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Abstract— A three-tier hierarchical wireless sensor network is
considered that consists of a cluster of sensors, an intermediate
relay with better computing and communication capabilities than
the sensors, and a central server or access point. Such a network
can be modeled as a multiple-access relay channel (MARC)
with additive white Gaussian noise and fading. Capacity bounds
for this network are presented with and without constraints on
simultaneous reception and transmission by the relay. The results
identify cooperative strategies between the relay and sensors
for increasing network capacity. These strategies also preserve
limited battery resources by eliminating the need for cooperation
between sensors.

I. INTRODUCTION

Mechanical sensors of varying capabilities have been an
integral part of automated systems since long before the birth
of electronics. They tended, as did early electronic sensors,
to be few in number and isolated, often application-specific,
and carefully placed for maximal effectiveness. Now, a new
generation of sensors is emerging with better sensing and
communication characteristics and potentially important and
varying uses. Advances in hardware have made it possible
to design and manufacture compact multifunction sensors on
silicon [1] with integrated radios and digital logic. While the
size and affordable cost of these devices allow deployment
in large numbers, their computing and communication ca-
pabilities can be exploited to form sensing networks whose
integrated, analyzed information can be more valuable than
that of an isolated sensor. The challenge lies in efficient use of
these wireless sensors to form complex information gathering
networks.

In their seminal work on the throughput of wireless ad hoc
networks [2], Gupta and Kumar showed that for a network
of n homogeneous nodes that cooperate to forward data,
the throughput per node falls asymptotically with increasing
nodes as Θ(1/

√
n). The decrease in throughput at each

node with increasing nodes is a direct result of interference
limited communications and cooperation where each node

gives up some of its available throughput to forwarding packets
for neighboring nodes. This result prompts two important
questions:
• Should every node in a sensor network participate in

forwarding and relaying?
• Would the addition of a set of regularly distributed

dedicated relay nodes with better processing and com-
munication capabilities than the low-power sensor nodes
change the scaling behavior of the per node throughput?

While it is hard to answer the first question in general, it is
clear that in many sensing applications connectivity between
all users is not required; the sensors merely observe and
transmit data to those nodes with better routing and processing
capabilities, and do not share data amongst themselves.

In [2] the authors show that addition of dedicated relays
will not change the scaling properties if the relays use the
same wireless channel. On the other hand, in [3] Liu et al
consider a hybrid ad hoc network obtained by placing a sparse
network of base stations (access points) connected by a high-
bandwidth wired network, within a random homogeneous ad
hoc network of n source nodes. Their results show that in such
a network, where each source node transmits at W bits/sec,
a scaling in network throughput capacity as Θ(mW ) can be
achieved when the number of base stations, m, scales faster
than
√
n thus requiring a significant investment in the wired

infrastructure.

Consider a three-tier hierarchical network [4] that results
from the introduction of pure wireless relay nodes serving
exclusively as forwarders in a hybrid wireless network of
sources and base stations described above. Using the results
of [2] and [3], it can then be expected that if the source
nodes have a one-hop link to the nearest relay, and forwarding
(cooperation) is limited to the relays, to first order, throughput
scaling is achieved when the number of basestations exceeds√
r, where r < n is now the number of relays. Since now

the relays forward data for all the sources, the requirement
on the number of access points relative to the two-tier hybrid



Fig. 1. A typical three-tier hierarchical network

network decreases by the factor equal to the square root of the
ratio of the number of relays to the number of sources. Thus,
while relays may not reverse the scaling behavior, they can
help reduce the number of wired access points and also lower
the power consumption of the source nodes, both valuable
resources in a variety of sensor applications.

In addition to these general and theoretic networking issues,
specifically for sensing applications, there are operational ad-
vantages to hierarchical heterogeneous layering that cannot be
achieved with a “flat”, homogeneous network of sensors, with
its inherent limitations on power and processing capabilities.
For instance, the relays help preserve limited battery resources
of sensors by eliminating the need for sensors to monitor com-
munications from their neighbors. In data gathering networks,
the relay layer offers the advantage of caching and forwarding
compressed data to the destination. Thus for a variety of
applications, it appears that a relatively small number of
higher-level network elements with access to more power and
better computing and communication capabilities could greatly
improve the performance of the overall system in terms of
throughput, reliability, longevity, and flexibility. An example
of such a three-tier hierarchical network is shown Fig. 1.

