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Since the two rate regions are now symmetric (see Fig. 4), the second
constraint becomes equality. This expresses � as a function of a, and
plugging into (24), we get the desired result.
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Abstract—An offset encoding technique is presented that improves
sliding-window decoding with decode-and-forward for K-user mul-
tiple-access relay channels. The technique offsets user transmissions by
one block per user and achieves the corner points of the destination’s
backward decoding rate regions but with a smaller delay. As a result,
one achieves boundary points of the best known decode-and-forward rate
regions with a smaller delay than with backward decoding.

Index Terms—Cooperative systems, encoding, multiple-access communi-
cation, relaying.

I. INTRODUCTION

The multiple-access relay channel (MARC) is a network where sev-
eral users communicate with a single destination in the presence of a
relay [1]. Several coding strategies for the relay channel [2], [3] extend
readily to the MARC [4], [5]. For example, the strategy of [3, The-
orem 1], now often called decode-and-forward (DF), has a relay that
decodes user messages before forwarding them to the destination [4],
[5]. Similarly, the strategy in [3, Theorem 6], now often called com-
press-and-forward (CF), has the relay quantize its output symbols and
transmit the resulting quantization bits to the destination [5].

For the classic relay channel, several block-Markov encoding and
decoding techniques achieve the DF rate in [3, Theorem 1] (see [4,
Sec. I]):

• irregular encoding (different size codebooks at the source and
relay) and successive decoding [3, Theorem 1];
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Fig. 1. A K-user MARC.

• regular encoding (same size codebooks at the source and relay)
and sliding-window decoding [6];

• regular encoding and backward decoding[7].
One can, in fact, use irregular encoding with any of the above de-

coding methods. The above techniques have all been generalized to
multiple-relay networks [4], [8]–[11]. For the MARC, however, the
different DF decoding methods do not always yield the same rate re-
gion. For example, we show that backward decoding can give larger
rates than sliding-window decoding (see also [12], [13]). On the other
hand, sliding-window decoding decodes blocks of message bits at reg-
ular intervals before all channel-symbol blocks are transmitted. This
is useful: if the sliding-window length is much smaller than the back-
ward-decoding delay, then sliding-window decoding is preferable for
streaming applications.

To compare the methods, suppose the destination uses backward de-
coding for B message blocks transmitted in B + 1 channel-symbol
blocks. The decoding delay is then B + 1 channel-symbol blocks for
the first message block, where we measure delay from the start of the
block to the time the block is decoded. Our main contribution is an
offset encoding technique for sliding-window decoding that recovers
the corner points of the destination’s backward decoding rate regions
with a delay ofK+1 channel-symbol blocks for every message block.
The total number of channel-symbol blocks required is B +K . Note
that K can be much smaller than B, e.g., if the relay serves only a
small number of users at a time. For the non-corner boundary points
of the backward decoding rate regions, we use a combination of offset
encoding, no-offset encoding, and/or time sharing between different
offset encoding methods. Note, however, that time sharing increases
decoding delay; rate-splitting methods might perhaps avoid this delay
[14], [15].

This correspondence is organized as follows. In Section II, we
present the MARC model and summarize the DF random code con-
struction of [4, Appendix A]. In Section III, we review the backward
decoding rate region and compute the sliding-window decoding rate
region. The latter region is in general smaller than the former. In
Section IV, we describe offset encoding and develop its rate region
when combined with sliding-window decoding. Section V concludes
the correspondence.

II. PRELIMINARIES

A. Model and Notation

The K-user MARC has K sources, one relay, and one destination
(see Fig. 1). The sources emit the messages Wk , k = 1; 2; . . . ; K , that
are statistically independent and take on values uniformly in the sets
f1; 2; . . . ;Mkg. The channel is used N times so that the rate of Wk

is RW = BW /N bits per channel use, where BW = log2Mk

bits. The channel input Xk;i from source k at time i, i = 1; 2; . . . ; N ,
is a function of Wk , while the relay’s channel input Xr;i is a causal

function of its received signals Y i�1
r = (Yr;1; Yr;2; . . . ; Yr;i�1). The

destination uses the N channel outputs Y N
d to decode the K messages

as (Ŵ1; Ŵ2; . . . ; ŴK). We write K = f1; 2; . . . ; Kg, XS = fXk :
k 2 Sg for all S � K, Sc to denote the complement of S inK, and jSj
for the cardinality of S . The channel is time invariant and memoryless
with the conditional probability distribution

pY ;Y jX ;X (yr; ydjxK; xr): (1)

The capacity region CMARC is the closure of the set of rate tuples
(RW ; RW ; . . . ; RW ) for which the destination can, for sufficiently
large N , decode the K source messages with an arbitrarily small pos-
itive error probability.

