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Abstract— We study the formation of ad-hoc networks
among selfish energy-constrained wireless devices that are
primarily interested in being connected with other devices.
We use a non-cooperative bilateral connection game (BCG)
framework to study network formation. For a BCG in which
devices choose their individual strategies to remain connected
by minimizing only their direct transmission power costs, we
show that the price-of-anarchy is unbounded in the network
size. We propose a BCG with an alternate cost structure in
which each device additionally pays the transmission power
costs incurred by other devices for its own traffic. We show
that a unique network structure emerges in this game that is
stable as well as socially efficient. We then study the achievable
throughput for random point-to-point traffic in this stable
energy-efficient network. When the nodes of a network are
located in a bounded planar region the distribution of point-
to-point flows through the nodes exhibits a scale-free behavior.

I. INTRODUCTION

A. Motivation

In recent years, several researchers have started studies
to better understand the reasons behind the enormous
growth in the size of the Internet. At a certain abstraction,
the Internet is but a network of selfish autonomous sub-
networks. Hosts within a sub-network would like to be able
to connect to hosts in another sub-network. However, con-
nectivity entails a cost. Sub-networks are typically owned
by business entities seeking to maximize their revenue
from the hosts they serve, while keeping their connectivity
cost at a minimum. Driven by market forces and with a
strong underlying protocol structure the Internet has come
to become one of the largest distributed systems ever to be
built.

Networks that are created and sustained through unco-
ordinated interactions among multiple selfish entities, in a
manner similar to the Internet, appear in a wide variety
of situations like social networks of individuals, trade
networks, political alliances, research collaborations among
firms, the world wide web, and peer-to-peer systems for
file sharing. However, in the context of wireless networks,
which are the focus of our work, a great majority of those
that are in operation today are carefully planned centrally
coordinated networks. Inspired by the Internet and the
various other networks mentioned above, in this work, we
explore the possibility of network formation among the

myriad portable wireless devices - like hand-held mobile
phones, Bluetooth-enabled PDAs, WiFi laptops, etc., - in
an uncoordinated manner without any explicit centralized
coordinating mechanism.

We focus specifically on the formation of a connected
network among a bunch of wireless devices i.e., a network
in which any two devices or nodes are connected either
directly or indirectly through multiple hops over other
nodes. Consider a scenario in which each node has a
specific destination that it wishes to communicate with
but the location of the destination changes in a quasi-
static manner. In another scenario, a node might wish to
communicate with any one node from among several nodes
in a certain geographical area. Situations such as these in
which there is an uncertainty either in the location of the
destination or the identity of the destination require that all
the nodes form a connected network among themselves.

An important feature of portable wireless devices is
that they are battery powered and therefore energy is a
premium. It is thus natural that each of these devices,
though interested in forming a network with the others,
would like to do so by expending as little power as possible
on its part. While short links with low transmission power
costs are favored to conserve power, they may not lead
to a connected network. The conflict between the need
for connectivity and the selfish objective of conserving
energy motivates us to question whether selfish energy-
constrained wireless devices do indeed form connected
networks. Further, if the devices form a connected network,
we wish to study how it compares with the network formed
in a centrally coordinated manner in terms of the total
energy dissipation or the energy efficiency.

B. Prior Work

Game-theoretic models have been a natural choice to
study networks that emerge from uncoordinated actions
among selfish agents or players. A simple but insightful
model consists of a single stage link connection game in
which players simultaneously announce the list of other
players that they wish to be connected to. Based on all the
announcements, links are formed between players accord-
ing to a linking rule and thus a network is formed among
the players. Each player incurs a cost in this network, which
is a function of all the announcements, and the player’s own



announcement seeks to minimize this cost. The social cost
of a network is defined as the sum of costs incurred by the
individual players and socially optimal networks are those
that have the least social cost.

In the unilateral connection game of [1], the linking rule
dictates that a link is formed between two players if either
one of the players announce an interest to form the link and
that it can then be used by both the players. Such a game
is used to model the creation of Internet-like networks.
Each player’s cost function is a weighted sum of two
components: the total cost of links announced by this player
and the sum of distances (hop counts) from this player to all
others. Networks that are Nash equilibria of the unilateral
connection game are the stable networks in this model and
they are not necessarily socially efficient. There is thus a
conflict between stability and social efficiency. In order to
study the loss in efficiency due to uncoordinated network
formation, the authors evaluate the price-of-anarchy [2],
which is the ratio of the social costs of the worst-case Nash
equilibrium network and the socially efficient network.

Another linking rule in which a link is formed between
two players only if both of them announce an interest
to connect is proposed in [3]. [4] uses this model, also
called a bilateral connection game (BCG), together with
the cost function of [1] to show that there is once again
a conflict between stability and social efficiency and that
in fact the price-of-anarchy of the bilateral model is worse
than that for the unilateral model. The notion of stability
(Nash equilibria) used in unilateral connection games needs
to be refined in the context of bilateral connection games in
order to sift out useful networks from among the multitude
of Nash equilibrium networks. A refinement of Nash equi-
librium called pairwise-Nash equilibrium is defined in [5]
where players are also allowed to deviate by pairs unlike
only unilateral deviations in a Nash equilibrium. We discuss
these concepts in detail in Section II-B.