The results to date on the achievable throughput for sensor
networks with and without hierarchy consider special cases
of interference and communication strategies [5]. An analysis
independent of such assumptions requires using the tools of
information theory to determine capacity bounds for such
a network. While network information theory is rich with
open problems [6, chap. 14], for a simple hierarchical sensor
network formed by a cluster of sensors communicating with a
distant access-point (AP) via a forwarding node (FN) we can
apply and extend several existing results to determine bounds
on capacity, as well as construct capacity achieving strategies
for certain geometries and channel models.

A three-tier hierarchical network resulting from a cluster of
wireless sensors, a single forwarding node, and an access point
can be modeled as a multiple-access relay channel (MARC)

with Gaussian noise and fading. In section II we define the
Gaussian MARC, review known capacity results for such a
channel, consider two possible modes of relay operation that
result from placing constraints on the simultaneous transmit-
receive capabilities of the relay, and describe several coop-
erative communication strategies. In section III, we present
capacity inner and outer bounds for both constrained and
unconstrained MARCs. In section IV, we consider two ex-
ample geometries for a two-sensor network and compare the
performance of different communication strategies.

II. GAUSSIAN MARC: MODEL AND STRATEGIES

A. Model
The multiple-access relay channel is a multi-source exten-

sion of the well-known single-user relay channel [7] and was
introduced in [8] as a model for network topologies where
multiple sources communicate with a single destination in the
presence of a pure relay node. The paper [8] derived an upper
bound on the capacity of a MARC by using a cut-set bound
similar to [6, theorem 14.10.1]. This paper also presented an
achievable rate region for the white Gaussian MARC.

A model for an M -source Gaussian MARC is shown in
Fig. 2, and it consists of M + 1 inputs signals Xki, k =
1, 2, . . . ,M +1 from the sources and the relay node, and two
output signals YM+1,i and YM+2,i at the relay and destination,
respectively, where i is a time index. The channel is used n
times and the received signals at terminals M +1 and M +2
are

YM+1,i =

Ã
MX
k=1

hM+1,kiXki

!
+ ZM+1,i (1)

YM+2,i =

Ã
M+1X
k=1

hM+2,kiXki

!
+ ZM+2,i (2)

where Zji, j ∈ {M + 1,M + 2} is complex Gaussian noise
with independent and indentically distributed (i.i.d) real and
imaginary parts (circularly symmetric), that are zero-mean,
and have variance 1/2, that is, E(|Zji|2) = 1. The transmitted
signals from the kth source and the relay are constrained in
power as

nX
i=1

E(|Xki|2)
.
n ≤ Pk k = 1, 2, . . . ,M + 1 (3)

The parameter hjki is the fading experienced by the signal
from the kth transmitter at the jth receiver in the ith symbol
and is assumed known only at the jth receiver. In this analysis,
analogous to the single-source case in [9], we consider two
kinds of fading channels:

1) constant non-phase fading hjki = 1
.q

dγjk for all i ∈
[1, n] where djk is the distance between the jth receiver
and the kth source and γ is the path-loss exponent. For
this model, we define the source signal power as that



received by the destination a unit distance away from
the source.

2) ergodic phase-fading channel with parameter hjki =

eθjki
.q

dγjk where θjki is a uniformly distributed ran-
dom variable between [−π, π].

The analysis for these models generalizes to other types of
fading such as Rayleigh fading [10].

The above model permits the relay to transmit and receive
simultaneously [7]. For a wireless sensor network, this may be
possible for certain geometries where the relay lies between
the sensors and destination and uses directional antennas
to transmit and receive thereby eliminating any interference
between the two signals. In general, however, physical and
practical constraints limit the relay to transmit or receive,
thereby resulting in a constrained-MARC (C-MARC). Such
relays have also been referred to as ‘cheap’ relays [11].