As further notation, we write RS =
k2SRk , [m;n] = fm;m+

1; . . . ; ng, and we use the vector notation xk for length-n codewords
of user k. We use the usual notation for entropy and mutual informa-
tion [16], [17] and take all logarithms to the base 2 so that our rate units
are bits. We write random variables (e.g., Wk) with upper case letters
and their realizations (e.g., wk) with the corresponding lower case let-
ters. We drop subscripts on probability distributions if the arguments
are lower case versions of the random variables, e.g., we write (1) as
p(yr; ydjxK; xr).

We assume familiarity of the reader with basic notions of backward
decoding and joint decoding as described in [4], [6], [7], [10], [12].

B. Random Code Construction

A DF code construction is presented in [4, Appendix A] and we re-
view it below. This construction is common to all the decoding methods
considered below and it uses independent random variables Vk , k =
1; 2; . . . ; K , to help the sources cooperate with the relay. The Vk have
finite alphabets.

Random Code Construction:
Consider the probability distribution

K

k=1

p(vk)p(xkjvk) � p(xrjvK): (2)

We use regular encoding. For each k, generate 2nR codewords
vk(sk), sk = 1; 2; . . . ; 2nR , by choosing the letters vk;i (sk),
i = 1; 2; . . . ; n, independently with distribution p(vk). Simi-
larly, for every vk(sk) generate 2nR codewords xk(wk; sk),
wk = 1; 2; . . . ; 2nR , by choosing the letters xk;i(wk; sk) indepen-
dently with distribution pX jV (�jvk;i(sk)) for all i. Finally, generate
one length-n relay codeword xr(s1; s2; . . . ; sK) for each tuple
(s1; s2; . . . ; sK) by choosing xr;i(s1; s2; . . . ; sK) independently
with distribution pX jV ;V ;...;V (�jv1;i(s1); . . . ; vK;i(sK)) for all i.

The above code construction procedure is repeated B + 1 times,
once for each block, and the bth codebook is used in block b, b =
1; 2; . . . ; B+1. Note that the codebooks are independent across blocks;
this fact simplifies the error analysis [6], [10]. The encoding procedure
of [4, Appendix A] proceeds as follows. We change this procedure in
Section IV.

Regular Block Markov Encoding:
Encoder k parses wk into B blocks wk;1; wk;2; . . . ; wk;B ,

each having nRk bits, and transmits these messages over B + 1
channel-symbol blocks as shown in Fig. 2 for K = 2. More
generally, user k transmits xk(wk;b; wk;b�1) in block b where
wk;0 = wk;B+1 = 1 for all k. The relay sends the codeword
xr(s1;b; s2;b; . . . ; sK;b) in block b where sk;b is the relay’s estimate
of wk;b�1 from block b � 1. We set sk;1 = 1 for all k. We thus have
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Fig. 2. Regular encoding for a two-user MARC assuming the relay decodes correctly.

Fig. 3. Example of a rate region achieved by DF and backward decoding for a two-user MARC.

N = n(B + 1) and BW = nRkB so the overall rate of user k is
RW = Rk � B /(B + 1) which approaches Rk for large B.

III. DECODE-AND-FORWARD

A. Backward Decoding

Consider a two-user MARC where the sources and the relay use the
block-Markov encoding method described above. The relay decodes
the messages reliably if (see Appendix I)

R1 � I(X1;YrjX2V1V2Xr) (3)

R2 � I(X2;YrjX1V1V2Xr) (4)

R1 +R2 � I(X1X2;YrjV1V2Xr): (5)

The destination decodes the message blocks in reverse order using its
channel-symbol blocks y

d;B+1
; y

d;B
; . . . ; y

d;2
. The resulting destina-

tion rate bounds are (see Appendix I)

R1 � I(X1Xr;YdjX2V2) (6)

R2 � I(X2Xr;YdjX1V1) (7)

R1 +R2 � I(X1X2Xr;Yd): (8)

Fig. 3 shows an example of the rate region defined by (3)–(8). For a
K-user MARC, these bounds generalize as follows.

Theorem 1: The capacity region of a K-user MARC includes the
union of the set of rate tuples (R1; R2; . . . ; RK) that satisfy, for all
S � K

RS � min
I(XS ; YrjXS VKXrU);

I(XSXr;YdjXS VS U)
(9)

where the union is over all distributions that factor as

p(u) � K

k=1
p(xk; vkju) � p(xrjvK; u) � p(yr; ydjxK; xr): (10)

Proof: See Appendix I.

Remark 1: The time-sharing random variable U ensures that the
region of Theorem 1 is convex. For simplicity, we will develop the
theory below for a constant U only.

Remark 2: The destination decodes the message blocks wk;B;
wk;B�1; . . . ; wk;1 with delays of 2; 3; . . . ; B + 1 channel-symbol
blocks, respectively. Note that B must be large to ensure that the
rate-loss factor B=(B + 1) due to block-Markov encoding is close to
1.