The conflict between stability and social efficiency seen
in models of the Internet ( [1], [4]) has also been observed
in a wide variety of other network models that include
social networks, trade networks, political alliances, research
collaborations among firms, the world wide web, and peer-
to-peer systems for file sharing. [6] provides an excellent
survey of several such models and explores the inherent
tension between stability and social efficiency in networks
formed from uncoordinated actions of selfish players. In
contrast to uncoordinated network formation studied in this
work, [7] studies formation of coalitions in cooperative
wireless networks using game theoretic and information
theoretic models.

C. Overview

In this work, we use a non-cooperative BCG framework
to model network formation among energy-constrained
wireless devices deployed over a bounded region in the
two dimensional plane. Each device or player is interested
in being connected to every other player but with the least

power. Therefore, unlike the constant link costs in [1] and
[4], we associate a power cost with a link, which is the
minimum power required for successfully communicating
on this link. We assume a large scale path-loss model and
therefore the power cost is proportional to dα, where d is
the link length and α is the path-loss exponent. Communi-
cation between two players that are not connected directly
takes place along the least-cost route. As mentioned earlier,
our focus in this work is on forming connected networks
and therefore we assume an infinite route cost if two players
are not connected to each other in the network. The more
general case where a node only wishes to connect to a
subset of all other nodes is not considered in this work and
is currently under investigation. We however emphasize that
studying the formation of connected networks is important
for practical situations as stated before and also yields
valuable insights.

Each player in the BCG chooses the list of other players
that it wishes to directly connect to based on the criteria of
minimizing its own cost. We first consider the case where
the cost incurred by a player is the sum of transmission
power costs over the direct links. For a BCG in which
devices choose their individual strategies to remain con-
nected by minimizing such a natural cost function, we show
that the price-of-anarchy is unbounded in the network size.
Therefore, stable networks comprising a large number of
nodes with such a natural cost function can have very high
social costs i.e., they can be highly energy inefficient. We
then propose an alternate cost function in which each device
additionally pays the transmission power costs incurred by
other devices for its own traffic. Such a payment can be
implemented using a virtual energy currency on the lines of
the nuglets-based Packet Purse Model of [8]. An important
feature of a BCG with the proposed cost function is that
a unique network structure emerges in this game that is
stable as well as socially efficient i.e., the network formed
through uncoordinated selfish actions is the same as the
energy efficient network formed using a central coordinator.

The energy constrained nature of wireless devices has
motivated us to study network formation while each node
tries to minimize its power costs. Since we did not explicitly
consider the effects of interference due to simultaneous
wireless transmissions, for the stable energy-efficient net-
work that results from our BCG, we study the spectral
efficiency achievable for routing multiple point-to-point
flows to random destinations. Recently, [9], [10], [11] have
studied the capacity of a wireless network consisting of
n nodes inside a bounded region on a plane with a flow
from each node to a random destination. It is shown that
the capacity of each flow decreases as 1/

√
n log n as the

number of nodes increases. For the stable energy-efficient
network obtained in our model, based on analysis and
empirical observations, we conjecture that the capacity
of individual flows for random point to point traffic is
order optimal i.e., the throughput achieved by each flow
is Ω(1/

√
n log n).



When we consider random point to point flows among
nodes deployed in a square region, nodes at the center of
the region are more likely to route a higher number of flows
than those that are far away from the center. Interestingly,
we observe a “scale-free” or “power-law” distribution for
the number of flows that pass through any node in the
stable energy-efficient network. The degree distribution of
large networks like the Internet and several social networks
has been empirically observed to approximate a scale-
free distribution and has implications in system design.
[12], [13], and [14] propose network formation models that
generate networks in which, among other features, the node
degree distribution resembles a scale free distribution.

In the next section we present the BCG model and define
notions of stability and efficiency. In Section III we discuss
stability and efficiency of networks resulting from our BCG
model. The throughput that can be achieved by each flow
for multiple random point-to-point flows over the stable
energy-efficient network is studied analytically in Section
IV.

II. SYSTEM MODEL

A. Bilateral Connection Game

Consider a link connection game in a set N = {1, . . . , n}
of wireless devices or players that are located on a two-
dimensional unit square. The strategy space of the ith

player in this game is the set Si = {0, 1}n−1 of size
2n−1. A strategy si ∈ Si is a vector of length n − 1 with
sij = 1, j �= i indicating player i’s consent to connect
to player j. We consider a single stage game in which
all players announce their strategies simultaneously. Let
s = (s1, . . . , sn) ∈ S1 × . . . × Sn denote the strategy
profile announced by all players and s−i denote the strategy
profile of all players excluding the ith player. Given s, we
form the undirected graph G(s) = (N,B(s)) with vertex
set N comprising of players and edge set B(s) consisting
of communication links between players. Link formation
is based on mutual consent i.e., B(s) = {(i, j) | i �=
j, sij sji = 1} and hence the game is called a Bilateral
Connection Game (BCG).

