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Abstract— Time variations of fixed wireless channels result
from the relative movements of scatterers in the propagating
environment. We consider the temporal gain variations of short-
range channels due to scattering from wind-blown leaves. In
particular, we present a method for estimating the Doppler
spectrum from the received signal’s power samples, without
requiring the phase information. We then apply the method to the
results of measurements we recently conducted on fixed, short-
range paths.
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I. INTRODUCTION

IN recent measurements of fixed-position, short-path (dis-
tance between antennas less than 20 m), outdoor wireless

channels, we observed channel time variations which are,
most probably, caused by scatter from blowing leaves on trees
and bushes in the proximity of the transmitter and receiver
[1]. We found these measured variations to be describable as
Ricean processes with K-factors ranging from 20 to 30 dB.
In this letter, we present their spectral analysis subject to the
assumption that they are also wide sense stationary processes.

In general, there are two primary aspects of wireless channel
time variations, and thus two different types of Doppler spectra
that can be observed by the user. In the first type (which has
been extensively studied), the user is moving with respect
to base, or vice versa. In this case, the time variations of
the received signal are related to the spatial variations of
the electromagnetic field through a constant (i.e., the relative
velocity). Assuming a uniform angle-of-arrival distribution for
the received echoes of the transmitted signal, the Doppler
spectrum will be the well-known U-shaped spectrum of Clarke
[2]. In the second type, the base and user are both stationary,
but reflectors in the environment are moving, causing time
variations in the channel response. This case is studied here.

The estimation of a complex signal’s power spectrum from
a finite number of samples has been addressed in almost every
book on digital signal processing [3], [4]. However, these
methods deal with power spectrum estimation from complex
signal amplitude samples. Here, we present a method for
signal power spectrum estimation from power samples, i.e.,
the discrete-time measurements of the signal power, without
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phase information. This case is relevant because power mea-
surements can be done simply, without requiring division of
the signal into in-phase and quadrature-phase components. In
cases where power gain measurements are the main goal, as
in our experiments, the proposed method allows additional in-
formation (Doppler spectra) to be obtained with no additional
equipment. Moreover, the use of power samples to this end
is not affected by oscillator phase noise, in contrast to using
complex signal samples.

In Section II we present a method for nonparametric power
spectrum estimation from the signal power samples. In Section
III we apply the method to the spectral analysis of short-path,
wireless channel time variations. We conclude in Section IV.

II. POWER SPECTRUM ESTIMATION FROM POWER

SAMPLES

Consider a sinusoidal signal transmitted through a fixed
wireless channel. The received complex envelope can be
represented as [5]

g(t) = V + v(t), (1)

where V is a fixed (complex) component and v(t) is a zero-
mean, time-varying, complex Gaussian process. The envelope
of g(t) is known to be Rice-distributed (Rayleigh-distributed
if V = 0) [6]. For convenience, we assume g(t) is scaled so
that E[|v(t)|2] = 1, in which case V is related to the Ricean
K-factor1 via K = |V |2.

Then, the received instantaneous power is:

P (t) = |g(t)|2 = |V |2 + |v(t)|2 + V v∗(t) + V ∗v(t), (2)

where | | is the modulus operator and ∗ denotes the complex
conjugate. Using K = |V |2, the mean received power is then:

P̄ (t) = E[P (t)] = K + E[|v(t)|2] = K + 1. (3)

If we define the autocorrelation function of v(t) as:

r(τ) = E[v∗(τ)v(t + τ)], (4)

then the autocorrelation of the power process can be written
as:

E[P (t)P (t + τ)] = K2 + 2K + E[|v(t)|2|v(t + τ)|2]

+ Kr(τ) + Kr∗(τ). (5)

1The Ricean K-factor is defined here as K = |V |2/σ2 , where σ2 is the
power of the total time-varying process rather than just the real part, which
is why the customary factor of 2 is not present in analysis.
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If we apply the following identity for zero-mean complex
Gaussian variates2:

E[|x1|
2 |x2|

2] = E[|x1|
2]E[|x2|

2] + |E[x1x
∗
2]|

2, (6)

this can further be simplified as:

E[P (t)P (t+ τ)] = K2 +2K +1+ |r(τ)|2 +K[r(τ)+r∗(τ)].
(7)

The autocorrelation function of [P (t)− P̄ (t)] is defined as:

A(τ) = E[P (t)P (t + τ)] − E2[P (t)]. (8)

Evaluating A(τ) from Equations 7 and 8, we get:

A(τ) = |r(τ)|2 + K[r(τ) + r∗(τ)]. (9)

The power spectrum, S(f), of the random part of g(t) is
the Fourier transform of the autocorrelation function r(τ).
However, we still do not have the autocorrelation function of
the signal, r(τ), but the autocorrelation function, A(τ), of the
received power process. To find r(τ), we make the plausible
assumption that the spectrum S(f) is an even function about
f = 0. (There is no reason to expect Nature to favor positive
Doppler fluctuations over negative ones, or vice versa.) In that
case, r(τ) is real, r(τ) = r∗(τ), and Equation 9 becomes

|r(τ)|2 + 2Kr(τ) − A(τ) = 0. (10)

Solving for r(τ) yields

r(τ) =
√

K2 + A(τ) − K. (11)

Then, as mentioned, the power spectrum, S(f), is the Fourier
transform of r(τ). Note that, since r(0) = 1, the area of S(f)
is 1.