We define a C-MARC to be a MARC where the relay
receives for a fraction α of the total time and transmits for
the remaining fraction (1− α). One can view this channel as
having two states: the relay is in the “receive” state for n1
symbols and in the “transmit” state for the remaining n− n1
symbols, where n1 /n = α. The output signals in the receive
state for a Gaussian C-MARC are

YM+1,i =

µ
MP
k=1

hM+1,kiXki

¶
+ ZM+1,i

YM+2,i =

µ
MP
k=1

hM+2,kiXki

¶
+ ZM+2,i

(4)

for i ∈ [1, n1] while those in the transmit state are

YM+1,i = 0

YM+2,i =

µ
M+1P
k=1

hM+2,kiXki

¶
+ ZM+2,i

(5)

for i ∈ [n1 + 1, n]. The noise Zji and the fading parameters
hjki are as defined for the MARC. In general, the two
channel states of the Gaussian C-MARC need not occur
in consecutive blocks, but for the following strategies there
should be sufficiently many receive states before any transmit
state.

We remark that an alternative definition for the C-MARC is
to use the MARC of (1)−(3) and to simply add the constraints

YM+1 = 0 if XM+1 6= 0 (6)

and that XM+1 = 0 for a fraction α of the total time. The
advantage of this approach is that one can apply the theory
developed for the MARC directly to the C-MARC.
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Fig. 2. A two-source Gaussian MARC

B. Bounds and Cooperative Strategies
A rate-tuple (R1, R2, . . . , RM ) is said to be achievable if

there are encoders and decoders such that the probability that
the destination node makes an error in decoding any of the M
messages is less than � for all positive �. The capacity region is
the closure of the set of achievable rate tuples. Outer bounds
on the capacity region of the MARC and C-MARC can be
obtained in a manner similar to the well-known cut-set bounds
for networks. Inner bounds are obtained by constructing codes
and computing their achievable rates.

Coding strategies for the classic single-source relay channel
[7] can be extended to obtain various achievable rate strategies
for the MARC. For example, one can generalize the cooper-
ative strategy of [7, theorem 1] where the relay decodes the
source messages before the destination and then cooperates
with the source to aid the destination in decoding. This is
known as the decode-and-forward strategy. This technique
is also called information-theoretic multi-hopping [10] to
highlight the fact that the source cooperates with the relay
in addition to sending a new message and that the destination
uses the signals received from both the source and relay to
decode. The achievable rate region for a Gaussian MARC
for the decode-and-forward strategy was presented in [8] and
proved using regular block Markov encoding and backward
decoding in [12]. In this paper, we extend the strategy of
[7, theorem 6] where the relay facilitates reliable detection
at the destination by forwarding a quantized version of its
received signal to the destination. This results in a compress-
and-forward strategy for the MARC as the relay uses source
coding techniques to quantize and forward its received signal
from all M sources to the destination. We also present an
amplify-and-forward strategy for the Gaussian MARC as a
multi-source extension of the strategy considered in [9] for the
single-source Gaussian relay channel. Here the relay forwards
an amplified version of its received signal from all sources to
the destination subject to (3).

For the C-MARC, we present four achievable rate strategies.



The cooperative decode-and-forward strategy is obtained when
the relay decodes its received signal in the receive state and
cooperates with the sources in the transmit state to aid the
destination. If the sources, in addition to cooperating with the
relay in the transmit state, transmit new messages directly to
the destination, we obtain the cooperative partial decode-and-
forward strategy. For a single-source degraded and constrained
relay channel, this strategy is included in [7, theorem 7]
and achieves capacity [11]. Note, however, that our Gaussian
channels are not degraded. We also present the compress-and-
forward strategy for the constrained MARC where the relay
compresses its received signal from all sources in the transmit
state and forwards it to the destination in the receive state.
Finally, we consider an amplify-and-forward strategy for the
Gaussian C-MARC for the special case of α = 1/2 as an
extension of the amplify-and-forward strategy considered for
the single-source constrained relay channel in [13]. However,
unlike [13], we determine rate bounds by allowing the sources
to transmit new messages in both fractions. The resulting rate
regions for all strategies considered are presented in section
III.

III. SUMMARY OF RESULTS

A. MARC
An outer bound for the MARC using cut-sets is obtained as

follows. Let G ⊂ S = {1, 2, . . . ,M}. Define X(G) = {Xi :
i ∈ G},Y = (YM+1, YM+2), and Gc to be the complement
of G in S.

