j,i ·Erx}+ri ·Tnwk(f ,E) ·Es ≤ Ei, ∀i ∈ M,

(9)

f̂i,j ≥ 0, ∀i, j ∈ M, (10)

f̂i,i = 0, ∀i ∈ M, (11)

f̂i,j = 0, ∀i ∈ C, j ∈ M (12)

In the above constraints and in subsequent analysis, it should
be noted that f̂i,j is indeed the function f̂i,j(f ,E) though we
avoid writing it explicitly for better readability. Equation (11)
ensures that there is no flow from a sensor node to itself while
(12) ensures that the collector nodes only gather sensor data
and do not transmit any data back into the network.

When the initial energy of each node in the network is
known, solving the above linear program results in the flow
f that maximizes the lifetime of the network. Most of the
prior works consider nodes with equal initial energy. Instead if
we consider the problem of optimal initial energy distribution
among the nodes given a total energy budget (Etotal), then the
above linear program can be extended by including the total
initial energy constraint given by (2).

The linear program thus obtained simultaneously finds both
the optimal initial energy allocation among the nodes and the
optimal flow in the network that together maximize the lifetime
of the network.

IV. DISCUSSION AND SIMULATION RESULTS

Some important observations made while solving the linear
program stated above are in order. To proceed with solving
the linear program, we first substitute the value of ri ·Tnwk(f)
from (8) in the corresponding equation in (9) to obtain
∑

j∈M

{f̂i,j · (E i,j
tx +Es)+ f̂j,i · (Erx −Es)} ≤ Ei, ∀i ∈ M (13)

We then substitute the value of Tnwk(f) from (6) in each
of the equations in (8) to obtain
∑

j∈M

f̂j,i + r̂i ·
∑

i∈M−C, j∈C

f̂i,j =
∑

j∈M

f̂i,j , ∀i ∈ M −C (14)

where r̂i is the normalized data rate of node i such that∑
i∈M−C r̂i = 1. Thus it is the normalized data rates of the

nodes and not their absolute rates that are required to solve
the linear program, to obtain the optimal energy distribution
among the nodes and the maximum throughput of the network.
However, on computing the maximum throughput of the
network the aggregate data rate of all the nodes is required
to compute the lifetime of the network using (6).

As mentioned in Section I, the linear program formulation
in [6] computes the maximum-lifetime flow for a given de-
ployment of nodes over an information field with fixed source
rates and fixed initial energies. In [10], it is shown through
simulations that the lifetime of a grid-based average node
deployment is close to the lifetimes of a significant percentile
of random node deployments. This is because random node
deployments can be viewed as perturbed versions of the grid-
based deployment and with sufficiently large number of grids
these perturbations result in only small deviations in the
objective function. In our simulations too we use a grid-based
node deployment and the conclusions drawn from them hold
true for a large fraction of random node deployments.

We consider an information field of size 1000 m × 1000 m
with origin (0, 0) at the left bottom corner as shown in Fig. 1
and Fig. 2. The field is partitioned into a regular 8 X 8 grid,
with each grid-unit assumed to have a single node placed at its
center. The data rate of each node is equal to the volume under
the information-rate density function within the grid-unit. In
our simulations below, we consider two different information-
rate density functions in the field: the first being a uniform
density function as shown in Fig. 1 and the second a concave
density function over the information field as shown in Fig.
2. The two functions are chosen such that the net volume or
the total information rate in each case is equal to 1 Mbps.

In the simulations below, the total energy in the network
(Etotal) is fixed at 1 Joule. The parameters in the energy
model are taken from [9]: Erx = 135 nJ/bit, Es = 50 nJ/bit,
and E i,j

tx = Et + Epa · d2
i,j , where di,j is the distance between

node i and node j, Et = 45 nJ/bit is the energy dissipated in
the transmitter electronics. Epa = 10 pJ/bit-m2 is the transmit

Fig. 1. Uniform information-rate distribution over the information field



Fig. 2. Concave information-rate distribution over the information field

energy-per-bit required to achieve an SNR of 25 dB at the
receiver when transmitting at 1 Mbps over a 22 MHz wide
channel at 2.4 GHz, with path loss exponent α = 2, and
assuming a receiver noise figure of 15 dB.