Let cij denote the power cost of link (i, j) ∈ B(s), which
is the minimum transmit power required for successfully
communicating on this link. We assume that transmissions
are power controlled to ensure a certain minimum signal-to-
noise ratio (SNR) at the receiver that guarantees successful
reception. Therefore, cij = c0d

α
ij where c0 is a constant,

dij is the distance between nodes i and j, and α ≥ 2 is the
path loss exponent. We define cii = 0. The power cost of a
path in G(s) is the sum of power costs of edges along this
path. Let ĉij(s) denote the power cost of the least-cost path
between nodes i and j in G(s). We assume ĉij(s) = ∞ if
nodes i and j are not connected in G(s). We consider two
different node cost functions in our model. The first cost
function that involves power costs of direct links alone is

what is observed naturally and is defined as

C
(1)
i (s) =

{ ∑
j cij sij if G(s) is connected;

∞ otherwise
(1)

We show in the sequel that networks formed in a BCG with
this naturally observed cost function are asymptotically
inefficient. We therefore propose an alternative node cost
function that in addition to the power costs over direct links
also includes the transmission power costs incurred by other
devices for the node’s own traffic

C
(2)
i (s) =

∑
j

cij sij +
∑

j | (i,j)/∈B(s)

ĉij(s). (2)

We show that networks formed in a BCG with this second
cost function are both stable as well as energy efficient.
Players are selfish in that they choose their individual
strategies so as to minimize their costs. Given a particular
node cost function, we define the social cost of a graph as
follows:

Definition 2.1: The social cost of a graph is defined
as the sum of costs of individual players in that graph.
The graph with the least social cost is said to be socially
efficient.

A BCG with cost function as in (1) might seem more
‘natural’ because in practice each node in the network
expends power only on its direct links and on its own link
announcements. However, as shown in the sequel a BCG
with such a cost function can result in networks that are
increasingly inefficient compared to the socially efficient
network as the size of the network increases. We therefore
propose a BCG with cost function as in (2) in which each
node also bears the cost of least-cost paths from itself to
other nodes in the network that are not directly connected
to it. We show that networks resulting from such a BCG
have interesting stability and efficiency characteristics that
could be of interest in network formation among selfish
wireless devices.

B. Pairwise Stability and Pairwise-Nash Equilibrium

We are interested in studying the stability of graphs that
result from the BCG and therefore Nash graphs, which
result from strategy profiles that are Nash equilibria of the
BCG are of immediate interest. In the sequel, we use Ci(s)
without a superscript to denote either C

(1)
i (s) or C

(2)
i (s)

and when a specific cost function is implied the superscript
will be indicated explicitly.

Definition 2.2: A graph G(s) is a Nash graph if the
strategy profile s is a Nash equilibrium of the BCG i.e.,
Ci(s) = Ci(si, s−i) ≤ Ci(s′i, s−i) for all players i.

Two important properties of Nash graphs follow imme-
diately based on the structure of the game described above.

• In a Nash graph, the strategy of a player does not
involve unilateral link announcements. This is because
nodes incur a cost from unilateral link announcements
and by deviating from a strategy containing such



announcements, nodes necessarily reduce their overall
cost (see (1) and (2)).

• Unilateral strategy deviations from a Nash graph can
only result in link deletions. This is because link
formation requires mutual consent but link deletion
does not.

Note that a multitude of Nash graphs exist for the BCG
with cost functions as given by (1) and (2). For instance,
the strategy profile with sij = 0, i ∈ N, j ∈ N , which
results in the empty graph i.e., B(s) = φ is a Nash graph.
Similarly, any strategy profile that results in a tree graph
and that does not involve unilateral announcements (i.e.,
sij = 1 but sji = 0 for some i and j) is also a Nash graph.
Therefore, in order to study graphs that are more interesting
both from a theoretical and practical perspective, we now
consider a refinement of the definition of Nash graph.

For a strategy profile s, let s + (i, j) denote a similar
strategy profile that also includes link (i, j) i.e., B(s +
(i, j)) = B(s) ∪ {(i, j)}. Similarly, let s′ = s − (i, j)
denote a deviated strategy profile in which s′ij = 0 and
therefore (i, j) /∈ B(s−(i, j)). We define a refinement of a
Nash graph called pairwise-Nash graph [5] such that every
mutually beneficial link is an edge in this graph.