Theorem 1: The capacity region of an M -source MARC
is a subset of the union ROB

MARC of the sets of rate-tuples
(R1, R2, . . . , RM ) satisfyingX

i∈G
Ri ≤ min

½
I(X(G);Y|X(Gc),XM+1, U),

I(X(G),XM+1;YM+2|X(Gc), U)

¾
(7)

for all G ⊂ S, where the union is over all input distributions
p(u,x, xM+1) = p(u) ·

³QM
i=1p(xi|u)

´
· p(xM+1|u,x), x M

=

(x1, x2, . . . , xM ) with |U| ≤ 2M+1 − 2.
The cardinality bounds on the time-sharing random variable

U are obtained by applying the support lemma [14, pg. 310].

Consider the following achievable rate strategies.
1) Decode-and-Forward (DF): The rates achieved with this

cooperative strategy were obtained in [10] as the set of rate
tuples (R1, R2, . . . RM ) satisfyingP

i∈G
Ri ≤ min

µ
I
¡
X(G);YM+1|V̄,X(Gc)

¢
,

I(X(G),XM+1;YM+2|X̄(Gc))

¶
(8)

for all G ⊂ S where X̄(Gc)
M
= (V(Gc),X(Gc)) and V̄ M

=
(V(S),XM+1). The auxiliary random variable Vi enables
cooperation between the ith source and the relay through
the distribution

³QM
i=1p(vi)p(xi|vi)

´
·p(xM+1|v) where v =

(v1, v2, . . . , vM ). The first bound results from jointly decoding
the source messages in each block at the relay while the second

bound is obtained by decoding the cooperative information
from the sources and relay at the destination. One might
improve (8) by adding a time-sharing random variable as was
done in theorem 1.

2) Compress-and-Forward (CF): Here the relay forwards a
quantized version of its received signal from all sources to the
destination. The destination first decodes the quantized signal
ŶM+1 from the relay and then uses ŶM+1 and its received
signal YM+2 to decode the source messages. The resulting
region is the set of rate tuples (R1, R2, . . . RM ) such thatX

i∈G
Ri ≤ I(X(G); ŶM+1, YM+2|XM+1,X(Gc)) (9)

and

I(XM+1;YM+2) ≥ I(ŶM+1;YM+1|YM+2,XM+1) (10)

where Xi, i ∈ [1,M + 1], are independent and ŶM+1 is
a probabilistic function of YM+1 and XM+1. Observe that
the source coding rate I(ŶM+1;YM+1|YM+2,XM+1), and
hence the resulting distortion, is upper bounded by the rate
I(XM+1;YM+2) achievable between the relay and destination.

3) Amplify-and-Forward (AF): The amplify-and-forward
strategy applies to Gaussian channels. The relay forwards
an amplified version of its received signal as XM+1,i =
cYM+1,i−1 where the constant c is computed from (3). This
strategy generates an inter-symbol interference (ISI) channel
between the sources and destination and we obtain the rate
region given by the multi-user water-filling algorithm of Cheng
and Verdu [15]. We remark that, in addition to the assumption
that the channel state information at each receiver is known
only to that receiver, this strategy also requires knowledge at
the destination of fading parameters at the relay.

B. Constrained MARC
Recall that the relay operates in a receive state and transmit

state a fraction α and 1 − α of the time respectively. The
channel state is modeled as known to all the M+2 nodes. An
outer bound on the capacity can be derived by using cut-sets
as follows. Let X M

= (X1,X2 . . . ,XM ), ᾱ
M
= 1−α, α ∈ [0, 1],

and X̄(·)
M
= (XM+1,X(·)).

Theorem 2: The capacity region of the M -source C-MARC
is a subset of the union ROB

C−MARC of the sets of rate tuples
(R1, R2, . . . , RM ) satisfying

P
i∈G

Ri ≤ max
α
min

⎛⎜⎜⎝
αI(X(G);Y|X(Gc), U)

+ᾱI(X(G);YM+2|X̄(Gc), U),
αI(X(G);YM+2|X(Gc), U)+
ᾱI(X̄(G);YM+2|X(Gc), U)

⎞⎟⎟⎠
(11)

for all G ⊂ S, where the union is over all p(u) ·
QM

i=1p(xi|u)
and p(u) ·

³QM
i=1p(xi|u)

´
· p(xM+1|u, x1, x2, . . . , xM ) in the

α and (1− α) fractions respectively with |U| ≤ 2M+1 − 2.
As with theorem 1, the cardinality bounds on the time-

sharing random variable U are obtained by applying the
support lemma [14, pg. 310].