B. Sliding-Window Decoding

Suppose the destination uses sliding-window decoding, i.e., the des-
tination decodes the message pair (w1;b; w2;b) transmitted in block b by
using yd;b and yd;b+1. For example, in Fig. 2, the destination decodes
(w1;2 ; w2;2) by using y

d;2
and y

d;3
. Observe that (w1;b+1; w2;b+1) is

not known while decoding (w1;b;w2;b). One can check that the bounds
in (6)–(8) are replaced by

R1 � I(X1;YdjX2V1V2Xr) + I(V1Xr; YdjV2) (11)

R2 � I(X2;YdjX1V1V2Xr) + I(V2Xr; YdjV1) (12)

R1 +R2 � I(X1X2Xr;Yd): (13)

The analysis used to obtain (11)–(13) is similar to that pre-
sented in Appendix II and is hence omitted. In brief, the term
I(X1;YdjX2V1V2Xr) in (11) results from yd;b while the term
I(V1Xr; YdjV2) is due to yd;b+1. In fact, the same bounds result if one
increases the sliding window length to decode messages from many
past blocks, unless this window includes block B + 1. The bounds
(12) and (13) are obtained similarly.

We next compare (6)–(8) and (11)–(13). Obviously, the bounds (8)
and (13) are the same. But consider the right-hand side of (6) that ex-
pands as

I(X1Xr;YdjX2V2) = I(X1V1Xr;YdjX2V2) (14)

= I(X1;YdjX2V1V2Xr)

+ I(V1Xr;YdjX2V2): (15)
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Fig. 4. Offset encoding for a K-user MARC assuming the relay decodes correctly.

where (14) follows from the Markov chain (V1; V2)�(X1; X2; Xr)�
Yd and (15) from the chain rule for mutual information. We further have

I(V1Xr;YdjX2V2) = I(V1Xr;X2YdjV2) (16)

� I(V1Xr;YdjV2) (17)

where (16) follows from the Markov chain X2� V2 � (V1; Xr). Note
that (17) holds with equality if and only if

I(V1Xr;X2jV2Yd) = 0: (18)

Comparing (15) and (17) with (11), we see that the right-hand side
of (6) is at least the right-hand side of (11). By symmetry, the right-
hand side of (7) is at least the right-hand side of (12). Hence, backward
decoding is at least as good as sliding-window decoding.

We show by example that backward decoding can be strictly better
than sliding-window decoding. Consider a MARC with f0; 1g inputs
X1, X2, and Xr . Suppose we have

Yr =X1 +X2 (19)

Yd =X1 +Xr (20)

where we use integer addition. Any DF rate region must be in the
capacity region of the user-to-relay multiple-access channel. This ca-
pacity region in bits per channel use is given by (see [17, p. 392])

R1 � 1; R2 � 1; R1 +R2 � 3=2: (21)

One can check that backward decoding achieves this largest pos-
sible DF region for the MARC with independent and coin-tossing
V1; V2; X1; X2, and Xr . However, for sliding-window decoding the
bounds (3)–(5), (11)–(13) are

R1 �H(X1jV1) (22)

R2 � min (H(X2jV2); I(V2Xr;YdjV1) ) (23)

R1+R2 �min (H(X1 +X2jV1V2); H(X1+Xr) ) : (24)

Suppose we desire R2 = 1 so that (23) implies that X2 is coin-tossing
and independent of V2. For such V2 and X2 the bound (24) implies

R1 +R2 �H(X1 +X2jV1V2)

= 1 +H(X1jV1)=2: (25)

We further have from (23) that

R2 � I(V2Xr; YdjV1)

=H(X1 +XrjV1)�H(X1jV1)

� log2 3�H(X1jV1): (26)

The combination of R2 = 1, (25), and (26) gives

R1 � H(X1jV1)=2 � (log2(3)� 1)=2 � 0:292: (27)

The same bound results if we add a time-sharing random variable U to
all the entropies in (22)–(24). Sliding-window decoding cannot there-
fore achieve the backward decoding corner point (R1; R2) = (1=2;1).

For K > 2, the bounds (11)–(13) generalize to

RS � I(XS ;YdjXS VSXr) + I(VSXr;YdjVS ) (28)

for all S � K. One can show that the bounds in (28) are in general
more restrictive than the corresponding destination bounds in (9) for
all S � K.

IV. OFFSET ENCODING

To improve sliding-window decoding, we offset the message blocks
from theK sources by one block per source. Let� denote a permutation
(order) of the source indices, i.e., � = (�(1); �(2); . . . ; �(K)) where
�(i) 2 K for all i and f�(i) : i = 1; 2; . . . ; Kg = K. We let user
�(i) start transmitting in block i, i.e., we set w�(i);b = 1 for b < i
and b � B + i. The resulting message-to-codeword mappings with
offset order � = (1; 2; . . . ; K) are shown in Fig. 4. Observe that offset
encoding uses B +K channel-symbol blocks so the overall rate-loss
factor is B=(B + K).