A. Uniform Node Distribution - Comparison of Network Life-
times

Consider a uniform distribution of nodes over the infor-
mation field of Fig. 1 or Fig. 2. As mentioned earlier in
this section, the grid-based model closely approximates the
lifetime of a large fraction of networks based on uniform
node distribution. Using this model, we compare the network
lifetime obtained in two different cases, both with a total
energy among all the nodes of 1 Joule. In the first case this
energy is uniformly distributed among all the nodes, while
in the second case the total energy is optimally distributed
using the linear program formulation of the previous section.
These two cases are repeated for the uniform and concave
information-rate density functions shown in Fig. 1 and Fig. 2
respectively, resulting in a total of four different cases.

A single sink node in the network acts as a collector for the
data generated at each of the sensor nodes. Fig. 3 plots the
lifetime curves for the four different cases mentioned above
by varying the position of the sink node in the network. The
curves are plotted for eight different positions of the sink
node in the network, the co-ordinates of the sink node being
(500, (n− 5)× 250) where n is the index along the x-axis in
the figure.

As expected, Fig. 3 shows the relatively longer network
lifetime achieved with the optimal energy distribution as
against a uniform distribution. Depending on the position of
the sink in the network, the improvement over the uniform
energy distribution varies from 30% to nearly 100% with the
optimal energy distribution. From Fig. 3, the variation in the
network lifetime for different positions of the sink node also
illustrates the importance of the location of the sink within the
network. For the information-rate distributions in Fig. 1 and

Fig. 3. Comparison of lifetimes with and without optimal energy distribution

Fig. 1 which are symmetric about the center of the information
field, the lifetime of the network is maximized when the sink
is located at the center of the information field. By placing
the sink closer to regions with relatively higher data rates,
the throughput-per-Joule of the network can be increased. For
the more general case of an arbitrary information-rate density
function, finding the optimal placement of one or more sink
nodes within the field so as to maximize the network lifetime
is an interesting issue for future study.

B. Optimal node distribution

We now address the important problem of finding the
optimal node distribution in an information field given the
information-rate density function and the position of the sink
in the field. As mentioned in Section I, this problem has
received attention in [10] where the authors search over a
family of parametric distributions. Instead of searching over
several different families of node distributions, we make use
of the optimal energy formulation of Section III to obtain
the optimal node distribution. The optimal energy distribution
obtained from the linear program formulation can be con-
sidered to be equivalent to the allocation of energy to each
node in a uniform node distribution. Yet another (possibly
more practical) interpretation is that it is equivalent to the
distribution of nodes with equal energy such that the number of
nodes per unit area or equivalently the energy per unit area is
equal to the optimal energy distribution. For the information-
rate distributions shown in Fig. 1 and Fig. 2 and with the
sink located at the center of the information field, we plot the
optimal energy distributions or equivalently the optimal node
distribution functions in Fig. 4 and Fig. 5. The optimal energy
distribution for the case of the sink positioned at the corner
(1000, 0) of the information field is shown in Fig. 6.

We now compare the performance of random networks
generated using the optimal node distribution (shown in Fig.
7) with those generated using a uniform node deployment
(shown in Fig. 8) when the sink is located at the center of



Fig. 4. Optimal energy distribution for uniform information-rate density and
sink at the center of the field

the information field. Fig. 9 plots the information capacity per
Joule of 100 random networks based on these two distributions
deployed over an information field with concave information-
rate density (Fig. 2). As can be seen from the figure, the
average information capacity of networks with optimum node
distribution is about 70% higher than the average information
capacity of networks with uniform node distribution.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered a wireless sensor network
deployed over an information field that is characterized by
a grid-based information-rate density function. We presented
a linear program based formulation for computing the optimal
energy distribution and flow in the sensor network so as to
maximize the lifetime of the network. Given the information-
rate density in the underlying information field and the location
of the sink, the optimal energy distribution gives the solution
to the problem of finding the optimal initial node distribution
that results in a network with maximum lifetime. The more
general problem of placement of a set of sink nodes in the
information field along with the sensor node distribution is a
problem for future study.
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