Consider the following achievable strategies for the C-
MARC.

1) Decode-and-Forward (DF): This is similar to the DF
strategy for the MARC except now the sources do not send a
new message in the transmit state but simply cooperate with
the relay to aid the destination in decoding the message sent
in the receive state. The resulting bounds on the sum-rate for
any set G ⊂ S of the source indices are

P
i∈G

Ri ≤ max
α
min

⎛⎝ αI(X(G);YM+1|X(Gc)),
αI(X(G);YM+2|X(Gc))
+ᾱI(X̄(G);YM+2|X(Gc))

⎞⎠ (12)

for independent Xi, i ∈ [1,M ], in both the transmit and
receive states.

2) Partial Decode-and-Forward (P-DF): In addition to
cooperating with the relay in the transmit state, the sources
now directly transmit a new message to the destination. Then,
the bounds on all combinations of the rate tuples for reliable
detection at the relay and destination are

P
i∈G

Ri ≤ max
α
min

⎛⎜⎜⎝
αI(X(G);YM+1|X(Gc))

+ᾱI(X(G);YM+2|X̄(Gc),V),
αI(X(G);YM+2|X(Gc))

+ᾱI(X̄(G);YM+2|X̂(Gc))

⎞⎟⎟⎠
(13)

where X̂(·)
M
=(V(·),X(·)),V

M
= V(S), and (Vi,Xi), i ∈ [1,M ],

are independent andX→ V→ XM+1 forms a Markov chain.
3) Compress-and-Forward (CF): The relay quantizes the

signal received in the receive state and forwards the appropri-
ate quantized signal to the destination in the transmit state.
Further in the transmit state the sources also send a new
message directly to the destination resulting in a rate regionP

i∈G
Ri ≤ max

α

µ
αI(X(G);Yd|X(Gc))

+(1− α)I(X(G);YM+2|X̄(Gc))

¶
(14)

for independent Xi, i ∈ [1,M + 1], subject to the constraint
ᾱI(XM+1;YM+2) ≥ αI(ŶM+1;YM+1|YM+2) where ŶM+1

is the auxiliary random variable used to represent the quantized
signal at the relay and Yd

M
=
³
ŶM+1, YM+2

´
.

4) Amplify-and-Forward (AF): Similar to the unconstrained
case, we set XM+1,i = cYM+1,i−1 where in the (i − 1)th
symbol the relay receives and in the ith symbol it transmits.
Clearly, this strategy only applies for the Gaussian C-MARC
for the special case of α = 1/2 . The resulting rate region is
then a multiple-access extension of the single-user rate bounds
obtained in [16] such thatX

i∈G
Ri ≤

1

2
I
³
X1
(G),X

2
(G);YM+2|X1

(Gc),X
2
(Gc)

´
(15)

for some choice of p(x1(S), x
2
(S)) where YM+2

M
= [Y 1

M+2

Y 2
M+2]

T is a vector of signals at the destination received in the
first and second time-symbol while Xj

(Gc) = {Xj
i : i ∈ G}

is the set of signals from the sources in G transmitting in the
jth time symbol, j ∈ [1, 2].
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Fig. 3. Two geometries for a two-sensor MARC

IV. ILLUSTRATION OF RESULTS

We consider the two example geometries shown in Fig. 3.
While the two geometries chosen here clearly illustrate capac-
ity achieving strategies, they are also reflective of the typical
performance achieved by the various strategies considered here
for an arbitrary placement of source and relay nodes. Case 1
is a geometry with a symmetric positioning of the sources
with respect to the relay and destination while case 2 is a
collinear geometry with both sources at the origin and the
destination a unit distance away from the origin. In both cases,
the relay moves along the line connecting the destination with
the origin. We plot the two-sensor sum-rate in bits per channel
use for each strategy as a function of the relay’s distance
from the origin. The transmitter signal-to-noise ratio (SNR)
is chosen as 10 dB for both sources and the relay. We present
and analyze the results separately for the two fading models
we consider, namely the constant non-phase fading and the
ergodic fast fading channel. For the following analysis we
use the free-space path loss exponent γ = 2 and evaluate
all logarithms with respect to base 2 so that the resulting rates
are in units of bits per channel use.