Definition 2.3: A graph G(s) is pairwise-Nash if G(s)
is a Nash graph and for all (i, j) /∈ B(s), if Ci(s+(i, j)) ≤
Ci(s) then Cj(s + (i, j)) > Cj(s).
An intuitive interpretation of pairwise-Nash graphs is that
if players are allowed to coordinate bilaterally then no
mutually beneficial link is left aside. Pairwise-Nash graphs
are the Nash equilibrium outcomes of the BCG that fulfill
this added coordinated move requirement. Let π(Ci(s))
denote the set of all pairwise-Nash networks for a BCG
with cost function Ci(s).

We now define pairwise-stability which is a simpler
notion of stability involving only one-link deviations unlike
multi-link deviations in the case of Nash or Pairwise-
Nash graphs. Given any graph, pairwise-stability is an
easier condition to verify than the Nash or pairwise-Nash
conditions and will simplify our subsequent analysis.

Definition 2.4: A graph G(s) is pairwise-stable if s does
not contain any unilateral announcements and if for all
(i, j) ∈ B(s), Ci(s− (i, j)) ≥ Ci(s), while for all (i, j) /∈
B(s), if Ci(s+(i, j)) ≤ Ci(s) then Cj(s+(i, j)) > Cj(s).
Thus, every edge in a pairwise-stable graph G(s) is a
mutually beneficial link and every mutually beneficial link
is an edge of G(s).

III. STABILITY AND EFFICIENCY OF NETWORKS IN THE

BCG

Theorem 3.1: For the BCG with cost function C
(1)
i (s)

given in (1), a graph G(s) is pairwise-stable if and only if
it is pairwise-Nash.

Proof: It is easy to verify from the definitions that
every pairwise-Nash graph is pairwise-stable irrespective
of the cost function. However the converse is not true
in general for every cost function. In order to show the

converse, we only need to consider the case of deletion
of links (i, j) ∈ B(s) since constraints on links (i, j) /∈
B(s) are the same for pairwise stability and pairwise-Nash.
In particular, we need to verify that for the BCG with
cost function C

(1)
i (s), a node in a pairwise stable graph

G(s) does not benefit from deleting multiple links i.e. the
marginal cost of deleting multiple links is non-negative.

Consider a pairwise stable graph G(s). If G(s) is not
connected, then Ci(s) = ∞, i ∈ N and it remains so
whether a node deletes any single direct link or multiple
direct links. If G(s) is connected, then s does not contain
any unilateral link announcements and hence C

(1)
i (s) =∑

j | (i,j)∈B(s) cij(s) < ∞. The marginal cost of deleting
multiple links is either infinite (when the resulting network
is not connected) or equal to the sum of power costs of
the deleted links, which is non-negative. Thus no node in
a pairwise stable graph benefits from deleting either one or
more of its links. Every pairwise stable graph is therefore
equivalent to a pairwise-Nash graph for the BCG with cost
function C

(1)
i (s).

Theorem 3.2: For the BCG with cost function C
(1)
i (s)

as in (1), a graph G(s) is pairwise-Nash if and only if
it is a tree and s does not contain any unilateral link
announcements.

Proof: If a pairwise-stable graph G(s) is connected
but is not a tree, then the cost of node i is C

(1)
i (s) =∑

j | (i,j)∈B(s) cij which can be reduced by deleting existing
direct links so long as the graph is still connected. Thus
existing links in this graph are not beneficial and hence
the graph is not pairwise-stable from Definition 2.4 and
consequently not pairwise-Nash from Theorem 3.1,

For the converse, if s does not contain any unilateral link
announcements and the graph G(s) is a tree, then from
(1), C

(1)
i (s) =

∑
j | (i,j)∈B(s) cij . Deleting an existing link

(i, j) ∈ B(s) will disconnect the network and result in an
infinite cost for the end nodes i and j. Every existing link
is thus mutually beneficial. Adding a link (i, j) /∈ B(s) will
only increase the cost function of both end nodes and thus
no mutually beneficial link is absent from G(s). Therefore
G(s) is pairwise-stable and consequently pairwise-Nash
from Theorem 3.1.

As mentioned in Section I, the price-of-anarchy [2] is a
widely used metric to study the loss in efficiency due to
uncoordinated network formation compared to centralized
network formation. We now give a formal definition for the
price-of-anarchy in a BCG.

Definition 3.3: For a BCG with cost function Ci(s), the
price-of-anarchy η(Ci(s)) is defined as the ratio of the
social costs of the worst-case pairwise-Nash network and
the socially efficient network i.e.,

η(Ci(s)) =
maxG(s)∈π(Ci(s))

∑
i∈N Ci(s)

minG(s)

∑
i∈N Ci(s)

. (3)

We now describe a model for studying asymptotic prop-
erties of random networks. Indexed by the number of nodes
n, we construct a sequence of random networks using the



BCG framework described above. Each node in a sequence
of networks is deployed independently (of other nodes) and
randomly with a uniform distribution on the unit square.
Consider a sequence of events E1, . . . , En with En corre-
sponding to the event in the network with n nodes. We say
that these events occur almost surely if their complementary
sequence of events do not occur infinitely often with
probability one i.e., P ({EC

n occurs infinitely often}) = 0.
Now for a network of n nodes, we partition the unit square
into a grid of 1/An cells each of area An as shown in Fig.
1 and indexed as C1, . . . , C1/An

. With an abuse of notation,
we use Ci to indicate the ith cell as well as the number of
nodes in that cell.