The relay decodes at the end of each block as before, except that
s�(i);b is now the relay’s estimate of w�(i);b�i. We thus require

RS � I(XS ;YrjXS VKXr) (29)

for all S � K as in (9). In block b, the relay sends the codeword
xr(sK;b) where sK;b = fsk;b : k 2 Kg.

The destination uses a sliding window of lengthK+1 to decode the
message blocks with the same index b. Hence, the combined encoding
and decoding delay for every message block is K +1 channel-symbol
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blocks. We summarize the resulting rate bounds below and give the
performance analysis in Appendices II and III.

A. Two Users With Joint Decoding

Consider K = 2 and suppose the offset order is � = (1; 2). Sup-
pose the destination decodes (w1;b; w2;b) jointly by using y

d;b
, y

d;b+1
,

and y
d;b+2

. The analysis in Appendix II shows that we can achieve
(R1; R2) satisfying

R1 � I(X1Xr;YdjX2V2) (30)

R2 � I(X2;YdjV1V2Xr) + I(V2; Yd) (31)

R1 +R2 � I(X1X2Xr;Yd): (32)

Note that (30) is the same as (6) but (31) is different from (7). The dif-
ference arises because the destination does not know w1;b+1 or w1;b+2

when decoding w2;b, in contrast with the situation of no offset dis-
cussed in Section III-B. We can show that (7) is in general larger than
(31) by expanding (7) as (see (14) and (15))

I(X2Xr;YdjX1V1) = I(X2V2Xr;YdjX1V1) (33)

= I(X2;YdjX1V1V2Xr)

+ I(V2Xr; YdjX1V1) (34)

where (33) follows from the Markov chain (V1; V2)�(X1;X2; Xr)�
Yd and (34) from the chain rule for mutual information. But the first
mutual information term in (34) satisfies

I(X2;YdjX1V1V2Xr) = I(X2;X1YdjV1V2Xr) (35)

� I(X2;YdjV1V2Xr) (36)

where (35) follows from the Markov chain X1 � (V1; V2; Xr)�X2.
Similarly, the second mutual information term in (34) satisfies

I(V2Xr;YdjX1V1) � I(V2; YdjX1V1) (37)

= I(V2;X1V1Yd) (38)

� I(V2; Yd) (39)

where (38) follows from the independence of (X1; V1); and V2. It thus
seems that we do not achieve all points in the backward decoding re-
gion. However, we next show that we can obtain the corner points of
the destination’s backward decoding region.

There are several types of corner points depending on whether the
polytopes defined by the relay bounds (3)–(5) and the destination
bounds (6)–(8) intersect. We focus on the destination bounds because
the relay bounds are the same for both no-offset and offset encoding.
Note, however, that if the polytopes intersect as in Fig. 3, then one
of the corner points of the shaded region is not a corner point of the
destination’s backward decoding region. To achieve such points, it
turns out that we can use either no-offset or offset encoding, as shown
below. Alternatively, we could time-share between different offset
orders, but this increases the decoding delay.

Consider the corner point

(R1; R2) = (I(X1Xr;YdjX2V2); I(X2V2;Yd)) (40)

labeled “� = (1; 2)” in Fig. 5. We can achieve this point (ignoring
the relay bounds (3)–(5)) provided that the sum of (30) and (31) is less
restrictive than (32). But (32) expands as

R1 +R2 � I(X1X2Xr;Yd) (41)

= I(X1X2V2Xr;Yd) (42)

= I(X1Xr;YdjX2V2) + I (X2V2;Yd) : (43)

Fig. 5. Rate region with sliding-window decoding and offset encoding.

where (42) follows from the Markov chain V2 � (X1;X2; Xr)� Yd.
We further have

I(X2V2;Yd) = I(X2;YdjV2) + I(V2; Yd) (44)

� I(X2;V1XrYdjV2) + I(V2; Yd) (45)

= I(X2;YdjV1V2Xr) + I(V2; Yd) (46)

where (46) follows from the Markov chain X2�V2� (V1; Xr). Thus,
we achieve the corner point under consideration. For the offset order
� = (2; 1), we similarly obtain the corner point labeled “� = (2; 1)”
in Fig. 5. The shaded region in Fig. 5 shows the points achieved by
no-offset encoding that are defined by (11)–(13). Interestingly, the
union of rate pairs achieved by the three methods (no-offset encoding,
offset encoding with � = (1; 2), offset encoding with � = (2; 1)) is
precisely the backward decoding rate region. Time sharing between
offset orders is therefore not needed.

Finally, we remark that the above shows that offset encoding im-
proves sliding-window decoding, since one now achieves the corner
point of the example in Section III-B.

B. K Users With Successive Decoding

We wish to show that offset encoding recovers the destination’s
backward decoding corner points for K > 2. However, the gener-
alization of (30)–(32) is unwieldy and gives limited insight. Instead,
we use successive decoding inside the sliding window to obtain the
backward decoding corner points.