A. Non-phase Fading
1) MARC: The sum-rate of the three strategies, in addition

to the outer bounds of theorem 1, are plotted in Figs. 4 and 5
for case 1 and case 2 respectively. The direct multiple-access



sum-rate between the sources and destination is also plotted
as a straight-line since it is independent of the relay’s position.

For a M source Gaussian MARC, the rate bounds for the
DF strategy are maximized using Gaussian signaling [8] at the
sources and relay such that

X
i∈G

Ri ≤ max
{βi}i∈G

min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C

µP
i∈G

βiP
r
i

¶
,

C

⎛⎜⎝
P
i∈G

P d
i + P d

r+

2
P
i∈G

q
β̄iβriP d

i P
d
r

⎞⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(16)

where βri = (1 − βi)Pi
±P

i∈G(1− βi)Pi is the fraction of
power allocated by the relay to cooperating with the ith source,
βi = (1 − β̄i) is the fraction of power allocated by the ith

source to sending new messages, and C(x)
4
= log(1 + x).

The corresponding source and relay signals are given as
Xi =

√
βiPiVi0 +

p
β̄iPiVi for all i ∈ [1,M ] and XM+1 =P

i∈G
p
βriPM+1Vi +

p
(1−

P
i∈Gβri)PM+1VM+1 where

{Vi0}Mi=1 and {Vi}M+1
i=1 are i.i.d complex Gaussian circularly

symmetric random variables with zero mean and unit variance.
The quantities P d

i = Pi/ d
γ
M+2,i and P r

i = Pi/ d
γ
M+1,i are

the power received from the ith source at the destination
and relay respectively while P d

r = PM+1/ d
γ
M+2,M+1 is the

received power at the destination from the relay’s signal. The
plots also include the optimal fraction β1 = β2 = β, with
the two fractions taking the same value β for the symmetric
geometry considered in case 1 and 2 at the maximum sum-rate
point.

The two-source sum-rate bound for the CF strategy is
obtained by constructing the quantized output as a noisy
Gaussian signal subject to the constraint that the source coding
rate that results from using side information at the decoder
is bounded by the rate between the relay and destination.
Similar to the DF strategy, the achievable bounds are obtained
using Gaussian signaling in (14). Finally, the sum-rate bound
for the AF strategy is obtained by determining the optimal
multi-user water-filling power and rate allocation [15] for the
case of symmetric sources (same received power and fading
parameters at relay and destination for each source). We note
that the notion of β does not apply to the CF and AF strategies
where the relay does not decode the source messages.

In Fig. 4, we observe that when the relay physically ap-
proaches the destination, the CF strategy approaches the upper
bound achieving capacity when the relay and destination enjoy
an error-free channel. This can be verified analytically [17]
and results from the fact the distortion in the quantized signal
decreases as the channel between the relay and destination
becomes more reliable. Thus in the limit, the destination uses
both channel outputs as if they were obtained from two receive
antennas thus achieving the upper bound in (7). The AF
strategy, similar to the single-user case [9], performs only as
well as the DF strategy when the relay is very close to the
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Fig. 4. Upper bound and achievable rates for the two-sensor MARC of Case
1 with P1 = P2 = Pr = 10 dB

destination. The performance of the AF strategy suffers from
the amplification of the received noise at the relay. Further as
the relay moves away from the destination, the advantage of a
high-rate channel between the relay and destination is also lost
resulting in the AF strategy falling below the direct multiple-
access sum-rate that is achievable in the absence of the relay.
The DF strategy on the other hand achieves its maximum when
the relay is physically close to the two sources. The resulting
high capacity channel between the relay and the sources forces
maximum cooperation between the sources and the relay in
aiding the destination decode. This is clear from the optimal
β curve in Figs. 4 and 5 for the DF strategy where β = 1
(no cooperation) results only when the rate achieved at the
destination exceeds the maximum rate possible between the
sources and relay.