Lemma 3.4: For An = a log n
n , a > 2, each cell has

Θ(log n) nodes almost surely.
Proof: Let Yi be a Bernoulli random variable with

Yi = 1 if node i lies in cell C1. We need to show that
the sequence of events En = ∩n

i=1{Ci = Θ(log n)} occurs
almost surely or equivalently their complementary events
do not occur infinitely often with probability one.

P

(
n⋃

i=1

{Ci > b log n}
)

≤ nP (C1 > b log n) (4a)

= nP (Y1 + · · · + Yn > b log n) (4b)

≤ n
E[exp(θ

∑n
j=1 Yj)]

exp(θb log n)
(4c)

= n
{E[exp(θY1)]}n

exp(θb log n)
(4d)

= n
[eθAn + 1 − An]n

exp(θb log n)
(4e)

≤ n exp(nAn(eθ − 1)) exp(−θb log n) (4f)

= n1+a(eθ−1)−bθ (4g)

=
1

n1+ε
, (4h)

where we use the union bound in (4a), Chernoff bound
in (4c), independence of {Yi} in (4d), and the inequality
1 + x ≤ ex in (4f). Finally, (4h) holds for any ε > 0 if
b = (2 + a(eθ − 1) + ε)/θ. For a given a > 2 we can
optimize over all θ > 0 to find the smallest such value of b
for which (4h) holds. Using the Borel-Cantelli lemma, we
conclude that each cell has O(log n) nodes almost surely,
since

∑∞
n=1

1
n1+ε < ∞ for ε > 0.

Similarly,

P

(
n⋃

i=1

{Ci < b′ log n}
)

≤ nP (C1 < b′ log n) (5a)

= nP (Y1 + · · · + Yn < b′ log n) (5b)

≤ n
E[exp(−θ′

∑n
j=1 Yj)]

exp(−θ′b′ log n)
(5c)

= n1−a(1−e−θ′
)+b′θ′

(5d)

=
1

n1+ε′ , (5e)
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Fig. 1. Partition of the square region into square grids each of area An

where θ′ > 0 and the last equality follows for any ε′ > 0
if b′ = (a(1 − e−θ′

) − (2 + ε′))/θ′. For b′ > 0, a >
(2 + ε′)/(1 − e−θ′

) necessarily. We can optimize over all
θ′ > 0 to find the largest value of b′ for which (5e) holds.
Using the Borel-Cantelli lemma, we conclude that each cell
has Ω(log n) nodes almost surely.

Theorem 3.5: For the BCG with cost function C
(1)
i (s)

as in (1), the price-of-anarchy is unbounded almost surely.
Proof: From Definition 3, the price-of-anarchy is

lower bounded by the ratio of social costs of any pairwise-
Nash network and the socially efficient network of the
BCG. Consider a partitioning of the unit square into cells
of size An = 3 log n

n where the number of nodes n is
sufficiently large so that every cell has Θ(log n) nodes
almost surely, from Lemma 3.4.

Let s1 denote a strategy profile without any unilateral
link announcements such that G(s1) is a tree in which each
node is connected directly to the node closest to the center
of the square. Note that G(s1) is a pairwise-Nash graph
from Theorem 3.2. The social cost of G(s1) can be lower
bounded as

C(1)(s1) = 2
∑

(i,j)∈B(s1)

cij >
c0 log n

2An
(1/4)α =

c0/6
4α

n. (6)

by considering costs of only those nodes that are 1/4 units
away from the center of the unit square.

Let s2 denote another strategy profile without any unilat-
eral link announcements such that G(s2) is a tree in which
no link is longer than

√
8An. Such a tree can be constructed

based on Lemma 3.4 which guarantees that no cell is empty
for the above choice of cell size. The social cost of the
socially efficient network can be bounded above as,

min
G(s)

∑
i∈N

C
(1)
i (s) < C(1)(s2) < c0n(24 log n/n)α/2. (7)

Using (6) and (7), the price-of-anarchy (defined in (3))
can be bounded below as

η(C(1)(s)) > c1

(
n

log n

)α/2

→ ∞, (8)



where c1 is a positive constant independent of n.

Theorem 3.6: For the BCG with cost function C
(2)
i (s)

given in (2), a graph G(s) is pairwise-stable if and only if
it is pairwise-Nash.