We begin by considering the set function (see (9))

f(S) =
I(XSXr;YdjXS VS ); S � K;S 6= ;

0; S = ;
(47)

for some distribution satisfying (10) with U a constant. We claim that
f(�) is submodular [18, Ch. 44]. To see this, consider k1 and k2 in K
with k1 6= k2, k1 =2 S , k2 =2 S , and expand

f(S [ fk1g) + f(S [ fk2g)

= I(XSXk Vk Xr;YdjX(S[fk g) V(S[fk g) )

+ I(XSXk Vk Xr;YdjX(S[fk g) V(S[fk g) ) (48)

= I(Xk Vk ;YdjX(S[fk g) V(S[fk g) )

+ I(XSXr;YdjXS VS )

+ I(XSXk Vk Xr;YdjX(S[fk g) V(S[fk g) ) (49)
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where (48) follows from the Markov chain VK � (XK; Xr)� Yd and
(49) from the chain rule for mutual information. We lower-bound the
first term in (49) as

H(Xk Vk jX(S[fk g) V(S[fk g) )

�H(Xk Vk jX(S[fk g) V(S[fk g) Yd)

=H(Xk Vk jX(S[fk ;k g) V(S[fk ;k g) )

�H(Xk Vk jX(S[fk g) V(S[fk g) Yd) (50)

� I(Xk Vk ; YdjX(S[fk ;k g) V(S[fk ;k g) ) (51)

where (50) follows from the independence of the (Xk; Vk) and (51) be-
cause conditioning cannot increase entropy. The expression (51) added
to the final term in (49) is

I(XS[fk ;k gXr;YdjX(S[fk ;k g) V(S[fk ;k g) ): (52)

Inserting (51) into (49), we have

f(S [ fk1g) + f(S [ fk2g) � f(S) + f(S [ fk1; k2g) (53)

for all S � K. The set function f(�) is therefore submodular by [18,
Theorem 44.1, p. 767].

The preceding shows that the rate region defined by the destination
bounds (see (9))

RS � I(XSXr;YdjXS VS ); S � K (54)

is a polymatroid associated with f(�) (see [18, p. 767]). But the nonzero
corner points R = (R1; R2; . . . ; RK) of this polymatroid are known
to be given by (see [18, p. 777])

R�(k) =

f (f�(1); . . . ; �(k)g)

�f (f�(1); . . . ; �(k� 1)g) ; k � `

0; k > `

(55)

where � is a permutation of the source indices, k = 1; 2; . . . ; K , and
` = 1; 2; . . . ; K . For example, consider � = (1; 2; . . . ; K) for which
(55) evaluates to

Rk =

I(X1Xr;YdjX[2;K]V[2;K]); k = 1

I(XkVk;YdjX[k+1;K]V[k+1;K]); 2 � k � `

0; k > `

(56)

where X[K+1;K] and V[K+1;K] are considered to be constants.
We are mainly interested in the corner points of the base polytope

defined by ` = K in (55) (see [18, p. 767]) because the other corner
points are achieved by discarding message bits. The expression (55)
shows that there are up to K! base polytope corner points, namely, one
point for each �.

Suppose the offset order is � = (1; 2; . . . ; K) as in Fig. 4. Con-
sider the window with the channel-symbol blocks y

d;1
; y

d;2
; . . . ;

y
d;K+1

. In this window, the destination successively decodes wK;1;

wK�1;1; . . . ; w1;1 by assuming that its past decoding steps were
successful. In Appendix III, we show that one can approach the rate
point R = (R1; R2; . . . ; RK) with

Rk =
I(X1Xr;YdjX[2;K]V[2;K]); k = 1

I(XkVk;YdjX[k+1;K]V[k+1;K]); 2 � k � K
(57)

where X[K+1;K] and V[K+1;K] are considered to be constants. The
codewords contributing to these rates are shown as shaded blocks in
Fig. 4. But the rates (57) are precisely the rates in (56) for ` = K .
Hence, we achieve the desired corner point. We can achieve the other
corner points by changing the offset order�. Finally, we can achieve the
non-corner points by time-sharing between offset orders. An interesting
open problem is whether the union of rate points achieved by using

all combinations of offset orderings and no-offsets gives the backward
decoding rate region (see Fig. 5). If so, then as for K = 2 there is no
need to time-share between offset orders.

V. CONCLUSION

We presented an offset encoding technique for DF that improves
the rate region of sliding-window decoding. The technique achieves
the corner points of the destination’s backward decoding rate region
but avoids the excessive delay associated with backward decoding.
Offset encoding will clearly apply to other multiterminal problems
[13], [19]–[21].