For the collinear geometry considered in case 2, we observe
from Fig. 5 that the DF strategy approaches the upper bound
when the relay is physically close to the two sources. It
can be shown that the resulting channel when the relay and
the sources are co-located is a physically degraded Gaussian
MARC for which the DF strategy achieves capacity [17].
Finally, we note that the achievable rates for the DF and CF
strategies are greater than the direct sum-rate when the relay
is closer to the sources than the destination even if it does not
physically lie between the sources and destination.

Thus, given a choice in the placement of the relay, a
cooperative strategy can be chosen to achieve the best rate
from among those strategies considered here.

2) Constrained MARC: The achievable sum-rate bounds for
the two geometries of Fig. 3 are shown in Fig. 6 and 7. For the
sake of simplicity and to make comparisons between the CF,
DF, P-DF and AF strategies, we set α = 1/2 . Analogous
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Fig. 5. Upper bound and achievable rates for the two-sensor MARC of Case
2 with P1 = P2 = Pr = 10 dB

to the unconstrained case, for the Gaussian C-MARC, the
achievable rate regions are maximized by appropriate choice of
Gaussian signaling at the sources and relay for each strategy.
Thus, for the DF and P-DF strategies, the transmitted signals
in the fraction α are generated using an independent Gaussian
random variable at each source. In the fraction (1 − α), the
cooperative DF strategy implies the relay cooperates with each
source to transmit a sum of independent Gaussian signals
while for the P-DF strategy, the signal design at the relay and
sources is identical to that for the DF strategy for the MARC.
Similarly, for the CF strategy, the quantized signal ŶM+1 at
the relay is constructed as a Gaussian distorted version of
the received signal while the source signals are generated
independently using Gaussian random variables.

As expected, for both cases the CF strategy approaches the
upper bound as the relay approaches the destination. Here too,
the CF strategy exploits the correlation between the received
signals at the relay and destination (source coding with side-
information at decoder) and for the case where the relay is
at the destination, the destination has reliable access to both
channel outputs thus achieving the capacity in (11). For case
2, it can be shown that a degraded Gaussian C-MARC results
when the relay and sources are physically very close with
both the P-DF and DF strategies achieving capacity [17] for
this case. From Figs. 6 and 7, it is clear that except for the
case where the sources and relay are very close to each other,
the rate achievable by the DF strategy in (12) is smaller than
that achievable by the P-DF strategy in (13) since the sensors
in the DF strategy are strictly limited to cooperating with the
relay in the (1 − α) fraction. The optimal β curve in Figs.
6 and 7 measures the fraction of power allocated to a new
message at each source in the (1 − α) fraction for the P-DF
strategy. The sources do not cooperate with relay in the CF
and AF strategies while for the DF strategy, β1 = β2 = 1
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Fig. 6. Upper bound and achievable rates for the two-sensor C-MARC of
Case 1 with P1 = P2 = Pr = 10 dB

since the sources do not send a new message in the (1 − α)
fraction.

The AF strategy on the other hand has a performance worse
than the direct sum-rate capacity. This is a direct result of the
factor of 1 /2 that dominates the rate term in (15) in addition
to the degradation in performance due to amplification of the
received noise at the relay. So, for a more appropriate com-
parison, we compare the sum rates that result from limiting
the source transmissions to every alternate time-symbol with
and without the relay. With the relay, this results in the half-
duplex amplify-and-forward strategy with the resulting rate
region given by the set of rate tuples (R1, R2, . . . , RM ) such
that X

i∈G
Ri ≤

1

2
I
³
X1
(G);YM+2|X1

(Gc)

´
(17)

for some choice of p(x1(G)) where YM+2 and Xj
(Gc) are

as defined in (15). The advantage of using a relay when
the sources are constrained to transmit only half the time is
clearly demonstrated by comparing the rate achievable with
and without the relay in Fig. 8 for both geometries. While the
sum-rate achievable with the half-duplex AF strategy is smaller
than that achievable with the AF strategy, this strategy may be
advantageous when the sensors are limited in power and need
to conserve their limited battery resources for extended use.

B. Ergodic Phase Fading

An ergodic phase fading model is useful to analyze channels
that vary rapidly over all possible states within a message
block. Such an analysis is appropriate for hierarchical sensor
networks deployed over fast-changing terrain or in high-
mobility environments.