Proof: The proof is very similar to that of Theorem
3.1. We once again only need to verify that a node in
a pairwise stable graph does not benefit from deleting
multiple links. For a pairwise stable graph G(s), since there
are no unilateral link announcements,

C
(2)
i (s) =

∑
j | (i,j)∈B(s)

cij +
∑

j | (i,j)/∈B(s)

ĉij(s).

The marginal cost of node i from deleting link (i, k) is
non-negative i.e.,

C
(2)
i (s − (i, k)) − C

(2)
i (s) = −cik + ĉik(s − (i, k))

+
∑

j∈Nik

ĉij(s − (i, k)) − ĉij(s) ≥ 0, (9)

where Nik = {j ∈ N | (i, j) /∈ B(s), ĉij(s − (i, k)) >
ĉij(s)}. Similarly, the marginal cost of deleting link (i, l) is
also non-negative and can be obtained by replacing k with
l in (9) and Nil = {j ∈ N | (i, j) /∈ B(s), ĉij(s− (i, l)) >
ĉij(s)}. Note that the sets Nik and Nil are disjoint since
the least-cost path to any node from node i cannot include
two direct links of node i. The marginal cost of deleting
two links (i, k) and (i, l) can then be expressed as

C
(2)
i (s − {(i, k), (i, l)}) − C

(2)
i (s)

= −cik + ĉik(s − (i, k)) − cil + ĉil(s − (i, k))

+
∑

j∈Nik

ĉij(s − {(i, k), (i, l)}) − ĉij(s)

+
∑

j∈Nil

ĉij(s − {(i, k), (i, l)}) − ĉij(s)

+
∑

j∈Nikl

ĉij(s − {(i, k), (i, l)}) − ĉij(s)

where Nikl = {j ∈ N ∩ (Nik ∪ Nil)c | (i, j) /∈
B(s), ĉij(s − {(i, k), (i, l)}) > ĉij(s)}. Therefore,

C
(2)
i (s − {(i, k), (i, l)}) − C

(2)
i (s)

≥ −cik + ĉik(s − (i, k)) − cil + ĉil(s − (i, k))

+
∑

j∈Nik

ĉij(s − {(i, k), (i, l)}) − ĉij(s)

+
∑

j∈Nil

ĉij(s − {(i, k), (i, l)}) − ĉij(s)

≥ −cik + ĉik(s − (i, k))

+
∑

j∈Nik

ĉij(s − (i, k)) − ĉij(s)

− cil + ĉil(s − (i, k))

+
∑

j∈Nil

ĉij(s − (i, l)) − ĉij(s)

= C
(2)
i (s − (i, k)) − C

(2)
i (s)

+ C
(2)
i (s − (i, l)) − C

(2)
i (s)

≥ 0.

The above argument easily extends to the case of multiple
link deletions and therefore a pairwise stable graph is also
pairwise-Nash for the BCG with cost function C

(2)
i (s).

We now define a specific strategy profile and a corre-
sponding graph that are of interest in the sequel.

Definition 3.7: Let G(s∗) be the maximal graph such
that each link (i, j) ∈ B(s∗) is the least-cost path among
all paths between nodes i and j in the complete graph Kn

and s∗ does not contain any unilateral announcements. We
call s∗ the stable energy-efficient strategy profile and G(s∗)
the stable energy-efficient graph.

Unlike the multitude of trees that are pairwise-Nash
graphs for the BCG with cost function C

(1)
i (s), the stability

and efficiency properties of the BCG with cost function
C

(2)
i (s) are different as stated in the following theorem.
Theorem 3.8: For the BCG with cost function C

(2)
i (s)

as in (2), G(s∗) is the unique pairwise-Nash graph and is
also the unique socially efficient graph.

Proof: Using Theorem 3.6, we only need to show
that G(s∗) is the unique pairwise stable graph. From the
definition of G(s∗), a link (i, j) ∈ B(s∗) is the least-cost
path between nodes i and j in the complete graph over
the set N . Therefore cij ≤ ĉij(s) for any strategy profile
s such that (i, j) /∈ B(s) and, in particular, C

(2)
i (s∗ −

(i, j)) ≥ C
(2)
i (s∗). Therefore every pairwise stable graph

must include every link (i, j) ∈ B(s∗) i.e., the graph G(s∗)
is a subgraph of every pairwise stable graph.

Adding a link (i, j) /∈ B(s∗), to G(s∗) will only result
in an increase in the cost functions C

(2)
i (s∗) and C

(2)
j (s∗)

by cij because this link does not decrease the power cost
of any of the paths in G(s∗). The graph G(s∗) is therefore
the unique pairwise stable graph or equivalently the unique
pairwise-Nash graph.

From (2), the socially efficient graph does not contain
any unilateral link announcements and the social cost of a
graph G(s) without such announcements can be written as

C(2)(s) =
∑
i∈N

C
(2)
i (s) = 2

∑
(i,j)∈B(s)

cij(s)

+ 2
∑

(i,j)/∈B(s)

ĉij(s). (10)

Using Definition 3.7, it is easy to see that C(2)(s) above
is minimized if and only if s = s∗ i.e., the stable energy-
efficient graph is the unique socially efficient graph.