APPENDIX I
BACKWARD DECODING ANALYSIS

We derive the DF rate bounds for discrete memoryless MARCs,
K = 2, and backward decoding. The random code construction and
the encoding are described in Section II-B and we use (strongly) typ-
ical sequence decoders. Let n(a; bjx; y) be the number of times the pair
(a; b) occurs in the sequence (x1; y1); (x2; y2); . . . ; (xn; yn), and let
X and Y be the alphabets of X and Y with cardinalities jX j and jYj,
respectively. Define the set of typical sequences of length n with re-
spect to � and PX;Y (�) as

T
(n)
� (X;Y ) = (x; y) :

n(a; bjx; y)

n
� PX;Y (a; b)

�
�

jX j � jYj
for all (a; b) and

n(a; bjx; y) = 0 if PX;Y (a; b) = 0 : (58)

We refer to [22, Ch. 2] for properties of such sequences.
Decoding:

1) At the relay: The relay decodes (w1;b; w2;b) in block b, b =
1; 2; . . . ; B, by using y

r;b
and by assuming that its message esti-

mates in the previous blocks are correct (see [3]). More precisely,
the relay decodes by finding a ( ~w1;b; ~w2;b) such that

(x1( ~w1;b; w1;b�1); x2( ~w2;b; w2;b�1); v1(w1;b�1);

v2(w2;b�1); xr(w1;b�1;w2;b�1); y
r;b

)

2 T
(n)
� (X1;X2; V1; V2; Xr; Yr): (59)

We assume that the correct codewords are identified as being
typical since this is a high probability event for large n. With
this assumption, the relay makes an error only if it identifies a
( ~w1;b; ~w2;b) 6= (w1;b; w2;b) that satisfies (59). This error event
can be further split into three disjoint error events. The first error
event has a ~w1;b 6= w1;b and ~w2;b = w2;b satisfying (59). Using
[4, Lemma 1] and the union bound, the probability of this event
is at most

2n(R �I(X ;Y jX V V X )+6�)
: (60)

Thus, for reliable decoding we set

R1 < I(X1;YrjX2V1V2Xr): (61)

The second error event has ~w1;b = w1;b and a ~w2;b 6= w2;b

satisfying (59). By symmetry to (61), we set

R2 < I(X2;YrjX1V1V2Xr): (62)
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The third error event has a ~w1;b 6= w1;b and a ~w2;b 6= w2;b sat-
isfying (59). We again use [4, Lemma 1] to bound the probability
of this event by

2n(R +R �I(X X ;Y jV V X )+6�)
: (63)

Reliable decoding thus requires

R1 +R2 < I(X1X2;YrjV1V2Xr): (64)

2) At the destination: The destination collects all of its B+1 output
blocks. Starting from the last block, the destination decodes
(w1;b; w2;b), b = B;B � 1; . . . ; 1 by using y

d;b+1
and by as-

suming that its previously decoded message estimates are correct
(see [3]). More precisely, the destination decodes by finding a
( ~w1;b; ~w2;b) such that

(x1(w1;b+1; ~w1;b); x2(w2;b+1; ~w2;b); v1( ~w1;b);

v2( ~w2;b); xr( ~w1;b; ~w2;b); y
d;b+1

)

2 T
(n)
� (X1;X2; V1; V2; Xr; Yd): (65)

As before, we assume that the correct codewords are identified
as being typical. Again, three kinds of error events can occur in
decoding (w1;b;w2;b). Using [4, Lemma 1] and the union bound,
we follow the same decoding steps as for the relay decoder to show
that

R1 <I(X1Xr;YdjX2V2) (66)

R2 <I(X2Xr;YdjX1V1) (67)

R1 +R2 <I(X1XrX2;Yd) (68)

ensures reliable communications.
Combining (61), (62), (64), and (66)–(68), we have the bounds

(3)–(8). The analysis carries over in a straightforward way to weakly
typical (or entropy-typical) sequences [17, p. 51], the addition of a
time-sharing random variable U [17, p. 396], and K > 2.

APPENDIX II
SLIDING-WINDOW JOINT DECODING ANALYSIS

We derive the DF rate bounds for K = 2, offset encoding, and
sliding-window decoding. Without loss of generality, we consider the
offset order � = (1; 2). Section II-B describes the random code con-
struction.

Encoding: Consider block b.
1) Source 1 transmits x1(w1;b; w1;b�1) while source 2 transmits

x2(w2;b�1;w2;b�2) where w2;�1, w2;0, w1;0, w1;B+1, w1;B+2,
and w2;B+1 are set to 1.

2) The relay transmits xr(s1;b; s2;b) where (s1;b; s2;b) is the mes-
sage pair decoded at the relay in block (b� 1).
Decoding:

1) At the relay: The relay decoder error analysis is the same as that
described in Appendix I up to changes in the message indices. We
therefore have the same rate bounds (61), (62), and (64).