1) MARC: In [12], the authors show that for a MARC
experiencing an ergodic fading channel as described in section
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Fig. 7. Upper bounds and achievable rates for the two-sensor C-MARC of
Case 2 with P1 = P2 = Pr = 10 dB

-1 -0.5 0 0.5 1
2

2.4

2.8

-0.8 -0.4 0 0.4 0.8

2.2

2.4

2.6

2.8

Position of relay along x-axis

R
at

e 
(b

it
s/

ch
. u

se
)

Position of relay along x-axis

R
at

e 
(b

it
s/

ch
. u

se
)

Half-duplex AF 

Half-duplex Direct 

Case 1 

Case 2 

Half-duplex AF  

Half-duplex Direct 
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II, the decode-and-forward strategy achieves capacity when the
relay lies in a region around the sources such thatÃX

i∈G

Pi
dM+2,i

!
+

PM+1

dM+2,M+1
≤
X
i∈G

Pi
dM+1,i

(18)

is satisfied for all sets G ⊂ {1, 2, . . .M}.
The lack of channel state information at the transmitters

coupled with a uniform phase-fading channel results in the
ergodic capacity being maximized when the sources no longer
cooperate with the relay in each block. The resulting rate
region is then given by the set of M -tuples (R1, R2, . . . , RM )
that satisfyX

i∈G
Ri ≤ min

½
C

µP
i∈G

P r
i

¶
, C

µP
i∈G

P d
i + P d

r

¶¾
(19)
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Fig. 9. Upper bound and Achievable Rates for the MARC and C-MARC of
Case 2 under ergodic fading; P1 = P2 = Pr = 10 dB

for all sets G ⊂ {1, 2, . . .M} and P r
i , P d

i , and P d
r as defined

earlier.

2) Constrained MARC: In an analogous manner, we can
show that for the constrained MARC, the partial decode-and-
forward strategy achieves capacity when the relay lies in a
region about the sources such that

A(1−α)

⎛⎝ P
i∈G

Pi
dM+2,i

+ PM+1

dM+2,M+1

⎞⎠ ≤
⎛⎜⎜⎝ Aα

µP
i∈G

Pi
dM+1,i

¶
·A(1−2α)

µP
i∈G

Pi
dM+2,i

¶
⎞⎟⎟⎠

(20)
where Aα(x) = (1 + x)α. For the special case of α = 1/2,
the above region simplifies to (18). The rate region for the C-
MARC under ergodic fading conditions is then given by the
set of rate tuples (R1, R2, . . . RM ) such that

X
i∈G

Ri ≤
1

2
C

µP
i∈G

P d
i

¶
+min

⎧⎪⎪⎨⎪⎪⎩
1
2C

µP
i∈G

P r
i

¶
,

1
2C

µP
i∈G

P d
i + P d

r

¶
⎫⎪⎪⎬⎪⎪⎭
(21)

The capacity achieving behavior of the DF and P-DF strategy
for the MARC and C-MARC respectively under ergodic fading
conditions is clearly demonstrated in Fig. 9 for the collinear
geometry of case 2. The wide range of relay positions between
[−.9, .45] where the DF strategy achieves capacity for the
MARC and between [−.95, .45] for the C-MARC clearly
illustrates how clustering the sources and relay helps achieve
the ergodic capacity. Further for the C-MARC, the DF strategy
also achieves capacity albeit over the smaller range [−.15, .15]
where the relay is very close to the sources.



V. CONCLUSIONS

We obtained capacity bounds for a three-tier hierarchical
wireless sensor network using the Gaussian multiple-access
relay channel model. An analysis for the constant non-phase
and the ergodic phase-fading channel helped determine several
achievable strategies for path-loss dominated and fast fading
wireless channels. Notably for the two special geometries that
result when either the sources and relay or the destination
and relay form a very close cluster, we presented capacity-
achieving strategies for both the MARC and C-MARC. Fur-
ther, for any general placement of relays and sources, a
strategy that achieves the maximum rate can be chosen from
among those presented here. The analysis can be extended
to bound outage capacity, an appropriate performance metric
for slow-fading channels typical of low-mobility and indoor
environments. We can also extend the analysis to networks
with multiple relays and access-points and use known results
in information theory to better understand the differences
between a flat network of cooperative nodes and a hierarchical
ad hoc or sensor network using network capacity as the
performance metric.
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