Fig. 2. Condition for Link Announcement

Since the BCG with cost function C
(2)
i (s) results in a

unique stable and energy-efficient network, it is important
to see how the cost function can be implemented in
practice. We do not delve into these issues in detail in this
paper but as mentioned in Section I-C, one implementation
approach is to use ’virtual energy currency’ similar to
the nuglets-based Packet Purse Model of [8]. Further,
reputation-systems [15] approaches can be brought to bear
to ensure that nodes in the network do not deviate from their
pairwise-Nash behavior and not forward data that other
nodes route through them. Henceforth, we focus on the
stable energy-efficient graph due to its unique stability and
efficiency properties. We next describe a simple distributed
algorithm for network formation for the free-space path loss
model (α = 2 in the link power cost).

Algorithm 1: Player i announces sij = 1 if and only
if no other player k is physically located within a circular
region of diameter dij centered at the mid-point of the line
segment joining players i and j in the plane.

The condition for link announcement is illustrated in
Fig. 2 where the bold circle represents the circular region
of diameter dij , mentioned in the above algorithm, and
centered at midpoint m of the line segment joining players
i and j in the plane. The following proposition states some
of the important properties of the graph formed using this
simple distributed algorithm.

Theorem 3.9: Algorithm 1 generates a unique strategy
profile and an associated graph that is a supergraph of the
stable energy-efficient graph G(s∗).

Proof: From Definition 3.7, every link in the stable
energy-efficient graph G(s∗) is the least cost path between
its end nodes. Using the cosine rule and from Fig. 2, d2

ij =
d2

ik + d2
kj − 2 dikdkj cos θ ≥ d2

ik + d2
kj for θ > π/2. This

is true if node k lies within the circle with diameter dij

and centered at the mid-point of the line segment joining
players i and j. Thus a necessary condition for a link to
be the least cost path between its end nodes (and thus be a
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Fig. 3. The stable energy-efficient network G(s∗) and the network
formed by Algorithm 1

part of G(s∗)) is that no node be present within this circular
region around the link. Algorithm 1 therefore results in a
graph that includes every link in the stable energy-efficient
graph and more.

We now illustrate the stable energy-efficient graph and
the network formed using Algorithm 1. Consider 2000
wireless devices uniformly and randomly deployed in a
1m x 1m region. Fig. 3 shows a network among these
nodes with two kinds of edges - bold and dotted. The
stable energy-efficient network G(s∗) among these nodes is
the network formed with the bold edges while the network
formed using Algorithm 1 includes the dotted edges as well.
Numerically, there 3624 links in G(s∗) while there are an
additional 231 links in the network formed by Algorithm
1 i.e., about 6.4% extra links. It has been observed that
around 6% percent extra links are formed in the network
using Algorithm 1 compared to the stable energy-efficient
network even for varying network sizes consisting of up to
100000 nodes.

IV. RANDOM POINT-TO-POINT TRAFFIC

In the bilateral connection game discussed so far, the
focus was only on connectivity among the players involved
with an infinite cost for not being connected to any node.
We showed that the stable energy-efficient graph G(s∗) is
of particular interest since it is a pairwise-Nash graph for
both the cost functions that we considered. In the formation
of this graph, we were only interested in transmission
power costs of each link and did not explicitly consider
the effects of interference on simultaneous transmissions. In
this section, we study the maximum achievable throughput
for each of n random point to point flows in the stable
energy-efficient network and comment on how it compares
with recent results on capacity of wireless networks with a
similar traffic model [9]. In addition, we also discuss the
power-law or scale-free behavior for the number of flows
going through any node in this network.



Consider n nodes randomly but uniformly deployed
on a unit square and connected as the minimum stable
energy graph G(s∗). Each node in the network wishes to
communicate with a destination node, which is chosen to
be the node closest to a uniformly random point in the
region. There are thus n point to point flows in the network
and packets are assumed to be routed along the path with
the least power cost. We wish to compute the maximum
common throughput of each flow that is achievable in this
network.

Theorem 4.1: The longest link in the stable energy-
efficient network G(s∗) is O(

√
log n/n) units long almost

surely.
Proof: As noted in the proof of Theorem 3.9, if a

node k lies within the circular region of diameter dij and
centered at the midpoint m of nodes i and j as shown
in Fig. 2, (d2

ik + d2
kj)

1/2 ≤ dij . Since (dα
ik + dα

kj)
1/α ≤

(d2
ik + d2

kj)
1/2 for α ≥ 2, a necessary condition for a link

dij to be a part of the stable energy-efficient network is
that no node lie within this circular region.