2) At the destination: The destination decodes (w1;b;w2;b) by using
y
d;b

, y
d;b+1

, and y
d;b+2

and by assuming that no errors were made
up to block b. More precisely, the destination decodes by finding
a ( ~w1;b; ~w2;b) such that following three events occur:

E1 : (v1(w1;b�1); v2(w2;b�2); x1( ~w1;b; w1;b�1);

x2(w2;b�1;w2;b�2); xr(w1;b�1;w2;b�2); y
d;b

)

2T (n)
� (V1; V2; X1; X2; Xr; Yd) (69)

E2 : (v1( ~w1;b); v2(w2;b�1); x2( ~w2;b; w2;b�1);

xr( ~w1;b; w2;b�1); y
d;b+1

)

2T (n)
� (V1; V2; X2; Xr; Yd) (70)

E3 : (v2( ~w2;b); y
d;b+2

) 2 T
(n)
� (V2; Yd): (71)

Note that the codebooks in different blocks are generated inde-
pendently (see Section II-B) so the above three events are inde-
pendent (see [6], [10]). As before, we consider three disjoint error
events that can occur in decoding (w1;b; w2;b). The first event
has a ~w1;b 6= w1;b and ~w2;b = w2;b satisfying (69)–(71). We
upper-bound the probability of this error event using [4, Lemma
1] and the union bound as

~w 6=w Pr (E1 \ E2 \ E3)

=
~w 6=w

Pr (E1) � Pr (E2) � Pr (E3) (72)

� 2n(R �I(X ;Y jX V V X )�I(V X ;Y jX V )+12�) (73)

=2n(R �I(X X ;Y jX V )+12�) (74)

where we used Pr (E3) � 1 for (73) and (14)–(15) for (74). Thus,
we set

R1 < I(X1Xr;YdjX2V2): (75)

Consider next the case where ~w1;b = w1;b but ~w2;b 6= w2;b. The
expression (72) with the summation over ~w2;b 6= w2;b instead of
~w1;b 6= w1;b is upper-bounded as

2n(R �I(X ;Y jV V X )�I(V ;Y )+12�) (76)

where we used Pr (E1) � 1. We thus require

R2 < I(X2;YdjV1V2Xr) + I(V2; Yd): (77)

Finally, consider the case ~w1;b 6= w1;b and ~w2;b 6= w2;b. The
expression (72) with the summation now over both ~w1;b 6= w1;b

and ~w2;b 6= w2;b is upper-bounded as

2n(R +R ) � 2�nI(X ;Y jX V V X )+n6�

� 2�nI(X V X ;Y jV )+n6� � 2�nI(V ;Y )+n6� (78)

=2n(R +R �I(X X X ;Y )+18�) (79)

where we have used the chain rule for mutual information and
the Markov chain (V1; V2) � (X1; X2; Xr) � Yd. For reliable
decoding, we thus require

R1 +R2 < I(X1X2Xr;Yd): (80)

Combining (75), (77), and (80), we obtain (30)–(32). Again, the
analysis carries over in a straightforward way to weakly typical se-
quences, the addition of a time-sharing random variableU , andK > 2.

APPENDIX III
SLIDING-WINDOW SUCCESSIVE DECODING ANALYSIS

We derive DF rate bounds for K � 2, offset encoding, and
sliding-window decoding. We further focus on the message blocks
wk;b with b = 1. However, the destination now performs successive
rather than joint decoding. Without loss of generality, we consider the
offset order � = (1; 2; . . . ; K). Section II-B describes the random
code construction, and the encoding and relay decoding are the same
as in Appendix II.

Decoding at the Destination: Consider the window with the
channel-symbol blocks y

d;1
; y

d;2
; . . . ; y

d;K+1
. As explained in Sec-

tion IV-B, the destination successively decodes in the reverse order
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wK;1; wK�1;1; . . . ; w1;1 (see the shaded blocks in Fig. 4 for the w(k;l)

with k = K , k = 2, and k = 1). The destination further assumes that
its past decoding steps were successful, and we perform our analysis
with the same assumption. For k = K;K � 1; . . . ; 2, the destination
finds a ~wk;1 such that the following two events occur:

E1;k : (vk( ~wk;1); v[k+1;K](1); x[k+1;K](1;1); yd;k+1
)

2T (n)
� (Vk; V[k+1;K];X[k+1;K]; Yd) (81)

E2;k : (xk( ~wk;1; 1); v[k;K](1); x[k+1;K](1;1); yd;k)

2T (n)
� (Xk; V[k;K];X[k+1;K]; Yd) (82)

where v[i;j](1) = fvi(1); vi+1(1); . . . ; vj(1)g and similarly for
x[i;j](1;1) and vK(1) below. As before, we assume that variables with
vacuous index sets are appropriate constants, e.g., we assume that all
the entries of v[K+1;K] are the same constant V[K+1;K].