III. SPECTRAL ANALYSIS OF WIRELESS CHANNEL TIME

VARIATIONS

Background - So far, the proposed method has been exact in
the sense that we assumed perfect estimation of the autocor-
relation functions. Note that both terms in Equation 11 can be
evaluated from the signal power samples. For example, K can
be evaluated by the method of [8], and A(τ) can be estimated
in many ways. We have a finite number of samples, which
implies the use of a windowing function to estimate A(τ). We
have examined four of the nonparametric standard methods for
the power spectrum estimation (Periodogram, Bartlett, Welch
and Blackman-Tukey). Although, in our analyses, all of them
lead to almost identical results, we have chosen to modify the
Blackman-Tukey method since it leads to the largest quality
factor estimate [3]. For more details on these methods, one
can refer to [3], [4]. Here, we will present the method with
just a brief description of each step and concentrate more on
the results.

Measurements - To characterize channel time variations,
we performed continuous waveform (CW) measurements at a

2This can be derived using Equation 8-121 of [7]: E[x1x2x3x4] =
E[x1x2]E[x3x4] + E[x1x3]E[x2x4] + E[x1x4]E[x2x3], where the x’s
are real and Gaussian. Now writing |x1|2|x2|2 = x1x∗

1
x2x∗

2
where the x’s

are complex Gaussian, and invoking this identity, we arrive at Equation 6.

frequency of 5.3 GHz. The receiver was a spectrum analyzer
set to measure the received power. We used omnidirectional
antennas (azimuth plane). The receiver antenna was mounted
at a height of 1.8 m, while the transmitter antenna was
mounted at a height of 2 meters. During measurements we kept
the positions of both antennas fixed while recording received
power over time periods of 15 minutes. We did this at 21
different positions, in an environment having a high density
of trees and bushes close to both the transmitter and receiver,
the distance between antennas ranging from 1.5 to 16 meters.

Processing - Let us denote the collection of the measured
power samples by x(n), n = 0, 1, ..., N ′. Since the sampling
rate was 1.4 Hz on the average, with a small jitter in sampling
frequency due to equipment imperfections, we used the cubic
spline interpolation to translate the measured data to a uniform
∆T = 0.25 s time scale. This increases the frequency scale
to [−2 : 2] Hz, placing zeroes at the frequency points not
included in the sampled signal. Now, we can estimate the mean
power, P̄ , as an arithmetic mean of the samples. Then, we
subtract the P̄ from the samples, x(n), to obtain a zero-mean
set of power samples, say y(n), n = 0, 1, ..., N . The zero-
mean power process autocorrelation estimate is then:

Â(m) =

{

1
N

∑N−m

i=0 y(i) y(i + m) for 0 ≤ m ≤ M
1
N

∑N

i=|m| y(i) y(i + m) for − M ≤ m ≤ −1,

(12)
where M is the maximum lag (M ≤ N ). At this point, we use
Equation 11 to transform the power process autocorrelation
function, Â(m), to the autocorrelation function of the re-
ceived signal, r̂(m). Then we proceed, as the Blackman-Tukey
method suggests, by applying a window to the autocorrelation
function. We chose the Blackman window, wB(m), since it
leads to the highest sidelobe suppression (compared to other
standard windows) [3].

Finally, we perform the Fourier transform:

Ŝ(f) =

M
∑

m=−(M)

wB(m) r̂(m) e−j2πfm. (13)

It is suggested, and we used, a Blackman window length
(maximum lag M ) equal to 20% of the autocorrelation se-
quence length [4].

Results - The resulting power spectrum estimation is pre-
sented in Figures 1 and 2. In the first figure, we plot all 21
spectra (one for each measuring position), one on top of the
other. The spectra are shifted on a dB scale by the same value,
such that the maximum value in figure is 0 dB. It is seen that
the 21 spectra are quite similar.

In the second figure, we plot the average spectrum, meaning
the average of the 21 spectra on a linear (not dB) scale. Again,
the result is converted to a dB scale and shifted to have a
0-dB maximum. In contrast to the U-shaped Doppler spec-
trum generally associated with user motion [2], the Doppler
spectrum due to scatter motion is peaked at zero frequency.
This is consistent with theoretical predictions for this kind of
process [9]. In addition, Figure 2 shows the empirical result
that S(f) ∼ 1/f0.78 down to very low f . It also shows that
the spectral density falls by 14 dB between f = 0 and f = 0.1
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Hz. In contrast, a typical Doppler spectrum for a user moving
at 3 km/h, at the same frequency as our measurement (5.3
GHz), will have significant content out to around 15 Hz.
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Fig. 1. Estimated power spectra for all twenty one positions

IV. CONCLUSION

We have presented a method for estimating the power
spectrum of a radio wave from a finite number of signal
power samples. We illustrated the method by analysing the
time variations of a short-path, fixed-position, outdoor wireless
channel. We found that the Doppler spectrum arising from
wind-blown leaves in the environment does not significantly
change across positions, and that it is quite different from the
U-shaped Doppler spectrum generally assumed in mobile radio
channels.
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