No link can be longer than
√

8An since the circular
region around such a link will necessarily include at least
one cell, and from Lemma 3.4 every cell is non-empty
almost surely for An = a log n

n , a > 2.
For the random point to point traffic model comprising

of a randomly chosen destination for each source node,
the following lemma characterizes the number of source-
destination lines (i.e., straight lines each joining a source
to its randomly chosen destination) through any cell.

Lemma 4.2: (Lemma 3 of [11]) The number of source-
destination lines passing through any cell is O(

√
n log n),

almost surely.
Theorem 4.3: Node degree in the stable energy-efficient

network G(s∗) is O(log n) almost surely.
Proof: From Theorem 4.1, the maximum link length

in G(s∗) is O(
√

log n/n). Specifically, a circle with the
maximum link length as diameter encloses at most 4 cells.
Since each cell has O(log n) nodes almost surely from
Lemma 3.4, so does a circular region around a node with
maximum link length as the radius. Therefore each node
connects to O(log n) nodes almost surely.

Using the protocol model of [9], communication between
two nodes is successful if there are no other transmitters
within a distance (1+∆)lmax of the receiver, where ∆ > 0
represents a guard zone specified by the protocol and
lmax is the longest communication link in the network.
For the stable energy-efficient network G(s∗), lmax is
O(
√

log n/n) from Theorem 4.1 and there are at most
O(log n) other nodes within a distance (1 + ∆)lmax of
a receiver that cannot transmit at the same time. Using
Lemma 4.2, the maximum number of source-destination
lines passing through the O(log n) interferers around any
receiver is O(

√
n log n). Based on Monte-Carlo simulations

we observe that, as the network size increases, the least-
cost path between every random source-destination pair
approaches the straight line path joining them. We therefore
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Fig. 4. Point to point flows in the stable energy-efficient graph G(s∗)
(thicker edge indicates more flows through that link).

conjecture that asymptotically the number of least-cost
paths through the O(log n) interferers around any receiver
also O(

√
n log n). Using a slotted-time schedule with each

period consisting of O(
√

n log n) slots, each flow can be
scheduled for one slot in every time period and therefore
we conjecture that a per-flow throughput Ω(1/

√
n log n) is

achievable in the stable energy-efficient network G(s∗).
For the stable energy-efficient network connecting 2000

nodes as shown in Fig. 3, we consider a flow from each
node to a random destination. Fig. 4 illustrates the routing
of these random point to point flows through this network
with the thickness of each link being proportional to the
number of flows routed through that link. Due to the
deployment in a bounded region, nodes closer to the center
of the square region route more flows than those farther
away from the center. For this network, using maximum
likelihood estimation based curve fitting [16], we observe
a power-law for the number of flows routed by each node,
as shown in the log-log plot of Fig. 5. We observe such a
power-law consistently even for larger networks as shown
in Fig. 6 for a 50000-node network, where the exponent is
equal to 1.26. Such a power-law characteristic, also termed
as “scale-free” behavior, has been recently observed for the
node degree of large networks like the Internet and other
social networks. The practical implications of the power-
law behavior for the stable energy-efficient network is that
while most nodes route only a few flows each, there is a
significant fraction of nodes that each route a large number
of flows as seen in the ‘long tail’ of the power-law fit.

V. CONCLUSION AND FUTURE WORK

In this work, we studied the possibility of a bunch
of selfish energy-constrained wireless devices forming a
communication network among themselves so that any
two nodes are connected to each other either directly or
through other devices. We used a non-cooperative bilateral
connection game framework to model network formation
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Fig. 6. Distribution of flows and power-law fit in G(s∗) consisting of
50000 nodes

in which links are formed between nodes based on mu-
tual consent. For a BCG in which devices choose their
individual strategies to remain connected by minimizing
only their direct transmission power costs, we showed that
the price-of-anarchy is unbounded in the network size. We
then proposed a BCG with an alternate cost structure in
which each device additionally pays the transmission power
costs incurred by other devices for its own traffic. We
showed that a unique network structure emerges in this
game that is stable as well as socially efficient. We then
studied the achievable throughput for random point-to-point
traffic in this stable energy-efficient network. When the
nodes of a network are located in a bounded planar region,
the distribution of point-to-point flows through the nodes
exhibits a scale-free behavior.

For random point-to-point traffic over the stable energy-
efficient network, our conjecture that the achievable
throughput is the same (in the order sense) as the capacity

of such wireless networks needs to be proven as a part
of future work. In particular, it remains to be shown
analytically that the total distance traversed by a least cost
path in the stable energy-efficient network is asymptotically
close to the euclidean distance between the source and
destination of the path. The second cost function C2(s)
proposed in our model implicitly assumes a uniformly
random distribution of flows from each node to any other
node. Another direction of future work is to study BCGs
with cost functions that allow non-uniform distribution of
flows between pairs of nodes or alternately link costs that
depend on the amount of traffic through them. An instance
of a non-uniform distribution could be that a node only
wishes to be connected to a subset of nodes [17] and not
all the nodes.
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