The events E1;k and E2;k are independent and we assume that the
correct codewords are identified as being typical. The destination thus
makes an error only if it identifies a ~wk;1 6= wk;1 that satisfies both
(81) and (82). We upper-bound the probability of this event using [4,
Lemma 1] as

~w 6=w

Pr (E1;k) � Pr (E2;k)

� 2n(R �I(X V ;Y jX V )+12�): (83)

For 2 � k � K , we therefore require

Rk < I(XkVk;YdjX[k+1;K]V[k+1;K]): (84)

For k = 1, we add xr (�) to (81) and (82) as follows:

E1;1 : (v1( ~w1;1); v[2;K](1);x[2;K](1;1); xr( ~w1;1; 1; . . . ; 1); y
d;2

)

2T (n)
� (V1; V[2;K];X[2;K];Xr; Yd) (85)

E2;1 : (x1( ~w1;1; 1); vK(1); x[2;K](1;1); xr(1; 1; . . . ; 1); yd;1)

2T (n)
� (X1; VK; X[2;K];Xr; Yd): (86)

The resulting bound is

R1 < I(X1Xr;YdjX[2;K]V[2;K]): (87)

For example, for K = 2, the two rate bounds are

R2 <I(X2V2;Yd) (88)

R1 <I(X1Xr;YdjX2V2) (89)

and one can approach the corner point (40). One can check that the
above analysis generalizes to b > 1.

ACKNOWLEDGMENT

The authors would like to thank Prof. Liang-Liang Xie of the Uni-
versity of Waterloo and the anonymous reviewers for their useful com-
ments that helped improve the correspondence.

REFERENCES

[1] G. Kramer and A. J. van Wijngaarden, “On the white Gaussian mul-
tiple-acess relay channel,” in Proc. 2000 IEEE Int. Symp. Information
Theory, Sorrento, Italy, Jun. 2000, p. 40.

[2] E. C. van der Meulen, “Three-terminal communication channels,” Adv.
Appl. Probab., vol. 3, pp. 120–154, 1971.

[3] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inf. Theory, vol. IT-25, pp. 572–584, Sep. 1979.

[4] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and ca-
pacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51,
no. 9, pp. 3027–3063, Sep. 2005.

[5] L. Sankaranarayanan, G. Kramer, and N. B. Mandayam, “Capacity
theorems for the multiple-access relay channel,” in Proc. 42nd Annu.
Allerton Conf. Communications, Control, and Computing, Monticello,
IL, Sep. 2004, pp. 1782–1791.

[6] A. B. Carleial, “Multiple-access channels with different generalized
feedback signals,” IEEE Trans. Inf. Theory, vol. IT-28, no. 6, pp.
841–850, Nov. 1982.

[7] F. M. J. Willems, “Information-theoretical Results for the Discrete
Memoryless Multiple Access Channel,” Doctor in de Wetenschappen
Proefschrift (Ph.D.) dissertation, Katholieke Univ. Leuven, Leuven,
Belgium, 1982.

[8] M. R. Aref, “Information Flow in Relay Networks,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1980.

[9] P. Gupta and P. R. Kumar, “Towards an information theory of large
networks: An achievable rate region,” IEEE Trans. Inf. Theory, vol. 49,
no. 8, pp. 1877–1894, Aug. 2003.

[10] L.-L. Xie and P. R. Kumar, “An achievable rate for the multiple-level
relay channel,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1348–1358,
Apr. 2005.

[11] M. Sikora, J. N. Laneman, M. Haenggi, D. J. Costello, and T. E. Fuja,
“Bandwidth- and power-efficient routing in linear wireless networks,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2624–2633, Jun. 2006.

[12] C.-M. Zeng, F. Kuhlmann, and A. Buzo, “Achievability proofs of some
multiuser channel coding theorems using backward decoding,” IEEE
Trans. Inf. Theory, vol. 35, no. 6, pp. 1160–1165, Nov. 1989.

[13] J. N. Laneman and G. Kramer, “Window decoding for the multiple-
access channel with generalized feedback,” in Proc. 2004 IEEE Int.
Symp. Information Theory, Chicago, IL, Jun./Jul. 2004, p. 281.

[14] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the Gaussian
multiple access channel,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
364–375, Mar. 1996.

[15] A. Grant, B. Rimoldi, R. Urbanke, and P. Whiting, “Rate-splitting
multiple-access for discrete memoryless channels,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 873–890, Mar. 2001.

[16] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[18] A. Schrijver, Combinatorial Optimization: Polyhedra and Effi-
ciency. New York: Springer-Verlag, 2003.

[19] L. Sankaranarayanan, G. Kramer, and N. B. Mandayam, “Cooper-
ation vs. hierarchy: An information-theoretic comparison,” in Proc.
Int. Symp. Information Theory, Adelaide, Australia, Sep. 2005, pp.
411–415.

[20] L.-L. Xie and P. R. Kumar, “A multi-relay scheme for the multi-source
multi-cast network,” in Proc. IEEE Int. Symp. Information Theory,
Seattle, WA, Jul. 2006, pp. 2383–2387.

[21] L.-L. Xie and P. R. Kumar, “Multisource, multidestination, multirelay
wireless networks,” IEEE Trans. Inf. Theory, vol. 53, no. 10, pp.
3586–3595, Oct. 2007.

[22] I. Csiszár and J. Körner, Information Theory: Coding Theorems
for Discrete Memoryless Systems. Budapest, Hungary: Académiai
Kiadó, 1981.


